2003-01-03 19:52:04

by Sam Ravnborg

[permalink] [raw]
Subject: [RFC] Documentation/kbuild/makefiles.txt

The documentation for the kbbuild makefiles has lacked behind a little.
Entering the feature freeze it was about time to get it updated.
I have started updated the sections describing the normal makefiles,
in this description called "kbuild makefiles".

On purpose not as a diff, since I have reshuffled the original document.
The info people seeks is now closer to the beginning of the document.

What I post here is what I plan to provide for the kbuild makefiles,
if you need more/other info let me know.

Any input regarding detail level, structure, spelling and language
appreciated.

I'm planning to add the following:

kbuild variables
- Short intro to all public variables not covered so far

Adding a new architecture
- What requirements needs to be fulfilled
- Typical directory structure
[This section will be brief, since noone does this without
looking into whats done so far, especially for i386].

Sam



Linux Kernel Makefiles


=== Table of Contents

This document describes the Linux kernel Makefiles.

1 Overview
2 Who does what
3 The kbuild Makefile
3.1 Goal definitions
3.2 Built-in object goals - obj-y
3.3 Loadable module goals - obj-m
3.4 Objects which export symbols - export-objs
3.5 Library file goals - L_TARGET
3.6 Descending down in directories
3.7 Compilation flags
3.8 Command line dependency


=== 1 Overview

The Makefiles have five parts:

Makefile the top Makefile.
.config the kernel configuration file.
arch/$(ARCH)/Makefile the arch Makefile.
scripts/Makefile.* common rules etc. for all kbuild Makefiles.
kbuild Makefiles there are about 500 of these.

The top Makefile reads the .config file, which comes from the kernel
configuration process.

The top Makefile is responsible for building two major products: vmlinux
(the resident kernel image) and modules (any module files).
It builds these goals by recursively descending into the subdirectories of
the kernel source tree.
The list of subdirectories which are visited depends upon the kernel
configuration. The top Makefile textually includes an arch Makefile
with the name arch/$(ARCH)/Makefile. The arch Makefile supplies
architecture-specific information to the top Makefile.

Each subdirectory has a kbuild Makefile which carries out the commands
passed down from above. The kbuild Makefile uses information from the
.config file to construct various file lists used by kbuild to build
any built-in or modular targets.

scripts/Makefile.* contains all the definitions/rules etc. that
is used to build the kernel based on the kbuild makefiles.


=== 2 Who does what

People have four different relationships with the kernel Makefiles.

*Users* are people who build kernels. These people type commands such as
"make menuconfig" or "make bzImage". They usually do not read or edit
any kernel Makefiles (or any other source files).

*Normal developers* are people who work on features such as device
drivers, file systems, and network protocols. These people need to
maintain the kbuild Makefiles for the subsystem that they are
working on. In order to do this effectively, they need some overall
knowledge about the kernel Makefiles, plus detailed knowledge about the
public interface for kbuild.

*Arch developers* are people who work on an entire architecture, such
as sparc or ia64. Arch developers need to know about the arch Makefile
as well as kbuild Makefiles.

*Kbuild developers* are people who work on the kernel build system itself.
These people need to know about all aspects of the kernel Makefiles.

This document is aimed towards normal developers and arch developers.


=== 3 The kbuild Makefile

Most Makefiles within the kernel is kbuild Makefiles, that uses
the kbuild infrastructure. This chapter introduce the syntax used in the
kbuild makefiles, and in the end list some common constructions.

Section 4.1 "Goal definitions" is a quick intro, further chapters provide
more details, with real examples.

--- 3.1 Goal definitions

The goal definitions is the main part heart of the kbuild Makefile.
These lines define the files to be built, any special compilation
options, and any subdirectories to be recursively entered.

The most simple kbuild makefile contains one line:

obj-y += foo.o

This tell kbuild that there is one object in that directory named
foo.o. foo.o will be build from foo.c or foo.s.

If foo.o is to be build as a module, the variable obj-m is used.
Therefore the following pattern is often used:

obj-$(CONFIG_FOO) += foo.o

$(CONFIG_FOO) evaluates to either y (for built-in) or m (for module).
If CONFIG_FOO is neither y nor m, then the file will not be compiled
nor linked.



--- 3.2 Built-in object goals - obj-y

The kbuild Makefile specifies object files for vmlinux
in the lists $(obj-y). These lists depend on the kernel
configuration.

Rules.make compiles all the $(obj-y) files. It then calls
"$(LD) -r" to merge these files into one built-in.o file.
built-in.o is later linked into vmlinux by the parent Makefile.

The order of files in $(obj-y) is significant. Duplicates in
the lists are allowed: the first instance will be linked into
built-in.o and succeeding instances will be ignored.

Link order is significant, because certain functions
(module_init() / __initcall) will be called during boot in the
order they appear. So keep in mind that changing the link
order may e.g. change the order in which your SCSI
controllers are detected, and thus you disks are renumbered.

Example:

# Makefile for the kernel ISDN subsystem and device drivers.
# Each configuration option enables a list of files.
obj-$(CONFIG_ISDN) += isdn.o
obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o


--- 3.3 Loadable module goals - obj-m

$(obj-m) specify object files which are built as loadable
kernel modules.

A module may be built from one source file or several source
files. In the case of one source file, the kbuild
Makefile simply adds the file to $(obj-m).

Example:

obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o

Note: In this example $(CONFIG_ISDN_PPP_BSDCOMP) evaluates to 'm'

If a kernel module is built from several source files, you specify
that you want to build a module in the same way as above.

Kbuild needs to know which the parts that you want to build your
module of, so you have to tell it by setting an
$(<module_name>-objs) variable.

Example:

obj-$(CONFIG_ISDN) += isdn.o

isdn-objs := isdn_net.o isdn_tty.o isdn_v110.o isdn_common.o

In this example, the module name will be isdn.o. Kbuild will
compile the objects listed in $(isdn-objs) and then run
"$(LD) -r" on the list of these files to generate isdn.o.

Kbuild recognises objects used for composite objects by the prefix
-objs, and the prefix -y.

obj-$(CONFIG_EXT2_FS) += ext2.o
ext2-y := balloc.o bitmap.o
ext2-$(CONFIG_EXT2_FS_XATTR) += xattr.o

In this example xattr.o is only part of the composite object
ext2.o, if $(CONFIG_EXT2_FS_XATTR) evaluates to 'y'.

Note: Of course, when you are building objects into the kernel,
the syntax above will also work. So, if you have CONFIG_ISDN=y,
the build system will build an isdn.o for you out of the individual
parts and then link this into built-in.o, as you'd expect.


--- 3.4 Objects which export symbols - export-objs

When using loadable modules, not every global symbol in the
kernel / other modules is automatically available, only those
explicitly exported are available for your module.

To make a symbol available for use in modules, to "export" it,
use the EXPORT_SYMBOL(<symbol>) directive in your source. In
addition, you need to list all object files which export symbols
(i.e. their source contains an EXPORT_SYMBOL() directive) in the
Makefile variable $(export-objs).

Example:

# Objects that export symbols.

export-objs := isdn_common.o

since isdn_common.c contains

EXPORT_SYMBOL(register_isdn);

which makes the function register_isdn available to
low-level ISDN drivers.
There exist a EXPORT_SYMBOL_GPL whit similar functionality, but
more restrictive with what may use that symbol.

--- 3.5 Library file goals - L_TARGET

Instead of building a built-in.o file, you may also
build an archive which again contains objects listed in
$(obj-y). This is normally not necessary and only used in
the lib, arch/$(ARCH)/lib directories.
Only the name lib.a is allowed.

L_TARGET := lib.a
obj-y := checksum.o delay.o

This will create a library based on checksum.o and delay.o.


--- 3.6 Descending down in directories

A Makefile is only responsible for building objects in its own
directory. Files in subdirectories should be taken care of by
Makefiles in these subdirs. The build system will automatically
invoke make recursively in subdirectories, provided you let it know of
them.

To do so obj-y and obj-m is used.
ext2 lives in a separate directory, and the Makefile present in fs/
tell kbuild to descend down using the following assignment.

obj-$(CONfIG_EXT2_FS) += ext2/

If CONFIG_EXT2_FS is set to either 'y' (built-in) or 'm' (modular)
the corresponding obj- variable will be set, and kbuild will descend
down in the ext2 directory.
Kbuild only uses this information to decide that it needs to visit
the directory, it is the Makefile in the subdirectory that
specify what is modules and what is built-in.

It is good practice to use the above type of assignment where a
CONFIG_ variable is used. This allow kbuild to totally skip the
directory if the corresponding CONFIG_ option is neither 'y' nor 'm'.

--- 3.7 Compilation flags

EXTRA_CFLAGS, EXTRA_AFLAGS, EXTRA_LDFLAGS, EXTRA_ARFLAGS

$(EXTRA_CFLAGS) specifies options for compiling C files with
$(CC). The options in this variable apply to all $(CC) commands
for files in the current directory.

Example:

# drivers/sound/emu10k1/Makefile
EXTRA_CFLAGS += -I$(obj)
ifdef DEBUG
EXTRA_CFLAGS += -DEMU10K1_DEBUG
endif

$(EXTRA_CFLAGS) does not apply to subdirectories of the current
directory.

This variable is necessary because the top Makefile owns the
variable $(CFLAGS) and uses it for compilation flags for the
entire tree.

$(EXTRA_AFLAGS) is a similar string for per-directory options
when compiling assembly language source.

Example:
#arch/x86_64/kernel/Makefile
EXTRA_AFLAGS := -traditional


$(EXTRA_LDFLAGS) and $(EXTRA_ARFLAGS) are similar strings for
per-directory options to $(LD) and $(AR).

Example:
#arch/m68k/fpsp040/Makefile
EXTRA_LDFLAGS := -x

CFLAGS_$@, AFLAGS_$@

$(CFLAGS_$@) specifies per-file options for $(CC). The $@
part has a literal value which specifies the file that it's for.

Example:
# drivers/scsi/Makefile
CFLAGS_aha152x.o = -DAHA152X_STAT -DAUTOCONF
CFLAGS_gdth.o = # -DDEBUG_GDTH=2 -D__SERIAL__ -D__COM2__ \
-DGDTH_STATISTICS
CFLAGS_seagate.o = -DARBITRATE -DPARITY -DSEAGATE_USE_ASM

These three lines specify compilation flags for aha152x.o,
gdth.o, and seagate.o

$(AFLAGS_$@) is a similar feature for source files in assembly
languages.

Example:
# arch/arm/kernel/Makefile
AFLAGS_head-armv.o := -DTEXTADDR=$(TEXTADDR) -traditional
AFLAGS_head-armo.o := -DTEXTADDR=$(TEXTADDR) -traditional

--- 3.8 Command line dependency

Kbuild has a feature where an object file depends on the
command used to compile it.
Thus, if you change an option to $(CC) all affected files will
be re-compiled.

=== 4 Host Program support

Kbuild supports building executable on the host for use during
the compilation stage.
Two steps is required in order to use a host executable.

First step is to tell kbuild that a host program exits. This is done
utilising the variable host-prog.

Second step is to add an explicit dependency to the executable.
This can be done in two ways. Either add the dependency in a rule,
or utilise the variable build-targets.
Both possibilities are defined in the following.

--- 4.1 Simple Host Program

In some cases there is a need to compile and run a program on the
computer where the build is running.
The following line tell kbuild that the program bin2hex shall be
build on the build host.

host-progs := bin2hex

Kbuild assume in the above example that bin2hex is made from a single
c-source file named bin2hex.c located in the same directory as
the Makefile.

--- 4.2 Composite Host Programs

Host programs can be made up based on composite objects.
The syntax used to define composite objetcs for host programs is
similar to the syntax used for kernel objects.

host-progs := lxdialog
hex2bin-objs := checklist.o lxdialog.o

Objects with extension .o is compiled from the corresponding .c file.
In the above example checklist.c is compiled to checklist.o and
lxdialog.c is compiled to lxdialog.o.
Finally the two .o files are linked to the final executable, lxdialog.

--- 4.3 Defining shared libraries

Objects with extension .so is considered shared libraries, and will
be compiled as position independent (-PIC) objects.
Kbuild provide support for shared libraries, but the usage
shall be restricted.
In the following example the libkconfig.so shared library is used
to link the executable conf.

host-progs := conf
conf-objs := conf.o libkconfig.so
libkconfig-objs := expr.o type.o

Shared libraries always requires a corresponding -objs line, and
in the example above the shared library libkconfig are composed by
the two objects expr.o and type.o.
expr.o and type.o will be build as position independent code and
linked as a shared library libkconfig.so.

--- 4.4 Using C++ for host programs

kbuild offer support for host programs written in C++. This were
introduced solely to support kconfig, and is not recommended
for general use.

host-progs := qconf
qconf-cxxobjs := qconf.o

In the example above the executable is composed the the C++ file
qconf.cc - identified by $(qconf-cxxobjs).

If qconf were composed by a mixture of .c and .cc files, then an
additional line can be used to identify this.

qconf-objs := check.o

--- 4.5 Controlling compiler options for host programs

When compiling host programs there exist a possibility to set
specific flags.
The programs will always be compiled utilising $(HOSTCC) passed
the options specified in $(HOSTCFLAGS).
To set flags that will take effect for all host programs created
in that Makefile use the variable HOST_EXTRACFLAGS.

HOST_EXTRACFLAGS := -DLinux

To set specific flags for a single file the following construction
is used:

HOSTCFLAGS_object.o := -DENDIAN=LITTLE_ENDIAN

It is also possible to specify additional options to the linker.

HOSTLOADLIBES_qconf := -L/lib

When linking qconf it will be passed the extra option "-L/lib".


2003-01-05 21:43:19

by Sam Ravnborg

[permalink] [raw]
Subject: Re: [RFC] Documentation/kbuild/makefiles.txt

This is the second version of makefiles.txt.
This is nearly the full version, only a few TODO's left over.

There has been complains about lacking documentation at
several occasions - this should close that issue.

I would like feedback on:
- errors in content
- missing content
- language
- spelling etc.

The latter two are important since they can
distract the reader form the actual content.

Attached as plain text to make it readable, I will submit
a diff for inclusion sometime next week.

Note 1: $(head-y) as descibed is not yet introduced.
I have pending patches for this, and the text
will be reverted if patch are not accepted.

Note 2: Likewise for optional archclean target. Today
archclean is mandatory.

TODO's
- Describe how kbuild support shipped files with _shipped.
- Generating offset header files.
- Add more variables to section 7?

Sam


Linux Kernel Makefiles

This document describes the Linux kernel Makefiles.

=== Table of Contents

=== 1 Overview
=== 2 Who does what
=== 3 The kbuild Makefiles
--- 3.1 Goal definitions
--- 3.2 Built-in object goals - obj-y
--- 3.3 Loadable module goals - obj-m
--- 3.4 Objects which export symbols - export-objs
--- 3.5 Library file goals - L_TARGET
--- 3.6 Descending down in directories
--- 3.7 Compilation flags
--- 3.8 Command line dependency
--- 3.9 Dependency tracking
--- 3.10 Special Rules

=== 4 Host Program support
--- 4.1 Simple Host Program
--- 4.2 Composite Host Programs
--- 4.3 Defining shared libraries
--- 4.4 Using C++ for host programs
--- 4.5 Controlling compiler options for host programs

=== 5 Kbuild clean infrastructure

=== 6 Architecture Makefiles
--- 6.1 Set variables to tweak the build to the architecture
--- 6.2 Add prerequisites to prepare:
--- 6.3 List directories to visit when descending
--- 6.4 Architecture specific boot images
--- 6.5 Building non-kbuild targets
--- 6.6 Commands useful for building a boot image
--- 6.7 Custom kbuild commands

=== 7 Kbuild Variables
=== 8 Makefile language
=== 9 Credits
=== 10 TODO

=== 1 Overview

The Makefiles have five parts:

Makefile the top Makefile.
.config the kernel configuration file.
arch/$(ARCH)/Makefile the arch Makefile.
scripts/Makefile.* common rules etc. for all kbuild Makefiles.
kbuild Makefiles there are about 500 of these.

The top Makefile reads the .config file, which comes from the kernel
configuration process.

The top Makefile is responsible for building two major products: vmlinux
(the resident kernel image) and modules (any module files).
It builds these goals by recursively descending into the subdirectories of
the kernel source tree.
The list of subdirectories which are visited depends upon the kernel
configuration. The top Makefile textually includes an arch Makefile
with the name arch/$(ARCH)/Makefile. The arch Makefile supplies
architecture-specific information to the top Makefile.

Each subdirectory has a kbuild Makefile which carries out the commands
passed down from above. The kbuild Makefile uses information from the
.config file to construct various file lists used by kbuild to build
any built-in or modular targets.

scripts/Makefile.* contains all the definitions/rules etc. that
are used to build the kernel based on the kbuild makefiles.


=== 2 Who does what

People have four different relationships with the kernel Makefiles.

*Users* are people who build kernels. These people type commands such as
"make menuconfig" or "make". They usually do not read or edit
any kernel Makefiles (or any other source files).

*Normal developers* are people who work on features such as device
drivers, file systems, and network protocols. These people need to
maintain the kbuild Makefiles for the subsystem that they are
working on. In order to do this effectively, they need some overall
knowledge about the kernel Makefiles, plus detailed knowledge about the
public interface for kbuild.

*Arch developers* are people who work on an entire architecture, such
as sparc or ia64. Arch developers need to know about the arch Makefile
as well as kbuild Makefiles.

*Kbuild developers* are people who work on the kernel build system itself.
These people need to know about all aspects of the kernel Makefiles.

This document is aimed towards normal developers and arch developers.


=== 3 The kbuild Makefiles

Most Makefiles within the kernel is kbuild Makefiles that uses
the kbuild infrastructure. This chapter introduce the syntax used in the
kbuild makefiles.

Section 3.1 "Goal definitions" is a quick intro, further chapters provide
more details, with real examples.

--- 3.1 Goal definitions

The goal definitions is the main part heart of the kbuild Makefile.
These lines define the files to be built, any special compilation
options, and any subdirectories to be recursively entered.

The most simple kbuild makefile contains one line:

Example:
obj-y += foo.o

This tell kbuild that there is one object in that directory named
foo.o. foo.o will be build from foo.c or foo.s.

If foo.o shall be build as a module, the variable obj-m is used.
Therefore the following pattern is often used:

Example:
obj-$(CONFIG_FOO) += foo.o

$(CONFIG_FOO) evaluates to either y (for built-in) or m (for module).
If CONFIG_FOO is neither y nor m, then the file will not be compiled
nor linked.

--- 3.2 Built-in object goals - obj-y

The kbuild Makefile specifies object files for vmlinux
in the lists $(obj-y). These lists depend on the kernel
configuration.

Rules.make compiles all the $(obj-y) files. It then calls
"$(LD) -r" to merge these files into one built-in.o file.
built-in.o is later linked into vmlinux by the parent Makefile.

The order of files in $(obj-y) is significant. Duplicates in
the lists are allowed: the first instance will be linked into
built-in.o and succeeding instances will be ignored.

Link order is significant, because certain functions
(module_init() / __initcall) will be called during boot in the
order they appear. So keep in mind that changing the link
order may e.g. change the order in which your SCSI
controllers are detected, and thus you disks are renumbered.

Example:
#drivers/isdn/i4l/Makefile
# Makefile for the kernel ISDN subsystem and device drivers.
# Each configuration option enables a list of files.
obj-$(CONFIG_ISDN) += isdn.o
obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o

--- 3.3 Loadable module goals - obj-m

$(obj-m) specify object files which are built as loadable
kernel modules.

A module may be built from one source file or several source
files. In the case of one source file, the kbuild makefile
simply adds the file to $(obj-m).

Example:
#drivers/isdn/i4l/Makefile
obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o

Note: In this example $(CONFIG_ISDN_PPP_BSDCOMP) evaluates to 'm'

If a kernel module is built from several source files, you specify
that you want to build a module in the same way as above.

Kbuild needs to know which the parts that you want to build your
module of, so you have to tell it by setting an
$(<module_name>-objs) variable.

Example:
#drivers/isdn/i4l/Makefile
obj-$(CONFIG_ISDN) += isdn.o
isdn-objs := isdn_net_lib.o isdn_v110.o isdn_common.o

In this example, the module name will be isdn.o. Kbuild will
compile the objects listed in $(isdn-objs) and then run
"$(LD) -r" on the list of these files to generate isdn.o.

Kbuild recognises objects used for composite objects by the suffix
-objs, and the suffix -y. This allows the Makefiles to use
the value of a CONFIG_ symbol to determine if an object is part
of a composite object.

Example:
#fs/ext2/Makefile
obj-$(CONFIG_EXT2_FS) += ext2.o
ext2-y := balloc.o bitmap.o
ext2-$(CONFIG_EXT2_FS_XATTR) += xattr.o

In this example xattr.o is only part of the composite object
ext2.o, if $(CONFIG_EXT2_FS_XATTR) evaluates to 'y'.

Note: Of course, when you are building objects into the kernel,
the syntax above will also work. So, if you have CONFIG_EXT2_FS=y,
kbuild will build an ext2.o file for you out of the individual
parts and then link this into built-in.o, as you would expect.

--- 3.4 Objects which export symbols - export-objs

When using loadable modules, not every global symbol in the
kernel / other modules is automatically available, only those
explicitly exported are available for your module.

To make a symbol available for use in modules, to "export" it,
use the EXPORT_SYMBOL(<symbol>) directive in your source. In
addition, you need to list all object files which export symbols
(i.e. their source contains an EXPORT_SYMBOL() directive) in the
Makefile variable $(export-objs).

Example:
#drivers/isdn/i4l/Makefile
# Objects that export symbols.
export-objs := isdn_common.o

since isdn_common.c contains

EXPORT_SYMBOL(register_isdn);

which makes the function register_isdn available to
low-level ISDN drivers.
There exist a EXPORT_SYMBOL_GPLi() variant with similar functionality,
but more restrictive with what may use that symbol. The requirement
to list the .o file in export-objs is the same.

--- 3.5 Library file goals - L_TARGET

Instead of building a built-in.o file, you may also
build an archive which again contains objects listed in $(obj-y).
This is normally not necessary and only used in lib/ and
arch/$(ARCH)/lib directories.
Only the name lib.a is allowed.

Example:
#arch/i386/lib/Makefile
L_TARGET := lib.a
obj-y := checksum.o delay.o

This will create a library lib.a based on checksum.o and delay.o.

--- 3.6 Descending down in directories

A Makefile is only responsible for building objects in its own
directory. Files in subdirectories should be taken care of by
Makefiles in these subdirs. The build system will automatically
invoke make recursively in subdirectories, provided you let it know of
them.

To do so obj-y and obj-m is used.
ext2 lives in a separate directory, and the Makefile present in fs/
tell kbuild to descend down using the following assignment.

Example:
#fs/Makefile
obj-$(CONfIG_EXT2_FS) += ext2/

If CONFIG_EXT2_FS is set to either 'y' (built-in) or 'm' (modular)
the corresponding obj- variable will be set, and kbuild will descend
down in the ext2 directory.
Kbuild only uses this information to decide that it needs to visit
the directory, it is the Makefile in the subdirectory that
specify what is modules and what is built-in.

It is good practice to use a CONFIG_ variable when assigning direcotory
names. This allow kbuild to totally skip the directory if the
corresponding CONFIG_ option is neither 'y' nor 'm'.

--- 3.7 Compilation flags

EXTRA_CFLAGS, EXTRA_AFLAGS, EXTRA_LDFLAGS, EXTRA_ARFLAGS

All the EXTRA_ variables apply only to the kbuild makefile
where they are assigned. The EXTRA_ variables apply to all
commands executed in the kbuild makefile.

$(EXTRA_CFLAGS) specifies options for compiling C files with
$(CC).

Example:
# drivers/sound/emu10k1/Makefile
EXTRA_CFLAGS += -I$(obj)
ifdef DEBUG
EXTRA_CFLAGS += -DEMU10K1_DEBUG
endif


This variable is necessary because the top Makefile owns the
variable $(CFLAGS) and uses it for compilation flags for the
entire tree.

$(EXTRA_AFLAGS) is a similar string for per-directory options
when compiling assembly language source.

Example:
#arch/x86_64/kernel/Makefile
EXTRA_AFLAGS := -traditional


$(EXTRA_LDFLAGS) and $(EXTRA_ARFLAGS) are similar strings for
per-directory options to $(LD) and $(AR).

Example:
#arch/m68k/fpsp040/Makefile
EXTRA_LDFLAGS := -x

CFLAGS_$@, AFLAGS_$@

CFLAGS_$@ and AFLAGS_$@ only apply to commands in current
kbuild makefile.

$(CFLAGS_$@) specifies per-file options for $(CC). The $@
part has a literal value which specifies the file that it is for.

Example:
# drivers/scsi/Makefile
CFLAGS_aha152x.o = -DAHA152X_STAT -DAUTOCONF
CFLAGS_gdth.o = # -DDEBUG_GDTH=2 -D__SERIAL__ -D__COM2__ \
-DGDTH_STATISTICS
CFLAGS_seagate.o = -DARBITRATE -DPARITY -DSEAGATE_USE_ASM

These three lines specify compilation flags for aha152x.o,
gdth.o, and seagate.o

$(AFLAGS_$@) is a similar feature for source files in assembly
languages.

Example:
# arch/arm/kernel/Makefile
AFLAGS_head-armv.o := -DTEXTADDR=$(TEXTADDR) -traditional
AFLAGS_head-armo.o := -DTEXTADDR=$(TEXTADDR) -traditional

--- 3.9 Dependency tracking

Kbuild track dependencies on the following:
1) All prerequisite files (both *.c and *.h)
2) CONFIG_ options used in all prerequisite files
3) Command-line used to compile target

Thus, if you change an option to $(CC) all affected files will
be re-compiled.

--- 3.10 Special Rules

Special rules are used when the kbuild infrastructure does
not provide the required support. A typical example is
header files generated during the build process.
Another example is the architecture specific Makefiles which
needs special rules to prepare boot images etc.

Special rules are written as normal Make rules.
Kbuild is not executing in the directory where the Makefile is
located, so all special rules shall provide a relative
path to prerequisite files and target files.

Two variables are used when defining special rules:

$(src)
$(src) is a relative path which point to the directory
where the Makefile is located. Always use $(src) when
referring to files located in the src tree.

$(obj)
$(obj) is a relative path which point to the directory
where the Makefile is located. Always use $(obj) when
referring to generated files.

Example:
#drivers/scsi/Makefile
$(obj)/53c8xx_d.h: $(src)/53c7,8xx.scr $(src)/script_asm.pl
$(CPP) -DCHIP=810 - < $< | ... $(src)/script_asm.pl

This is a special rule, following the normal syntax
required by make.
The target file depends on two prerequisite files. References
to the target file are prefixed with $(obj), references
to prerequisites are referenced with $(src) (because they are not
generated files).


=== 4 Host Program support

Kbuild supports building executable on the host for use during the
compilation stage.
Two steps is required in order to use a host executable.

First step is to tell kbuild that a host program exits. This is done utilising
the variable host-prog.

Second step is to add an explicit dependency to the executable.
This can be done in two ways. Either add the dependency in a rule, or utilise
the variable build-targets.
Both possibilities are described in the following.

--- 4.1 Simple Host Program

In some cases there is a need to compile and run a program on the
computer where the build is running.
The following line tell kbuild that the program bin2hex shall be
build on the build host.

Example:
host-progs := bin2hex

Kbuild assume in the above example that bin2hex is made from a single
c-source file named bin2hex.c located in the same directory as
the Makefile.

--- 4.2 Composite Host Programs

Host programs can be made up based on composite objects.
The syntax used to define composite objetcs for host programs is
similar to the syntax used for kernel objects.
$(<executeable>-objs) list all objects used to link the final
executable.

Example:
#scripts/lxdialog/Makefile
host-progs := lxdialog
hex2bin-objs := checklist.o lxdialog.o

Objects with extension .o is compiled from the corresponding .c file.
In the above example checklist.c is compiled to checklist.o and
lxdialog.c is compiled to lxdialog.o.
Finally the two .o files are linked to the executable, lxdialog.
Note: The syntax <executable>-y is not permitted for host-programs.

--- 4.3 Defining shared libraries

Objects with extension .so is considered shared libraries, and will
be compiled as position independent objects.
Kbuild provide support for shared libraries, but the usage
shall be restricted.
In the following example the libkconfig.so shared library is used
to link the executable conf.

Example:
#scripts/kconfig/Makefile
host-progs := conf
conf-objs := conf.o libkconfig.so
libkconfig-objs := expr.o type.o

Shared libraries always requires a corresponding -objs line, and
in the example above the shared library libkconfig are composed by
the two objects expr.o and type.o.
expr.o and type.o will be build as position independent code and
linked as a shared library libkconfig.so. C++ is not supported for
shared libraries.

--- 4.4 Using C++ for host programs

kbuild offer support for host programs written in C++. This were
introduced solely to support kconfig, and is not recommended
for general use.

Example:
#scripts/kconfig/Makefile
host-progs := qconf
qconf-cxxobjs := qconf.o

In the example above the executable is composed the the C++ file
qconf.cc - identified by $(qconf-cxxobjs).

If qconf are composed by a mixture of .c and .cc files, then an
additional line can be used to identify this.

Example:
#scripts/kconfig/Makefile
host-progs := qconf
qconf-cxxobjs := qconf.o
qconf-objs := check.o

--- 4.5 Controlling compiler options for host programs

When compiling host programs there exist a possibility to set
specific flags.
The programs will always be compiled utilising $(HOSTCC) passed
the options specified in $(HOSTCFLAGS).
To set flags that will take effect for all host programs created
in that Makefile use the variable HOST_EXTRACFLAGS.

Example:
#scripts/lxdialog/Makefile
HOST_EXTRACFLAGS += -I/usr/include/ncurses

To set specific flags for a single file the following construction
is used:

Example:
#arch/ppc64/boot/Makefile
HOSTCFLAGS_piggyback.o := -DKERNELBASE=$(KERNELBASE)

It is also possible to specify additional options to the linker.

Example:
#scripts/kconfig/Makefile
HOSTLOADLIBES_qconf := -L$(QTDIR)/lib

When linking qconf it will be passed the extra option "-L$(QTDIR)/lib".

--- 4.6 When host programs are actually build

Kbuild will only build host-programs when they are referenced
as a prerequisite.
This is possible in two ways. Either list the prerequisite explicit
in a special rule.

Example:
#drivers/pci/Makefile
host-progs := gen-devlist
$(obj)/devlist.h: $(src)/pci.ids $(obj)/gen-devlist
( cd $(obj); ./gen-devlist ) < $<

The target $(obj)/devlist.h will not be build before
$(obj)/gen-devlist is updated. Note that references to
the host programs in a special rules must be prefixed with $(obj).

When there is no suitable special rule, and the host program
shall be build when a makefile is entered, the $(build-targets)
variable shall be used.

Example:
#scripts/lxdialog/Makefile
host-progs := lxdialog
build-targets := $(host-progs)

This will tell kbuild to build lxdialog even if not referenced in
any rule.

=== 5 Kbuild clean infrastructure

"make clean" deletes most generated files in the src tree where the kernel
is compiled. This includes generated files such as host programs.
Kbuild knows targets listed in $(host-progs) and $(EXTRA_TARGETS) and
they are all deleted during "make clean".
Files matching the patterns "*.[oas]", "*.ko", plus some additional files
generated by kbuild are delted all over the kernel src tree when "make clean"
is executed.

Additional files can be specified by means of "clean-files".

Example:
#drivers/pci/Makefile
clean-files := devlist.h classlist.h

When executing "make clean", the two files "devlist.h classlist.h" will
be deleted. Kbuild knows that files specified by $(clean-files) are
located in the same directory as the makefile.

Usually kbuild descend down in subdirectories due to "obj-* := dir/",
but in the architecture makefiles where the kbuild infrastructure
is not sufficent this sometimes needs to be explicit.

Example:
#arch/i386/boot/Makefile
subdir- := compressed/

Above assignment instructs kbuild to descend down in the directory compressed/
when "make clean" is executed.

To support the clean infrastructure in the Makefiles that builds the
final bootimage there is an optional target named archclean:

Example:
#arch/i386/Makefile
archclean:
$(Q)$(MAKE) $(clean)=arch/i386/boot

When "make clean" is executed, make will descend down in arch/i386/boot,
and clean as usual. The Makefile located in arch/i386/boot/ may use
the subdir- trick to descend further down.

Note 1: arch/$(ARCH)/Makefile cannot use "subdir-", because that file is
included in the top level makefile, and the kbuild infrastructure
is not operational at that point.

Note 2: All directories listed in core-y, libs-y, drivers-y and net-y will
be visited during "make clean".

=== 6 Architecture Makefiles

The top level Makefile set up the environment and do the preparation,
before starting to descend down in the individual directories.
The top level makefile contain the generic part, whereas the
arch/$(ARCH)/Makefile contains what is required to set-up kbuild
to the said architecture.
To do so arch/$(ARCH)/Makefile set a number of variables, and define
a few targets.

When kbuild executes the following steps are followed (roughly):
1) Configuration of the kernel => produced .config
2) Store kernel version in include/linux/version.h
3) Symlink include/asm to include/asm-$(ARCH)
4) Updating all other prerequisites to the target prepare:
- Additional prerequisites are specified in arch/$(ARCH)/Makefile
5) Recursively descend down in all directories listed in
init-* core* drivers-* net-* libs-* and build all targets.
- The value of the above variables are extended in arch/$(ARCH)/Makefile.
6) All object files are then linked and the resulting file vmlinux are
located at the root of the src tree.
The very first objects linked are listed in head-y, assigned by
arch/$(ARCH)/Makefile.
7) Finally the architecture specific part does any required post processing
and build the final bootimage.
- This includes building boot recoreds,
- Preparing initrd images and the like


--- 6.1 Set variables to tweak the build to the architecture

LDFLAGS Linker flags

Flags used for all invocations of the linker.
Often specifying the emulation is sufficient.

Example:
#arch/s390/Makefile
LDFLAGS := -m elf_s390
Note: EXTRA_LDFLAGS and LDFLAGS_$@ can be used to further customise
the flags used. See chater 7.

LDFLAGS_vmlinux Flags used when linking vmlinux

LDFLAGS_vmlinux is used to specify additional flags to pass to
the linker when linking the final vmlinux.
LDFLAGS_vmlinux uses th LDFLAGS_$@ support.

Example:
#arch/i386/Makefile
LDFLAGS_vmlinux := -e stext

OBJCOPYFLAGS objcopy flags

When $(call if_changed,objcopy) is used to translate a .o file,
then the flags specified in OBJCOPYFLAGS will be used.
$(call if_changed,objcopy) is often used to generate raw binaries on
vmlinux.

Example:
#arch/s390/Makefile
OBJCOPYFLAGS := -O binary

#arch/s390/boot/Makefile
$(obj)/image: vmlinux FORCE
$(call if_changed,objcopy)

In this example the binary $(obj)/image is a binary version of
vmlinux. The usage of $(call if_changed,xxx) will be described later.


LDFLAGS_BLOB initramfs linker flags

The image used for initramfs is made during the build process.
LDFLAGS_BLOB is used to specify additional flags to be used when
creating the initramfs_data.o file.
Example:
#arch/i386/Makefile
LDFLAGS_BLOB := --format binary --oformat elf32-i386

AFLAGS $(AS) assembler flags

Default value - see top level Makefile
Append or modify as required pr. architecture.

Example:
#arch/sparc64/Makefile
AFLAGS += -m64 -mcpu=ultrasparc

CFLAGS $(CC) compiler flags

Default value - see top level Makefile
Append or modify as required pr. architecture.

Often the CFLAGS variable depends on the configuration.

Example:
#arch/i386/Makefile
cflags-$(CONFIG_M386) += -march=i386
CFLAGS += $(cflags-y)

Many arch Makefiles dynamically run the target C compiler to
probe supported options:

#arch/i386/Makefile
check_gcc = $(shell if $(CC) $(1) -S -o /dev/null -xc \
/dev/null\ > /dev/null 2>&1; then echo "$(1)"; \
else echo "$(2)"; fi)
cflags-$(CONFIG_MCYRIXIII) += $(call check_gcc,\
-march=c3,-march=i486)

CFLAGS += $(cflags-y)

The above examples both utilise the trick that a config option expands
to 'y' when selected.

CFLAGS_KERNEL $(CC) options specific for build-in

$(CFLAGS_KERNEL) contains extra C compiler flags used to compile
resident kernel code.

CFLAGS_MODULE $(CC) options specific for modules

$(CFLAGS_MODULE) contains extra C compiler flags used to compile code
for loadable kernel modules.


--- 6.2 Add prerequisites to prepare:

The prepare: rule is used to list prerequisites that needs to be
build before starting to descend down in the subdirectories.
This is usual header files containing assembler constants.

Example:
#arch/s390/Makefile
prepare: include/asm-$(ARCH)/offsets.h

In this example the file include/asm-$(ARCH)/offsets.h will
be build before descending down in the subdirectories.
See also chapter XXX-TODO that describe how kbuild supports
generating offset header files.


--- 6.3 List directories to visit when descending

An arch Makefile cooperates with the top Makefile to define variables
which specify how to build the vmlinux file. Note that there is no
corresponding arch-specific section for modules; the module-building
machinery is all architecture-independent.


head-y, init-y, core-y, libs-y, drivers-y, net-y

$(head-y) list objects to be linked first in vmlinux.
$(libs-y) list directories where a libs.a archieve can be located.
The rest list directories where a built-in.o object file can be located.

$(init-y) objects will be located after $(head-y).
Then the rest follows in this order:
$(core-y), $(libs-y), $(drivers-y) and $(net-y).

The top level Makefile define values for all generic directories,
and arch/$(ARCH)/Makefile only adds architecture specific directories.

Example:
#arch/sparc64/Makefile
core-y += arch/sparc64/kernel/
libs-y += arch/sparc64/prom/ arch/sparc64/lib/
drivers-$(CONFIG_OPROFILE) += arch/sparc64/oprofile/


--- 6.4 Architecture specific boot images

An arch Makefile specifies goals that take the vmlinux file, compress
it, wrap it in bootstrapping code, and copy the resulting files
somewhere. This includes various kinds of installation commands.
The actual goals are not standardized across architectures.

It is common to locate any additional processing in a boot/
directory below arch/$(ARCH)/.

Kbuild does not provide any smart way to support building a
target specified in boot/ therefore arch/$(ARCH)/Makefile shall
call make manually to build a target in boot/.

The recommended approach is to include shortcuts in
arch/$(ARCH)/Makefile, and use the full path when calling down
into the arch/$(ARCH)/boot/Makefile.

Example:
#arch/i386/Makefile
boot := arch/i386/boot
bzImage: vmlinux
$(Q)$(MAKE) $(build)=$(boot) $(boot)/$@

"$(Q)$(MAKE) $(build)=<dir>" is the recommended way to invoke
make in a subdirectory.

There is no rules for naming of the architecture specific targets,
but executing "make help" will list all relevant targets.
To support this $(archhelp) must be defined.

Example:
#arch/i386/Makefile
define archhelp
echo '* bzImage - Image (arch/$(ARCH)/boot/bzImage)'
endef

When make is executed without arguments, the first goal encountered
will be build. In the top level Makefile the first goal present
is all:.
An architecture shall always per default build a bootable image.
In "make help" the default goal is high-lighted with a '*'.
Add a new prerequisite to all: to select a default goal
different from vmlinux.

Example:
#arch/i386/Makefile
all: bzImage

When "make" is executed without arguments, bzImage will be build.

--- 6.5 Building non-kbuild targets

EXTRA_TARGETS

EXTRA_TARGETS specify additionally targets created in current
directory, in addition to any target specified by obj-*.

Listing all targets in EXTRA_TARGETS are required for three purposes:
1) Avoid that the target is linked in as part of built-in.o
2) Enable kbuild to check changes in commandlines
- When $(call if_changed,xxx) is used
3) kbuild knows what file to delete during "make clean"

Example:
#arch/i386/kernel/Makefile
EXTRA_TARGETS := head.o init_task.o

In this example EXTRA_TARGETS is used to list objects files that
shall be built, but shall not be linked as part of built-in.o.

Example:
#arch/i386/boot/Makefile
EXTRA_TARGETS := vmlinux.bin bootsect bootsect.o

In this example EXTRA_TARGETS is used to list all intermidiate
targets, and all final targets.
The targets are added to EXTRA_TARGETS to enable 2) and 3) above.

--- 6.6 Commands useful for building a boot image

Kbuild provide a few macros that are useful when building a
boot image.

if_changed

if_changed is the infrastructure used for the following commands.

Usage:
target: source(s) FORCE
$(call if_changed,ld/objcopy/gzip)

When the rule is evaluated it is checked if any files needs an update,
or the commandline has changed since last invocation. The latter will
force a rebuild if any options to the executable has changed.
Any target that utilise if_changed must be listed in EXTRA_TARGETS,
otherwise the commandline check will fail, and the target will always
be build.
if_changed may be used in conjunction with custom commands as
defined in 6.7 "Custom kbuild commands".
Note: It is a typical mistake to forget the FORCE prerequisite.

ld
Link target. Often LDFLAGS_$@ is used to set specific options to ld.

objcopy
Copy binary. Uses OBJCOPYFLAGS usual specified in arch/$(ARCH)/Makefile

gzip
Compress target. Use maximum compression to compress target.


--- 6.7 Custom kbuild commands

When kbuild is executing with KBUILD_VERBOSE=0 then only a shorthand
of a command is normally displayed.
To enable this behaviour for custom commands kbuild requires
two variables to be set:
quiet_cmd_<command> - what shall be echoed
cmd_<command> - the command to execute

Example:
#
quiet_cmd_image = BUILD $@
cmd_image = $(obj)/tools/build $(BUILDFLAGS) \
$(obj)/vmlinux.bin > $@

$(obj)/bzImage: $(obj)/vmlinux.bin $(obj)/tools/build FORCE
$(call if_changed,image)
@echo 'Kernel: $@ is ready'

When updating the $(obj)/bzImage target the line:

BUILD arch/i386/boot/bzImage

will be displayed with "make KBUILD_VERBOSE=0".


=== 7 Kbuild Variables

The top Makefile exports the following variables:

VERSION, PATCHLEVEL, SUBLEVEL, EXTRAVERSION

These variables define the current kernel version. A few arch
Makefiles actually use these values directly; they should use
$(KERNELRELEASE) instead.

$(VERSION), $(PATCHLEVEL), and $(SUBLEVEL) define the basic
three-part version number, such as "2", "4", and "0". These three
values are always numeric.

$(EXTRAVERSION) defines an even tinier sublevel for pre-patches
or additional patches. It is usually some non-numeric string
such as "-pre4", and is often blank.

KERNELRELEASE

$(KERNELRELEASE) is a single string such as "2.4.0-pre4", suitable
for constructing installation directory names or showing in
version strings. Some arch Makefiles use it for this purpose.

ARCH

This variable defines the target architecture, such as "i386",
"arm", or "sparc". Some kbuild Makefiles test $(ARCH) to
determine which files to compile.

By default, the top Makefile sets $(ARCH) to be the same as the
host system system architecture. For a cross build, a user may
override the value of $(ARCH) on the command line:

make ARCH=m68k ...


This variable defines a place for the arch Makefiles to install
the resident kernel image and System.map file.

INSTALL_MOD_PATH, MODLIB

$(INSTALL_MOD_PATH) specifies a prefix to $(MODLIB) for module
installation. This variable is not defined in the Makefile but
may be passed in by the user if desired.

$(MODLIB) specifies the directory for module installation.
The top Makefile defines $(MODLIB) to
$(INSTALL_MOD_PATH)/lib/modules/$(KERNELRELEASE). The user may
override this value on the command line if desired.

=== 8 Makefile language

The kernel Makefiles are designed to run with GNU Make. The Makefiles
uses only the documented features of GNU Make, but they do use many
GNU extensions.

GNU Make supports elementary list-processing functions. The kernel
Makefiles use a novel style of list building and manipulation with few
"if" statements.

GNU Make has two assignment operators, ":=" and "=". ":=" performs
immediate evaluation of the right-hand side and stores an actual string
into the left-hand side. "=" is like a formula definition; it stores the
right-hand side in an unevaluated form and then evaluates this form each
time the left-hand side is used.

There are some cases where "=" is appropriate. Usually, though, ":="
is the right choice.

=== 9 Credits

Original version made by Michael Elizabeth Chastain, <mailto:[email protected]>
Updates by Kai Germaschewski <[email protected]>
Updates by Sam Ravnborg <[email protected]>

=== 10 TODO

- Describe how kbuild support shipped files with _shipped.
- Generating offset header files.
- Add more variables to section 7?

2003-01-06 16:59:21

by Randy.Dunlap

[permalink] [raw]
Subject: Re: [RFC] Documentation/kbuild/makefiles.txt

Sam,

This is very good. Thanks for doing it.

Comments below.


On Sun, 5 Jan 2003, Sam Ravnborg wrote:

| This is the second version of makefiles.txt.
| This is nearly the full version, only a few TODO's left over.
|
| There has been complains about lacking documentation at
| several occasions - this should close that issue.
|
| I would like feedback on:
| - errors in content
| - missing content
| - language
| - spelling etc.
|
| The latter two are important since they can
| distract the reader form the actual content.
Absolutely.

| Attached as plain text to make it readable, I will submit
| a diff for inclusion sometime next week.
|
| Note 1: $(head-y) as descibed is not yet introduced.
| I have pending patches for this, and the text
| will be reverted if patch are not accepted.
|
| Note 2: Likewise for optional archclean target. Today
| archclean is mandatory.
|
| TODO's
| - Describe how kbuild support shipped files with _shipped.
| - Generating offset header files.
| - Add more variables to section 7?

Can you add a section about building non-kernel-tree drivers etc.?
I.e., building from source files that are not resident in the
kernel tree?

And do you have a section on building in $objtree with
$srctree != $objtree? I didn't see it. Or is this not the right
document for that topic?

|
| Sam
|
|
| Linux Kernel Makefiles
|
| This document describes the Linux kernel Makefiles.
|
| === Table of Contents
|
| === 1 Overview
| === 2 Who does what
| === 3 The kbuild Makefiles
| --- 3.1 Goal definitions
| --- 3.2 Built-in object goals - obj-y
| --- 3.3 Loadable module goals - obj-m
| --- 3.4 Objects which export symbols - export-objs
| --- 3.5 Library file goals - L_TARGET
| --- 3.6 Descending down in directories
| --- 3.7 Compilation flags
| --- 3.8 Command line dependency
| --- 3.9 Dependency tracking
| --- 3.10 Special Rules
|
| === 4 Host Program support
| --- 4.1 Simple Host Program
| --- 4.2 Composite Host Programs
| --- 4.3 Defining shared libraries
| --- 4.4 Using C++ for host programs
| --- 4.5 Controlling compiler options for host programs
|
| === 5 Kbuild clean infrastructure
|
| === 6 Architecture Makefiles
| --- 6.1 Set variables to tweak the build to the architecture
| --- 6.2 Add prerequisites to prepare:
| --- 6.3 List directories to visit when descending
| --- 6.4 Architecture specific boot images
| --- 6.5 Building non-kbuild targets
| --- 6.6 Commands useful for building a boot image
| --- 6.7 Custom kbuild commands
|
| === 7 Kbuild Variables
| === 8 Makefile language
| === 9 Credits
| === 10 TODO
|
| === 1 Overview
|
| The Makefiles have five parts:
|
| Makefile the top Makefile.
| .config the kernel configuration file.
| arch/$(ARCH)/Makefile the arch Makefile.
| scripts/Makefile.* common rules etc. for all kbuild Makefiles.
| kbuild Makefiles there are about 500 of these.
|
| The top Makefile reads the .config file, which comes from the kernel
| configuration process.
|
| The top Makefile is responsible for building two major products: vmlinux
| (the resident kernel image) and modules (any module files).
| It builds these goals by recursively descending into the subdirectories of
| the kernel source tree.
| The list of subdirectories which are visited depends upon the kernel
| configuration. The top Makefile textually includes an arch Makefile
| with the name arch/$(ARCH)/Makefile. The arch Makefile supplies
| architecture-specific information to the top Makefile.
|
| Each subdirectory has a kbuild Makefile which carries out the commands
| passed down from above. The kbuild Makefile uses information from the
| .config file to construct various file lists used by kbuild to build
| any built-in or modular targets.
|
| scripts/Makefile.* contains all the definitions/rules etc. that
| are used to build the kernel based on the kbuild makefiles.
|
|
| === 2 Who does what
|
| People have four different relationships with the kernel Makefiles.
|
| *Users* are people who build kernels. These people type commands such as
| "make menuconfig" or "make". They usually do not read or edit
| any kernel Makefiles (or any other source files).
|
| *Normal developers* are people who work on features such as device
| drivers, file systems, and network protocols. These people need to
| maintain the kbuild Makefiles for the subsystem that they are
| working on. In order to do this effectively, they need some overall
| knowledge about the kernel Makefiles, plus detailed knowledge about the
| public interface for kbuild.
|
| *Arch developers* are people who work on an entire architecture, such
| as sparc or ia64. Arch developers need to know about the arch Makefile
| as well as kbuild Makefiles.
|
| *Kbuild developers* are people who work on the kernel build system itself.
| These people need to know about all aspects of the kernel Makefiles.
|
| This document is aimed towards normal developers and arch developers.
|
|
| === 3 The kbuild Makefiles
|
| Most Makefiles within the kernel is kbuild Makefiles that uses
are use
| the kbuild infrastructure. This chapter introduce the syntax used in the
| kbuild makefiles.
|
| Section 3.1 "Goal definitions" is a quick intro, further chapters provide
| more details, with real examples.
|
| --- 3.1 Goal definitions
|
| The goal definitions is the main part heart of the kbuild Makefile.
I'd say:
Goal definitions are the main part (heart) of the kbuild Makefile.
| These lines define the files to be built, any special compilation
| options, and any subdirectories to be recursively entered.
to be entered recursively.
|
| The most simple kbuild makefile contains one line:
|
| Example:
| obj-y += foo.o
|
| This tell kbuild that there is one object in that directory named
| foo.o. foo.o will be build from foo.c or foo.s.
Not foo.S ?
|
| If foo.o shall be build as a module, the variable obj-m is used.
built
| Therefore the following pattern is often used:
|
| Example:
| obj-$(CONFIG_FOO) += foo.o
|
| $(CONFIG_FOO) evaluates to either y (for built-in) or m (for module).
| If CONFIG_FOO is neither y nor m, then the file will not be compiled
| nor linked.
|
| --- 3.2 Built-in object goals - obj-y
|
| The kbuild Makefile specifies object files for vmlinux
| in the lists $(obj-y). These lists depend on the kernel
| configuration.
|
| Rules.make compiles all the $(obj-y) files. It then calls
Where is Rules.make nowadays?

| "$(LD) -r" to merge these files into one built-in.o file.
| built-in.o is later linked into vmlinux by the parent Makefile.
|
| The order of files in $(obj-y) is significant. Duplicates in
| the lists are allowed: the first instance will be linked into
| built-in.o and succeeding instances will be ignored.
|
| Link order is significant, because certain functions
| (module_init() / __initcall) will be called during boot in the
| order they appear. So keep in mind that changing the link
| order may e.g. change the order in which your SCSI
| controllers are detected, and thus you disks are renumbered.
|
| Example:
| #drivers/isdn/i4l/Makefile
| # Makefile for the kernel ISDN subsystem and device drivers.
| # Each configuration option enables a list of files.
| obj-$(CONFIG_ISDN) += isdn.o
| obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o
|
| --- 3.3 Loadable module goals - obj-m
|
| $(obj-m) specify object files which are built as loadable
| kernel modules.
|
| A module may be built from one source file or several source
| files. In the case of one source file, the kbuild makefile
| simply adds the file to $(obj-m).
|
| Example:
| #drivers/isdn/i4l/Makefile
| obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o
|
| Note: In this example $(CONFIG_ISDN_PPP_BSDCOMP) evaluates to 'm'
|
| If a kernel module is built from several source files, you specify
| that you want to build a module in the same way as above.
|
| Kbuild needs to know which the parts that you want to build your
| module of, so you have to tell it by setting an
from,
| $(<module_name>-objs) variable.
|
| Example:
| #drivers/isdn/i4l/Makefile
| obj-$(CONFIG_ISDN) += isdn.o
| isdn-objs := isdn_net_lib.o isdn_v110.o isdn_common.o
|
| In this example, the module name will be isdn.o. Kbuild will
| compile the objects listed in $(isdn-objs) and then run
| "$(LD) -r" on the list of these files to generate isdn.o.
|
| Kbuild recognises objects used for composite objects by the suffix
| -objs, and the suffix -y. This allows the Makefiles to use
| the value of a CONFIG_ symbol to determine if an object is part
| of a composite object.
|
| Example:
| #fs/ext2/Makefile
| obj-$(CONFIG_EXT2_FS) += ext2.o
| ext2-y := balloc.o bitmap.o
| ext2-$(CONFIG_EXT2_FS_XATTR) += xattr.o
|
| In this example xattr.o is only part of the composite object
| ext2.o, if $(CONFIG_EXT2_FS_XATTR) evaluates to 'y'.
|
| Note: Of course, when you are building objects into the kernel,
| the syntax above will also work. So, if you have CONFIG_EXT2_FS=y,
| kbuild will build an ext2.o file for you out of the individual
| parts and then link this into built-in.o, as you would expect.
|
| --- 3.4 Objects which export symbols - export-objs
|
| When using loadable modules, not every global symbol in the
| kernel / other modules is automatically available, only those
| explicitly exported are available for your module.
|
| To make a symbol available for use in modules, to "export" it,
| use the EXPORT_SYMBOL(<symbol>) directive in your source. In
| addition, you need to list all object files which export symbols
| (i.e. their source contains an EXPORT_SYMBOL() directive) in the
| Makefile variable $(export-objs).
|
| Example:
| #drivers/isdn/i4l/Makefile
| # Objects that export symbols.
| export-objs := isdn_common.o
|
| since isdn_common.c contains
|
| EXPORT_SYMBOL(register_isdn);
|
| which makes the function register_isdn available to
| low-level ISDN drivers.
| There exist a EXPORT_SYMBOL_GPLi() variant with similar functionality,
typo: remove i
| but more restrictive with what may use that symbol. The requirement
| to list the .o file in export-objs is the same.
|
| --- 3.5 Library file goals - L_TARGET
|
| Instead of building a built-in.o file, you may also
| build an archive which again contains objects listed in $(obj-y).
| This is normally not necessary and only used in lib/ and
| arch/$(ARCH)/lib directories.
| Only the name lib.a is allowed.
|
| Example:
| #arch/i386/lib/Makefile
| L_TARGET := lib.a
| obj-y := checksum.o delay.o
|
| This will create a library lib.a based on checksum.o and delay.o.
|
| --- 3.6 Descending down in directories
|
| A Makefile is only responsible for building objects in its own
| directory. Files in subdirectories should be taken care of by
| Makefiles in these subdirs. The build system will automatically
| invoke make recursively in subdirectories, provided you let it know of
| them.
|
| To do so obj-y and obj-m is used.
are
| ext2 lives in a separate directory, and the Makefile present in fs/
| tell kbuild to descend down using the following assignment.
tells
|
| Example:
| #fs/Makefile
| obj-$(CONfIG_EXT2_FS) += ext2/
|
| If CONFIG_EXT2_FS is set to either 'y' (built-in) or 'm' (modular)
| the corresponding obj- variable will be set, and kbuild will descend
| down in the ext2 directory.
| Kbuild only uses this information to decide that it needs to visit
| the directory, it is the Makefile in the subdirectory that
| specify what is modules and what is built-in.
specifies
|
| It is good practice to use a CONFIG_ variable when assigning direcotory
directory
| names. This allow kbuild to totally skip the directory if the
allows
| corresponding CONFIG_ option is neither 'y' nor 'm'.
|
| --- 3.7 Compilation flags
|
| EXTRA_CFLAGS, EXTRA_AFLAGS, EXTRA_LDFLAGS, EXTRA_ARFLAGS
|
| All the EXTRA_ variables apply only to the kbuild makefile
| where they are assigned. The EXTRA_ variables apply to all
| commands executed in the kbuild makefile.
|
| $(EXTRA_CFLAGS) specifies options for compiling C files with
| $(CC).
|
| Example:
| # drivers/sound/emu10k1/Makefile
| EXTRA_CFLAGS += -I$(obj)
| ifdef DEBUG
| EXTRA_CFLAGS += -DEMU10K1_DEBUG
| endif
|
|
| This variable is necessary because the top Makefile owns the
| variable $(CFLAGS) and uses it for compilation flags for the
| entire tree.
|
| $(EXTRA_AFLAGS) is a similar string for per-directory options
| when compiling assembly language source.
|
| Example:
| #arch/x86_64/kernel/Makefile
| EXTRA_AFLAGS := -traditional
|
|
| $(EXTRA_LDFLAGS) and $(EXTRA_ARFLAGS) are similar strings for
| per-directory options to $(LD) and $(AR).
|
| Example:
| #arch/m68k/fpsp040/Makefile
| EXTRA_LDFLAGS := -x
|
| CFLAGS_$@, AFLAGS_$@
|
| CFLAGS_$@ and AFLAGS_$@ only apply to commands in current
| kbuild makefile.
|
| $(CFLAGS_$@) specifies per-file options for $(CC). The $@
| part has a literal value which specifies the file that it is for.
|
| Example:
| # drivers/scsi/Makefile
| CFLAGS_aha152x.o = -DAHA152X_STAT -DAUTOCONF
| CFLAGS_gdth.o = # -DDEBUG_GDTH=2 -D__SERIAL__ -D__COM2__ \
| -DGDTH_STATISTICS
| CFLAGS_seagate.o = -DARBITRATE -DPARITY -DSEAGATE_USE_ASM
|
| These three lines specify compilation flags for aha152x.o,
| gdth.o, and seagate.o
|
| $(AFLAGS_$@) is a similar feature for source files in assembly
| languages.
|
| Example:
| # arch/arm/kernel/Makefile
| AFLAGS_head-armv.o := -DTEXTADDR=$(TEXTADDR) -traditional
| AFLAGS_head-armo.o := -DTEXTADDR=$(TEXTADDR) -traditional
|
| --- 3.9 Dependency tracking
|
| Kbuild track dependencies on the following:
| 1) All prerequisite files (both *.c and *.h)
| 2) CONFIG_ options used in all prerequisite files
| 3) Command-line used to compile target
|
| Thus, if you change an option to $(CC) all affected files will
| be re-compiled.
|
| --- 3.10 Special Rules
|
| Special rules are used when the kbuild infrastructure does
| not provide the required support. A typical example is
| header files generated during the build process.
| Another example is the architecture specific Makefiles which
| needs special rules to prepare boot images etc.
|
| Special rules are written as normal Make rules.
| Kbuild is not executing in the directory where the Makefile is
| located, so all special rules shall provide a relative
| path to prerequisite files and target files.
|
| Two variables are used when defining special rules:
|
| $(src)
| $(src) is a relative path which point to the directory
points
| where the Makefile is located. Always use $(src) when
| referring to files located in the src tree.
|
| $(obj)
| $(obj) is a relative path which point to the directory
points
| where the Makefile is located. Always use $(obj) when
where the target is located. (??)
| referring to generated files.
|
| Example:
| #drivers/scsi/Makefile
| $(obj)/53c8xx_d.h: $(src)/53c7,8xx.scr $(src)/script_asm.pl
| $(CPP) -DCHIP=810 - < $< | ... $(src)/script_asm.pl
|
| This is a special rule, following the normal syntax
| required by make.
| The target file depends on two prerequisite files. References
| to the target file are prefixed with $(obj), references
| to prerequisites are referenced with $(src) (because they are not
| generated files).
|
|
| === 4 Host Program support
|
| Kbuild supports building executable on the host for use during the
executables
| compilation stage.
| Two steps is required in order to use a host executable.
are
|
| First step is to tell kbuild that a host program exits. This is done utilising
The first step ... exists.
| the variable host-prog.
|
| Second step is to add an explicit dependency to the executable.
The second step ...
| This can be done in two ways. Either add the dependency in a rule, or utilise
| the variable build-targets.
| Both possibilities are described in the following.
|
| --- 4.1 Simple Host Program
|
| In some cases there is a need to compile and run a program on the
| computer where the build is running.
| The following line tell kbuild that the program bin2hex shall be
tells
| build on the build host.
built
|
| Example:
| host-progs := bin2hex
|
| Kbuild assume in the above example that bin2hex is made from a single
assumes
| c-source file named bin2hex.c located in the same directory as
| the Makefile.
|
| --- 4.2 Composite Host Programs
|
| Host programs can be made up based on composite objects.
| The syntax used to define composite objetcs for host programs is
| similar to the syntax used for kernel objects.
| $(<executeable>-objs) list all objects used to link the final
| executable.
|
| Example:
| #scripts/lxdialog/Makefile
| host-progs := lxdialog
| hex2bin-objs := checklist.o lxdialog.o
|
| Objects with extension .o is compiled from the corresponding .c file.
are ... files.
| In the above example checklist.c is compiled to checklist.o and
| lxdialog.c is compiled to lxdialog.o.
| Finally the two .o files are linked to the executable, lxdialog.
| Note: The syntax <executable>-y is not permitted for host-programs.
|
| --- 4.3 Defining shared libraries
|
| Objects with extension .so is considered shared libraries, and will
are
| be compiled as position independent objects.
| Kbuild provide support for shared libraries, but the usage
provides
| shall be restricted.
| In the following example the libkconfig.so shared library is used
| to link the executable conf.
|
| Example:
| #scripts/kconfig/Makefile
| host-progs := conf
| conf-objs := conf.o libkconfig.so
| libkconfig-objs := expr.o type.o
|
| Shared libraries always requires a corresponding -objs line, and
require
| in the example above the shared library libkconfig are composed by
is
| the two objects expr.o and type.o.
| expr.o and type.o will be build as position independent code and
built
| linked as a shared library libkconfig.so. C++ is not supported for
| shared libraries.
|
| --- 4.4 Using C++ for host programs
|
| kbuild offer support for host programs written in C++. This were
offers was
| introduced solely to support kconfig, and is not recommended
| for general use.
|
| Example:
| #scripts/kconfig/Makefile
| host-progs := qconf
| qconf-cxxobjs := qconf.o
|
| In the example above the executable is composed the the C++ file
of
| qconf.cc - identified by $(qconf-cxxobjs).
|
| If qconf are composed by a mixture of .c and .cc files, then an
is
| additional line can be used to identify this.
|
| Example:
| #scripts/kconfig/Makefile
| host-progs := qconf
| qconf-cxxobjs := qconf.o
| qconf-objs := check.o
|
| --- 4.5 Controlling compiler options for host programs
|
| When compiling host programs there exist a possibility to set
When compiling host programs, it is possible to set specific
flags.
| specific flags.
| The programs will always be compiled utilising $(HOSTCC) passed
| the options specified in $(HOSTCFLAGS).
| To set flags that will take effect for all host programs created
| in that Makefile use the variable HOST_EXTRACFLAGS.
|
| Example:
| #scripts/lxdialog/Makefile
| HOST_EXTRACFLAGS += -I/usr/include/ncurses
|
| To set specific flags for a single file the following construction
| is used:
|
| Example:
| #arch/ppc64/boot/Makefile
| HOSTCFLAGS_piggyback.o := -DKERNELBASE=$(KERNELBASE)
|
| It is also possible to specify additional options to the linker.
|
| Example:
| #scripts/kconfig/Makefile
| HOSTLOADLIBES_qconf := -L$(QTDIR)/lib
|
| When linking qconf it will be passed the extra option "-L$(QTDIR)/lib".
|
| --- 4.6 When host programs are actually build
built
|
| Kbuild will only build host-programs when they are referenced
| as a prerequisite.
| This is possible in two ways. Either list the prerequisite explicit
(1) List the prerequisite explicitly
| in a special rule.
|
| Example:
| #drivers/pci/Makefile
| host-progs := gen-devlist
| $(obj)/devlist.h: $(src)/pci.ids $(obj)/gen-devlist
| ( cd $(obj); ./gen-devlist ) < $<
|
| The target $(obj)/devlist.h will not be build before
| $(obj)/gen-devlist is updated. Note that references to
| the host programs in a special rules must be prefixed with $(obj).
X(delete)
|
(2)
| When there is no suitable special rule, and the host program
| shall be build when a makefile is entered, the $(build-targets)
built
| variable shall be used.
|
| Example:
| #scripts/lxdialog/Makefile
| host-progs := lxdialog
| build-targets := $(host-progs)
|
| This will tell kbuild to build lxdialog even if not referenced in
| any rule.
|
| === 5 Kbuild clean infrastructure
|
| "make clean" deletes most generated files in the src tree where the kernel
| is compiled. This includes generated files such as host programs.
| Kbuild knows targets listed in $(host-progs) and $(EXTRA_TARGETS) and
| they are all deleted during "make clean".
| Files matching the patterns "*.[oas]", "*.ko", plus some additional files
| generated by kbuild are delted all over the kernel src tree when "make clean"
deleted
| is executed.
|
| Additional files can be specified by means of "clean-files".
|
| Example:
| #drivers/pci/Makefile
| clean-files := devlist.h classlist.h
|
| When executing "make clean", the two files "devlist.h classlist.h" will
| be deleted. Kbuild knows that files specified by $(clean-files) are
| located in the same directory as the makefile.
|
| Usually kbuild descend down in subdirectories due to "obj-* := dir/",
descneds
| but in the architecture makefiles where the kbuild infrastructure
| is not sufficent this sometimes needs to be explicit.
|
| Example:
| #arch/i386/boot/Makefile
| subdir- := compressed/
|
The above assignment...
| Above assignment instructs kbuild to descend down in the directory compressed/
| when "make clean" is executed.
|
| To support the clean infrastructure in the Makefiles that builds the
| final bootimage there is an optional target named archclean:
|
| Example:
| #arch/i386/Makefile
| archclean:
| $(Q)$(MAKE) $(clean)=arch/i386/boot
|
| When "make clean" is executed, make will descend down in arch/i386/boot,
| and clean as usual. The Makefile located in arch/i386/boot/ may use
| the subdir- trick to descend further down.
|
| Note 1: arch/$(ARCH)/Makefile cannot use "subdir-", because that file is
| included in the top level makefile, and the kbuild infrastructure
| is not operational at that point.
|
| Note 2: All directories listed in core-y, libs-y, drivers-y and net-y will
| be visited during "make clean".
|
| === 6 Architecture Makefiles
|
| The top level Makefile set up the environment and do the preparation,
sets does
| before starting to descend down in the individual directories.
| The top level makefile contain the generic part, whereas the
contains
| arch/$(ARCH)/Makefile contains what is required to set-up kbuild
| to the said architecture.
| To do so arch/$(ARCH)/Makefile set a number of variables, and define
sets defines
| a few targets.
|
| When kbuild executes the following steps are followed (roughly):
| 1) Configuration of the kernel => produced .config
| 2) Store kernel version in include/linux/version.h
| 3) Symlink include/asm to include/asm-$(ARCH)
| 4) Updating all other prerequisites to the target prepare:
| - Additional prerequisites are specified in arch/$(ARCH)/Makefile
| 5) Recursively descend down in all directories listed in
| init-* core* drivers-* net-* libs-* and build all targets.
| - The value of the above variables are extended in arch/$(ARCH)/Makefile.
| 6) All object files are then linked and the resulting file vmlinux are
is
| located at the root of the src tree.
| The very first objects linked are listed in head-y, assigned by
| arch/$(ARCH)/Makefile.
Example? arch/i386/Makefile in 2.5.54 doesn't contain "head-y".

| 7) Finally the architecture specific part does any required post processing
| and build the final bootimage.
builds
| - This includes building boot recoreds,
records
| - Preparing initrd images and the like
|
|
| --- 6.1 Set variables to tweak the build to the architecture
|
| LDFLAGS Linker flags
|
| Flags used for all invocations of the linker.
| Often specifying the emulation is sufficient.
|
| Example:
| #arch/s390/Makefile
| LDFLAGS := -m elf_s390
| Note: EXTRA_LDFLAGS and LDFLAGS_$@ can be used to further customise
| the flags used. See chater 7.
chapter
|
| LDFLAGS_vmlinux Flags used when linking vmlinux
|
| LDFLAGS_vmlinux is used to specify additional flags to pass to
| the linker when linking the final vmlinux.
| LDFLAGS_vmlinux uses th LDFLAGS_$@ support.
the
|
| Example:
| #arch/i386/Makefile
| LDFLAGS_vmlinux := -e stext
|
| OBJCOPYFLAGS objcopy flags
|
| When $(call if_changed,objcopy) is used to translate a .o file,
| then the flags specified in OBJCOPYFLAGS will be used.
| $(call if_changed,objcopy) is often used to generate raw binaries on
| vmlinux.
|
| Example:
| #arch/s390/Makefile
| OBJCOPYFLAGS := -O binary
|
| #arch/s390/boot/Makefile
| $(obj)/image: vmlinux FORCE
| $(call if_changed,objcopy)
|
| In this example the binary $(obj)/image is a binary version of
| vmlinux. The usage of $(call if_changed,xxx) will be described later.
|
|
| LDFLAGS_BLOB initramfs linker flags
|
| The image used for initramfs is made during the build process.
| LDFLAGS_BLOB is used to specify additional flags to be used when
| creating the initramfs_data.o file.
| Example:
| #arch/i386/Makefile
| LDFLAGS_BLOB := --format binary --oformat elf32-i386
|
| AFLAGS $(AS) assembler flags
|
| Default value - see top level Makefile
| Append or modify as required pr. architecture.
per (?)
|
| Example:
| #arch/sparc64/Makefile
| AFLAGS += -m64 -mcpu=ultrasparc
|
| CFLAGS $(CC) compiler flags
|
| Default value - see top level Makefile
| Append or modify as required pr. architecture.
per (?)
|
| Often the CFLAGS variable depends on the configuration.
|
| Example:
| #arch/i386/Makefile
| cflags-$(CONFIG_M386) += -march=i386
| CFLAGS += $(cflags-y)
|
| Many arch Makefiles dynamically run the target C compiler to
| probe supported options:
|
| #arch/i386/Makefile
| check_gcc = $(shell if $(CC) $(1) -S -o /dev/null -xc \
| /dev/null\ > /dev/null 2>&1; then echo "$(1)"; \
| else echo "$(2)"; fi)
| cflags-$(CONFIG_MCYRIXIII) += $(call check_gcc,\
| -march=c3,-march=i486)
|
| CFLAGS += $(cflags-y)
|
| The above examples both utilise the trick that a config option expands
| to 'y' when selected.
|
| CFLAGS_KERNEL $(CC) options specific for build-in
built-in
|
| $(CFLAGS_KERNEL) contains extra C compiler flags used to compile
| resident kernel code.
|
| CFLAGS_MODULE $(CC) options specific for modules
|
| $(CFLAGS_MODULE) contains extra C compiler flags used to compile code
| for loadable kernel modules.
|
|
| --- 6.2 Add prerequisites to prepare:
|
| The prepare: rule is used to list prerequisites that needs to be
| build before starting to descend down in the subdirectories.
built
| This is usual header files containing assembler constants.
|
| Example:
| #arch/s390/Makefile
| prepare: include/asm-$(ARCH)/offsets.h
|
| In this example the file include/asm-$(ARCH)/offsets.h will
| be build before descending down in the subdirectories.
built
| See also chapter XXX-TODO that describe how kbuild supports
| generating offset header files.
|
|
| --- 6.3 List directories to visit when descending
|
| An arch Makefile cooperates with the top Makefile to define variables
| which specify how to build the vmlinux file. Note that there is no
| corresponding arch-specific section for modules; the module-building
| machinery is all architecture-independent.
|
|
| head-y, init-y, core-y, libs-y, drivers-y, net-y
|
| $(head-y) list objects to be linked first in vmlinux.
| $(libs-y) list directories where a libs.a archieve can be located.
archive
| The rest list directories where a built-in.o object file can be located.
|
| $(init-y) objects will be located after $(head-y).
| Then the rest follows in this order:
| $(core-y), $(libs-y), $(drivers-y) and $(net-y).
|
| The top level Makefile define values for all generic directories,
| and arch/$(ARCH)/Makefile only adds architecture specific directories.
|
| Example:
| #arch/sparc64/Makefile
| core-y += arch/sparc64/kernel/
| libs-y += arch/sparc64/prom/ arch/sparc64/lib/
| drivers-$(CONFIG_OPROFILE) += arch/sparc64/oprofile/
|
|
| --- 6.4 Architecture specific boot images
|
| An arch Makefile specifies goals that take the vmlinux file, compress
| it, wrap it in bootstrapping code, and copy the resulting files
| somewhere. This includes various kinds of installation commands.
| The actual goals are not standardized across architectures.
|
| It is common to locate any additional processing in a boot/
| directory below arch/$(ARCH)/.
|
| Kbuild does not provide any smart way to support building a
| target specified in boot/ therefore arch/$(ARCH)/Makefile shall
boot/. Therefore
| call make manually to build a target in boot/.
|
| The recommended approach is to include shortcuts in
| arch/$(ARCH)/Makefile, and use the full path when calling down
| into the arch/$(ARCH)/boot/Makefile.
|
| Example:
| #arch/i386/Makefile
| boot := arch/i386/boot
| bzImage: vmlinux
| $(Q)$(MAKE) $(build)=$(boot) $(boot)/$@
|
| "$(Q)$(MAKE) $(build)=<dir>" is the recommended way to invoke
| make in a subdirectory.
|
| There is no rules for naming of the architecture specific targets,
are
| but executing "make help" will list all relevant targets.
| To support this $(archhelp) must be defined.
|
| Example:
| #arch/i386/Makefile
| define archhelp
| echo '* bzImage - Image (arch/$(ARCH)/boot/bzImage)'
| endef
|
| When make is executed without arguments, the first goal encountered
| will be build. In the top level Makefile the first goal present
built.
| is all:.
| An architecture shall always per default build a bootable image.
| In "make help" the default goal is high-lighted with a '*'.
highlighted
| Add a new prerequisite to all: to select a default goal
| different from vmlinux.
|
| Example:
| #arch/i386/Makefile
| all: bzImage
|
| When "make" is executed without arguments, bzImage will be build.
built.
|
| --- 6.5 Building non-kbuild targets
|
| EXTRA_TARGETS
|
| EXTRA_TARGETS specify additionally targets created in current
additional
| directory, in addition to any target specified by obj-*.
|
| Listing all targets in EXTRA_TARGETS are required for three purposes:
is
| 1) Avoid that the target is linked in as part of built-in.o
| 2) Enable kbuild to check changes in commandlines
command lines
| - When $(call if_changed,xxx) is used
| 3) kbuild knows what file to delete during "make clean"
|
| Example:
| #arch/i386/kernel/Makefile
| EXTRA_TARGETS := head.o init_task.o
|
| In this example EXTRA_TARGETS is used to list objects files that
object
| shall be built, but shall not be linked as part of built-in.o.
|
| Example:
| #arch/i386/boot/Makefile
| EXTRA_TARGETS := vmlinux.bin bootsect bootsect.o
|
| In this example EXTRA_TARGETS is used to list all intermidiate
intermediate
| targets, and all final targets.
| The targets are added to EXTRA_TARGETS to enable 2) and 3) above.
|
| --- 6.6 Commands useful for building a boot image
|
| Kbuild provide a few macros that are useful when building a
| boot image.
|
| if_changed
|
| if_changed is the infrastructure used for the following commands.
|
| Usage:
| target: source(s) FORCE
| $(call if_changed,ld/objcopy/gzip)
|
| When the rule is evaluated it is checked if any files needs an update,
to see if any files need an update,
| or the commandline has changed since last invocation. The latter will
command line
| force a rebuild if any options to the executable has changed.
have
| Any target that utilise if_changed must be listed in EXTRA_TARGETS,
utilises
| otherwise the commandline check will fail, and the target will always
| be build.
built.
| if_changed may be used in conjunction with custom commands as
| defined in 6.7 "Custom kbuild commands".
| Note: It is a typical mistake to forget the FORCE prerequisite.
|
| ld
| Link target. Often LDFLAGS_$@ is used to set specific options to ld.
|
| objcopy
| Copy binary. Uses OBJCOPYFLAGS usual specified in arch/$(ARCH)/Makefile
usually
|
| gzip
| Compress target. Use maximum compression to compress target.
|
|
| --- 6.7 Custom kbuild commands
|
| When kbuild is executing with KBUILD_VERBOSE=0 then only a shorthand
| of a command is normally displayed.
| To enable this behaviour for custom commands kbuild requires
| two variables to be set:
| quiet_cmd_<command> - what shall be echoed
| cmd_<command> - the command to execute
|
| Example:
| #
| quiet_cmd_image = BUILD $@
| cmd_image = $(obj)/tools/build $(BUILDFLAGS) \
| $(obj)/vmlinux.bin > $@
|
| $(obj)/bzImage: $(obj)/vmlinux.bin $(obj)/tools/build FORCE
| $(call if_changed,image)
| @echo 'Kernel: $@ is ready'
|
| When updating the $(obj)/bzImage target the line:
|
| BUILD arch/i386/boot/bzImage
|
| will be displayed with "make KBUILD_VERBOSE=0".
It would be nice to have a shorthand notation for this, like -s
means "silent".
|
|
| === 7 Kbuild Variables
|
| The top Makefile exports the following variables:
|
| VERSION, PATCHLEVEL, SUBLEVEL, EXTRAVERSION
|
| These variables define the current kernel version. A few arch
| Makefiles actually use these values directly; they should use
| $(KERNELRELEASE) instead.
|
| $(VERSION), $(PATCHLEVEL), and $(SUBLEVEL) define the basic
| three-part version number, such as "2", "4", and "0". These three
| values are always numeric.
|
| $(EXTRAVERSION) defines an even tinier sublevel for pre-patches
| or additional patches. It is usually some non-numeric string
| such as "-pre4", and is often blank.
|
| KERNELRELEASE
|
| $(KERNELRELEASE) is a single string such as "2.4.0-pre4", suitable
| for constructing installation directory names or showing in
| version strings. Some arch Makefiles use it for this purpose.
|
| ARCH
|
| This variable defines the target architecture, such as "i386",
| "arm", or "sparc". Some kbuild Makefiles test $(ARCH) to
| determine which files to compile.
|
| By default, the top Makefile sets $(ARCH) to be the same as the
| host system system architecture. For a cross build, a user may
^I think that it's safe to delete one of these "system"s.
| override the value of $(ARCH) on the command line:
|
| make ARCH=m68k ...
|
Move variable name up, before its description, to be like above:
| INSTALL_MOD_PATH, MODLIB
|
| This variable defines a place for the arch Makefiles to install
| the resident kernel image and System.map file.
|
|
| $(INSTALL_MOD_PATH) specifies a prefix to $(MODLIB) for module
| installation. This variable is not defined in the Makefile but
| may be passed in by the user if desired.
|
| $(MODLIB) specifies the directory for module installation.
| The top Makefile defines $(MODLIB) to
| $(INSTALL_MOD_PATH)/lib/modules/$(KERNELRELEASE). The user may
| override this value on the command line if desired.
|
| === 8 Makefile language
|
| The kernel Makefiles are designed to run with GNU Make. The Makefiles
| uses only the documented features of GNU Make, but they do use many
use
| GNU extensions.
|
| GNU Make supports elementary list-processing functions. The kernel
| Makefiles use a novel style of list building and manipulation with few
| "if" statements.
|
| GNU Make has two assignment operators, ":=" and "=". ":=" performs
| immediate evaluation of the right-hand side and stores an actual string
| into the left-hand side. "=" is like a formula definition; it stores the
| right-hand side in an unevaluated form and then evaluates this form each
| time the left-hand side is used.
|
| There are some cases where "=" is appropriate. Usually, though, ":="
| is the right choice.
|
| === 9 Credits
|
| Original version made by Michael Elizabeth Chastain, <mailto:[email protected]>
| Updates by Kai Germaschewski <[email protected]>
| Updates by Sam Ravnborg <[email protected]>
|
| === 10 TODO
|
| - Describe how kbuild support shipped files with _shipped.
| - Generating offset header files.
| - Add more variables to section 7?
| -

HTH.
--
~Randy



2003-01-06 19:28:16

by Sam Ravnborg

[permalink] [raw]
Subject: Re: [RFC] Documentation/kbuild/makefiles.txt

On Mon, Jan 06, 2003 at 09:04:14AM -0800, Randy.Dunlap wrote:
>
> Can you add a section about building non-kernel-tree drivers etc.?
> I.e., building from source files that are not resident in the
> kernel tree?
>
> And do you have a section on building in $objtree with
> $srctree != $objtree? I didn't see it. Or is this not the right
> document for that topic?

I plan to write a small kernel compile HOWTO. There I will cover
both usage scenarios.
It is supposed to obsolete commands.txt as of today.

makefiles.txt will cover only how to write Makefiles and what they
can be used to do. I kept chapter two because it was a good
definition of the target group.
But I agree with you that the information you requests are missing.

Btw. my patch to build the kernel in a separate directory is
not yet ready for inclusion. oprofile and xfs causes me trouble,
they refuse to do things in the normal way.
Also the lack of consistency when including files annoy me.
I hope to get some feedback from Kai on this soon.

> | Rules.make compiles all the $(obj-y) files. It then calls
> Where is Rules.make nowadays?

[Above is a left-over from the old document, will be updated].

Rules.make vanished when Kai did the spilt into scripts/Makefile.build,
scripts/Makefile.lib, scripts/Makefile.clean etc.
It started with me submitting a patch that made "make clean" descend
down in all directories. That was way too slow, and Kai made the split
speeding up "make clean" a lot.

The concept is that make is called with:
make -f scripts/Makefile.build obj=path/to/makefile
Then Makefile.build includes $(obj)/Makefile.
Therefore the individual Makefiles no longer need to include any
file, and Rules.make became obsolete.

IIRC this concept was originally described some time ago at
kbuild-devel.

> | arch/$(ARCH)/Makefile.
> Example? arch/i386/Makefile in 2.5.54 doesn't contain "head-y".

I have a pending patch introducing head-y for all architectures.
If it is rejected I will update the text.

> | Append or modify as required pr. architecture.
> per (?)
Abbrevation came form the wrong language ;-)

> | will be displayed with "make KBUILD_VERBOSE=0".
> It would be nice to have a shorthand notation for this, like -s
> means "silent".
I have KBUILD_VERBOSE=0 in my .bashrc, but I see your point.

> HTH.

Helps a lot, thanks indeed!
All corrections applied.

Sam

2003-01-07 16:48:01

by Sam Ravnborg

[permalink] [raw]
Subject: Re: [RFC] Documentation/kbuild/makefiles.txt

Third version with input from Randy incorporated - thanks!
Also added LDFLAGS_MODULE

Sam

Linux Kernel Makefiles

This document describes the Linux kernel Makefiles.

=== Table of Contents

=== 1 Overview
=== 2 Who does what
=== 3 The kbuild Makefiles
--- 3.1 Goal definitions
--- 3.2 Built-in object goals - obj-y
--- 3.3 Loadable module goals - obj-m
--- 3.4 Objects which export symbols - export-objs
--- 3.5 Library file goals - L_TARGET
--- 3.6 Descending down in directories
--- 3.7 Compilation flags
--- 3.8 Command line dependency
--- 3.9 Dependency tracking
--- 3.10 Special Rules

=== 4 Host Program support
--- 4.1 Simple Host Program
--- 4.2 Composite Host Programs
--- 4.3 Defining shared libraries
--- 4.4 Using C++ for host programs
--- 4.5 Controlling compiler options for host programs
--- 4.6 When host programs are actually built

=== 5 Kbuild clean infrastructure

=== 6 Architecture Makefiles
--- 6.1 Set variables to tweak the build to the architecture
--- 6.2 Add prerequisites to prepare:
--- 6.3 List directories to visit when descending
--- 6.4 Architecture specific boot images
--- 6.5 Building non-kbuild targets
--- 6.6 Commands useful for building a boot image
--- 6.7 Custom kbuild commands

=== 7 Kbuild Variables
=== 8 Makefile language
=== 9 Credits
=== 10 TODO

=== 1 Overview

The Makefiles have five parts:

Makefile the top Makefile.
.config the kernel configuration file.
arch/$(ARCH)/Makefile the arch Makefile.
scripts/Makefile.* common rules etc. for all kbuild Makefiles.
kbuild Makefiles there are about 500 of these.

The top Makefile reads the .config file, which comes from the kernel
configuration process.

The top Makefile is responsible for building two major products: vmlinux
(the resident kernel image) and modules (any module files).
It builds these goals by recursively descending into the subdirectories of
the kernel source tree.
The list of subdirectories which are visited depends upon the kernel
configuration. The top Makefile textually includes an arch Makefile
with the name arch/$(ARCH)/Makefile. The arch Makefile supplies
architecture-specific information to the top Makefile.

Each subdirectory has a kbuild Makefile which carries out the commands
passed down from above. The kbuild Makefile uses information from the
.config file to construct various file lists used by kbuild to build
any built-in or modular targets.

scripts/Makefile.* contains all the definitions/rules etc. that
are used to build the kernel based on the kbuild makefiles.


=== 2 Who does what

People have four different relationships with the kernel Makefiles.

*Users* are people who build kernels. These people type commands such as
"make menuconfig" or "make". They usually do not read or edit
any kernel Makefiles (or any other source files).

*Normal developers* are people who work on features such as device
drivers, file systems, and network protocols. These people need to
maintain the kbuild Makefiles for the subsystem that they are
working on. In order to do this effectively, they need some overall
knowledge about the kernel Makefiles, plus detailed knowledge about the
public interface for kbuild.

*Arch developers* are people who work on an entire architecture, such
as sparc or ia64. Arch developers need to know about the arch Makefile
as well as kbuild Makefiles.

*Kbuild developers* are people who work on the kernel build system itself.
These people need to know about all aspects of the kernel Makefiles.

This document is aimed towards normal developers and arch developers.


=== 3 The kbuild Makefiles

Most Makefiles within the kernel are kbuild Makefiles that use the
kbuild infrastructure. This chapter introduce the syntax used in the
kbuild makefiles.

Section 3.1 "Goal definitions" is a quick intro, further chapters provide
more details, with real examples.

--- 3.1 Goal definitions

Goal definitions are the main part (heart) of the kbuild Makefile.
These lines define the files to be built, any special compilation
options, and any subdirectories to be entered recursively.

The most simple kbuild makefile contains one line:

Example:
obj-y += foo.o

This tell kbuild that there is one object in that directory named
foo.o. foo.o will be build from foo.c or foo.S.

If foo.o shall be built as a module, the variable obj-m is used.
Therefore the following pattern is often used:

Example:
obj-$(CONFIG_FOO) += foo.o

$(CONFIG_FOO) evaluates to either y (for built-in) or m (for module).
If CONFIG_FOO is neither y nor m, then the file will not be compiled
nor linked.

--- 3.2 Built-in object goals - obj-y

The kbuild Makefile specifies object files for vmlinux
in the lists $(obj-y). These lists depend on the kernel
configuration.

Kbuild compiles all the $(obj-y) files. It then calls
"$(LD) -r" to merge these files into one built-in.o file.
built-in.o is later linked into vmlinux by the parent Makefile.

The order of files in $(obj-y) is significant. Duplicates in
the lists are allowed: the first instance will be linked into
built-in.o and succeeding instances will be ignored.

Link order is significant, because certain functions
(module_init() / __initcall) will be called during boot in the
order they appear. So keep in mind that changing the link
order may e.g. change the order in which your SCSI
controllers are detected, and thus you disks are renumbered.

Example:
#drivers/isdn/i4l/Makefile
# Makefile for the kernel ISDN subsystem and device drivers.
# Each configuration option enables a list of files.
obj-$(CONFIG_ISDN) += isdn.o
obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o

--- 3.3 Loadable module goals - obj-m

$(obj-m) specify object files which are built as loadable
kernel modules.

A module may be built from one source file or several source
files. In the case of one source file, the kbuild makefile
simply adds the file to $(obj-m).

Example:
#drivers/isdn/i4l/Makefile
obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o

Note: In this example $(CONFIG_ISDN_PPP_BSDCOMP) evaluates to 'm'

If a kernel module is built from several source files, you specify
that you want to build a module in the same way as above.

Kbuild needs to know which the parts that you want to build your
module from, so you have to tell it by setting an
$(<module_name>-objs) variable.

Example:
#drivers/isdn/i4l/Makefile
obj-$(CONFIG_ISDN) += isdn.o
isdn-objs := isdn_net_lib.o isdn_v110.o isdn_common.o

In this example, the module name will be isdn.o. Kbuild will
compile the objects listed in $(isdn-objs) and then run
"$(LD) -r" on the list of these files to generate isdn.o.

Kbuild recognises objects used for composite objects by the suffix
-objs, and the suffix -y. This allows the Makefiles to use
the value of a CONFIG_ symbol to determine if an object is part
of a composite object.

Example:
#fs/ext2/Makefile
obj-$(CONFIG_EXT2_FS) += ext2.o
ext2-y := balloc.o bitmap.o
ext2-$(CONFIG_EXT2_FS_XATTR) += xattr.o

In this example xattr.o is only part of the composite object
ext2.o, if $(CONFIG_EXT2_FS_XATTR) evaluates to 'y'.

Note: Of course, when you are building objects into the kernel,
the syntax above will also work. So, if you have CONFIG_EXT2_FS=y,
kbuild will build an ext2.o file for you out of the individual
parts and then link this into built-in.o, as you would expect.

--- 3.4 Objects which export symbols - export-objs

When using loadable modules, not every global symbol in the
kernel / other modules is automatically available, only those
explicitly exported are available for your module.

To make a symbol available for use in modules, to "export" it,
use the EXPORT_SYMBOL(<symbol>) directive in your source. In
addition, you need to list all object files which export symbols
(i.e. their source contains an EXPORT_SYMBOL() directive) in the
Makefile variable $(export-objs).

Example:
#drivers/isdn/i4l/Makefile
# Objects that export symbols.
export-objs := isdn_common.o

since isdn_common.c contains

EXPORT_SYMBOL(register_isdn);

which makes the function register_isdn available to
low-level ISDN drivers.
There exist a EXPORT_SYMBOL_GPL() variant with similar functionality,
but more restrictive with what may use that symbol. The requirement
to list the .o file in export-objs is the same.

--- 3.5 Library file goals - L_TARGET

Instead of building a built-in.o file, you may also
build an archive which again contains objects listed in $(obj-y).
This is normally not necessary and only used in lib/ and
arch/$(ARCH)/lib directories.
Only the name lib.a is allowed.

Example:
#arch/i386/lib/Makefile
L_TARGET := lib.a
obj-y := checksum.o delay.o

This will create a library lib.a based on checksum.o and delay.o.

--- 3.6 Descending down in directories

A Makefile is only responsible for building objects in its own
directory. Files in subdirectories should be taken care of by
Makefiles in these subdirs. The build system will automatically
invoke make recursively in subdirectories, provided you let it know of
them.

To do so obj-y and obj-m are used.
ext2 lives in a separate directory, and the Makefile present in fs/
tells kbuild to descend down using the following assignment.

Example:
#fs/Makefile
obj-$(CONfIG_EXT2_FS) += ext2/

If CONFIG_EXT2_FS is set to either 'y' (built-in) or 'm' (modular)
the corresponding obj- variable will be set, and kbuild will descend
down in the ext2 directory.
Kbuild only uses this information to decide that it needs to visit
the directory, it is the Makefile in the subdirectory that
specifies what is modules and what is built-in.

It is good practice to use a CONFIG_ variable when assigning directory
names. This allows kbuild to totally skip the directory if the
corresponding CONFIG_ option is neither 'y' nor 'm'.

--- 3.7 Compilation flags

EXTRA_CFLAGS, EXTRA_AFLAGS, EXTRA_LDFLAGS, EXTRA_ARFLAGS

All the EXTRA_ variables apply only to the kbuild makefile
where they are assigned. The EXTRA_ variables apply to all
commands executed in the kbuild makefile.

$(EXTRA_CFLAGS) specifies options for compiling C files with
$(CC).

Example:
# drivers/sound/emu10k1/Makefile
EXTRA_CFLAGS += -I$(obj)
ifdef DEBUG
EXTRA_CFLAGS += -DEMU10K1_DEBUG
endif


This variable is necessary because the top Makefile owns the
variable $(CFLAGS) and uses it for compilation flags for the
entire tree.

$(EXTRA_AFLAGS) is a similar string for per-directory options
when compiling assembly language source.

Example:
#arch/x86_64/kernel/Makefile
EXTRA_AFLAGS := -traditional


$(EXTRA_LDFLAGS) and $(EXTRA_ARFLAGS) are similar strings for
per-directory options to $(LD) and $(AR).

Example:
#arch/m68k/fpsp040/Makefile
EXTRA_LDFLAGS := -x

CFLAGS_$@, AFLAGS_$@

CFLAGS_$@ and AFLAGS_$@ only apply to commands in current
kbuild makefile.

$(CFLAGS_$@) specifies per-file options for $(CC). The $@
part has a literal value which specifies the file that it is for.

Example:
# drivers/scsi/Makefile
CFLAGS_aha152x.o = -DAHA152X_STAT -DAUTOCONF
CFLAGS_gdth.o = # -DDEBUG_GDTH=2 -D__SERIAL__ -D__COM2__ \
-DGDTH_STATISTICS
CFLAGS_seagate.o = -DARBITRATE -DPARITY -DSEAGATE_USE_ASM

These three lines specify compilation flags for aha152x.o,
gdth.o, and seagate.o

$(AFLAGS_$@) is a similar feature for source files in assembly
languages.

Example:
# arch/arm/kernel/Makefile
AFLAGS_head-armv.o := -DTEXTADDR=$(TEXTADDR) -traditional
AFLAGS_head-armo.o := -DTEXTADDR=$(TEXTADDR) -traditional

--- 3.9 Dependency tracking

Kbuild track dependencies on the following:
1) All prerequisite files (both *.c and *.h)
2) CONFIG_ options used in all prerequisite files
3) Command-line used to compile target

Thus, if you change an option to $(CC) all affected files will
be re-compiled.

--- 3.10 Special Rules

Special rules are used when the kbuild infrastructure does
not provide the required support. A typical example is
header files generated during the build process.
Another example is the architecture specific Makefiles which
needs special rules to prepare boot images etc.

Special rules are written as normal Make rules.
Kbuild is not executing in the directory where the Makefile is
located, so all special rules shall provide a relative
path to prerequisite files and target files.

Two variables are used when defining special rules:

$(src)
$(src) is a relative path which points to the directory
where the Makefile is located. Always use $(src) when
referring to files located in the src tree.

$(obj)
$(obj) is a relative path which points to the directory
where the target is saved. Always use $(obj) when
referring to generated files.

Example:
#drivers/scsi/Makefile
$(obj)/53c8xx_d.h: $(src)/53c7,8xx.scr $(src)/script_asm.pl
$(CPP) -DCHIP=810 - < $< | ... $(src)/script_asm.pl

This is a special rule, following the normal syntax
required by make.
The target file depends on two prerequisite files. References
to the target file are prefixed with $(obj), references
to prerequisites are referenced with $(src) (because they are not
generated files).


=== 4 Host Program support

Kbuild supports building executables on the host for use during the
compilation stage.
Two steps are required in order to use a host executable.

The first step is to tell kbuild that a host program exists. This is
done utilising the variable host-prog.

The second step is to add an explicit dependency to the executable.
This can be done in two ways. Either add the dependency in a rule,
or utilise the variable build-targets.
Both possibilities are described in the following.

--- 4.1 Simple Host Program

In some cases there is a need to compile and run a program on the
computer where the build is running.
The following line tells kbuild that the program bin2hex shall be
built on the build host.

Example:
host-progs := bin2hex

Kbuild assumes in the above example that bin2hex is made from a single
c-source file named bin2hex.c located in the same directory as
the Makefile.

--- 4.2 Composite Host Programs

Host programs can be made up based on composite objects.
The syntax used to define composite objetcs for host programs is
similar to the syntax used for kernel objects.
$(<executeable>-objs) list all objects used to link the final
executable.

Example:
#scripts/lxdialog/Makefile
host-progs := lxdialog
hex2bin-objs := checklist.o lxdialog.o

Objects with extension .o are compiled from the corresponding .c
files. In the above example checklist.c is compiled to checklist.o
and lxdialog.c is compiled to lxdialog.o.
Finally the two .o files are linked to the executable, lxdialog.
Note: The syntax <executable>-y is not permitted for host-programs.

--- 4.3 Defining shared libraries

Objects with extension .so is considered shared libraries, and will
be compiled as position independent objects.
Kbuild provides support for shared libraries, but the usage
shall be restricted.
In the following example the libkconfig.so shared library is used
to link the executable conf.

Example:
#scripts/kconfig/Makefile
host-progs := conf
conf-objs := conf.o libkconfig.so
libkconfig-objs := expr.o type.o

Shared libraries always require a corresponding -objs line, and
in the example above the shared library libkconfig is composed by
the two objects expr.o and type.o.
expr.o and type.o will be built as position independent code and
linked as a shared library libkconfig.so. C++ is not supported for
shared libraries.

--- 4.4 Using C++ for host programs

kbuild offers support for host programs written in C++. This was
introduced solely to support kconfig, and is not recommended
for general use.

Example:
#scripts/kconfig/Makefile
host-progs := qconf
qconf-cxxobjs := qconf.o

In the example above the executable is composed of the C++ file
qconf.cc - identified by $(qconf-cxxobjs).

If qconf is composed by a mixture of .c and .cc files, then an
additional line can be used to identify this.

Example:
#scripts/kconfig/Makefile
host-progs := qconf
qconf-cxxobjs := qconf.o
qconf-objs := check.o

--- 4.5 Controlling compiler options for host programs

When compiling host programs, it is possible to set specific flags.
The programs will always be compiled utilising $(HOSTCC) passed
the options specified in $(HOSTCFLAGS).
To set flags that will take effect for all host programs created
in that Makefile use the variable HOST_EXTRACFLAGS.

Example:
#scripts/lxdialog/Makefile
HOST_EXTRACFLAGS += -I/usr/include/ncurses

To set specific flags for a single file the following construction
is used:

Example:
#arch/ppc64/boot/Makefile
HOSTCFLAGS_piggyback.o := -DKERNELBASE=$(KERNELBASE)

It is also possible to specify additional options to the linker.

Example:
#scripts/kconfig/Makefile
HOSTLOADLIBES_qconf := -L$(QTDIR)/lib

When linking qconf it will be passed the extra option "-L$(QTDIR)/lib".

--- 4.6 When host programs are actually built

Kbuild will only build host-programs when they are referenced
as a prerequisite.
This is possible in two ways:

(1) List the prerequisite explicit in a special rule.

Example:
#drivers/pci/Makefile
host-progs := gen-devlist
$(obj)/devlist.h: $(src)/pci.ids $(obj)/gen-devlist
( cd $(obj); ./gen-devlist ) < $<

The target $(obj)/devlist.h will not be build before
$(obj)/gen-devlist is updated. Note that references to
the host programs in special rules must be prefixed with $(obj).

(2) Use $(build-targets)
When there is no suitable special rule, and the host program
shall be built when a makefile is entered, the $(build-targets)
variable shall be used.

Example:
#scripts/lxdialog/Makefile
host-progs := lxdialog
build-targets := $(host-progs)

This will tell kbuild to build lxdialog even if not referenced in
any rule.

=== 5 Kbuild clean infrastructure

"make clean" deletes most generated files in the src tree where the kernel
is compiled. This includes generated files such as host programs.
Kbuild knows targets listed in $(host-progs) and $(EXTRA_TARGETS) and
they are all deleted during "make clean".
Files matching the patterns "*.[oas]", "*.ko", plus some additional files
generated by kbuild are deleted all over the kernel src tree when
"make clean" is executed.

Additional files can be specified by means of $(clean-files).

Example:
#drivers/pci/Makefile
clean-files := devlist.h classlist.h

When executing "make clean", the two files "devlist.h classlist.h" will
be deleted. Kbuild knows that files specified by $(clean-files) are
located in the same directory as the makefile.

Usually kbuild descends down in subdirectories due to "obj-* := dir/",
but in the architecture makefiles where the kbuild infrastructure
is not sufficent this sometimes needs to be explicit.

Example:
#arch/i386/boot/Makefile
subdir- := compressed/

The above assignment instructs kbuild to descend down in the
directory compressed/ when "make clean" is executed.

To support the clean infrastructure in the Makefiles that builds the
final bootimage there is an optional target named archclean:

Example:
#arch/i386/Makefile
archclean:
$(Q)$(MAKE) $(clean)=arch/i386/boot

When "make clean" is executed, make will descend down in arch/i386/boot,
and clean as usual. The Makefile located in arch/i386/boot/ may use
the subdir- trick to descend further down.

Note 1: arch/$(ARCH)/Makefile cannot use "subdir-", because that file is
included in the top level makefile, and the kbuild infrastructure
is not operational at that point.

Note 2: All directories listed in core-y, libs-y, drivers-y and net-y will
be visited during "make clean".

=== 6 Architecture Makefiles

The top level Makefile sets up the environment and does the preparation,
before starting to descend down in the individual directories.
The top level makefile contains the generic part, whereas the
arch/$(ARCH)/Makefile contains what is required to set-up kbuild
to the said architecture.
To do so arch/$(ARCH)/Makefile sets a number of variables, and defines
a few targets.

When kbuild executes the following steps are followed (roughly):
1) Configuration of the kernel => produced .config
2) Store kernel version in include/linux/version.h
3) Symlink include/asm to include/asm-$(ARCH)
4) Updating all other prerequisites to the target prepare:
- Additional prerequisites are specified in arch/$(ARCH)/Makefile
5) Recursively descend down in all directories listed in
init-* core* drivers-* net-* libs-* and build all targets.
- The value of the above variables are extended in arch/$(ARCH)/Makefile.
6) All object files are then linked and the resulting file vmlinux is
located at the root of the src tree.
The very first objects linked are listed in head-y, assigned by
arch/$(ARCH)/Makefile.
7) Finally the architecture specific part does any required post processing
and builds the final bootimage.
- This includes building boot records
- Preparing initrd images and the like


--- 6.1 Set variables to tweak the build to the architecture

LDFLAGS Generic $(LD) options

Flags used for all invocations of the linker.
Often specifying the emulation is sufficient.

Example:
#arch/s390/Makefile
LDFLAGS := -m elf_s390
Note: EXTRA_LDFLAGS and LDFLAGS_$@ can be used to further customise
the flags used. See chapter 7.

LDFLAGS_MODULE Options for $(LD) when linking modules

LDFLAGS_MODULE is used to set specific flags for $(LD) when
linking the .ko files used for modules.
Default is "-r", for relocatable output.

LDFLAGS_vmlinux Options for $(LD) when linking vmlinux

LDFLAGS_vmlinux is used to specify additional flags to pass to
the linker when linking the final vmlinux.
LDFLAGS_vmlinux uses the LDFLAGS_$@ support.

Example:
#arch/i386/Makefile
LDFLAGS_vmlinux := -e stext

LDFLAGS_BLOB Options for $(LD) when linking the initramfs blob

The image used for initramfs is made during the build process.
LDFLAGS_BLOB is used to specify additional flags to be used when
creating the initramfs_data.o file.
Example:
#arch/i386/Makefile
LDFLAGS_BLOB := --format binary --oformat elf32-i386

OBJCOPYFLAGS objcopy flags

When $(call if_changed,objcopy) is used to translate a .o file,
then the flags specified in OBJCOPYFLAGS will be used.
$(call if_changed,objcopy) is often used to generate raw binaries on
vmlinux.

Example:
#arch/s390/Makefile
OBJCOPYFLAGS := -O binary

#arch/s390/boot/Makefile
$(obj)/image: vmlinux FORCE
$(call if_changed,objcopy)

In this example the binary $(obj)/image is a binary version of
vmlinux. The usage of $(call if_changed,xxx) will be described later.

AFLAGS $(AS) assembler flags

Default value - see top level Makefile
Append or modify as required per architecture.

Example:
#arch/sparc64/Makefile
AFLAGS += -m64 -mcpu=ultrasparc

CFLAGS $(CC) compiler flags

Default value - see top level Makefile
Append or modify as required per architecture.

Often the CFLAGS variable depends on the configuration.

Example:
#arch/i386/Makefile
cflags-$(CONFIG_M386) += -march=i386
CFLAGS += $(cflags-y)

Many arch Makefiles dynamically run the target C compiler to
probe supported options:

#arch/i386/Makefile
check_gcc = $(shell if $(CC) $(1) -S -o /dev/null -xc \
/dev/null\ > /dev/null 2>&1; then echo "$(1)"; \
else echo "$(2)"; fi)
cflags-$(CONFIG_MCYRIXIII) += $(call check_gcc,\
-march=c3,-march=i486)

CFLAGS += $(cflags-y)

The above examples both utilise the trick that a config option expands
to 'y' when selected.

CFLAGS_KERNEL $(CC) options specific for built-in

$(CFLAGS_KERNEL) contains extra C compiler flags used to compile
resident kernel code.

CFLAGS_MODULE $(CC) options specific for modules

$(CFLAGS_MODULE) contains extra C compiler flags used to compile code
for loadable kernel modules.


--- 6.2 Add prerequisites to prepare:

The prepare: rule is used to list prerequisites that needs to be
built before starting to descend down in the subdirectories.
This is usual header files containing assembler constants.

Example:
#arch/s390/Makefile
prepare: include/asm-$(ARCH)/offsets.h

In this example the file include/asm-$(ARCH)/offsets.h will
be built before descending down in the subdirectories.
See also chapter XXX-TODO that describe how kbuild supports
generating offset header files.


--- 6.3 List directories to visit when descending

An arch Makefile cooperates with the top Makefile to define variables
which specify how to build the vmlinux file. Note that there is no
corresponding arch-specific section for modules; the module-building
machinery is all architecture-independent.


head-y, init-y, core-y, libs-y, drivers-y, net-y

$(head-y) list objects to be linked first in vmlinux.
$(libs-y) list directories where a libs.a archive can be located.
The rest list directories where a built-in.o object file can be located.

$(init-y) objects will be located after $(head-y).
Then the rest follows in this order:
$(core-y), $(libs-y), $(drivers-y) and $(net-y).

The top level Makefile define values for all generic directories,
and arch/$(ARCH)/Makefile only adds architecture specific directories.

Example:
#arch/sparc64/Makefile
core-y += arch/sparc64/kernel/
libs-y += arch/sparc64/prom/ arch/sparc64/lib/
drivers-$(CONFIG_OPROFILE) += arch/sparc64/oprofile/


--- 6.4 Architecture specific boot images

An arch Makefile specifies goals that take the vmlinux file, compress
it, wrap it in bootstrapping code, and copy the resulting files
somewhere. This includes various kinds of installation commands.
The actual goals are not standardized across architectures.

It is common to locate any additional processing in a boot/
directory below arch/$(ARCH)/.

Kbuild does not provide any smart way to support building a
target specified in boot/. Therefore arch/$(ARCH)/Makefile shall
call make manually to build a target in boot/.

The recommended approach is to include shortcuts in
arch/$(ARCH)/Makefile, and use the full path when calling down
into the arch/$(ARCH)/boot/Makefile.

Example:
#arch/i386/Makefile
boot := arch/i386/boot
bzImage: vmlinux
$(Q)$(MAKE) $(build)=$(boot) $(boot)/$@

"$(Q)$(MAKE) $(build)=<dir>" is the recommended way to invoke
make in a subdirectory.

There are no rules for naming of the architecture specific targets,
but executing "make help" will list all relevant targets.
To support this $(archhelp) must be defined.

Example:
#arch/i386/Makefile
define archhelp
echo '* bzImage - Image (arch/$(ARCH)/boot/bzImage)'
endef

When make is executed without arguments, the first goal encountered
will be built. In the top level Makefile the first goal present
is all:.
An architecture shall always per default build a bootable image.
In "make help" the default goal is highlighted with a '*'.
Add a new prerequisite to all: to select a default goal different
from vmlinux.

Example:
#arch/i386/Makefile
all: bzImage

When "make" is executed without arguments, bzImage will be built.

--- 6.5 Building non-kbuild targets

EXTRA_TARGETS

EXTRA_TARGETS specify additional targets created in current
directory, in addition to any targets specified by obj-*.

Listing all targets in EXTRA_TARGETS is required for three purposes:
1) Avoid that the target is linked in as part of built-in.o
2) Enable kbuild to check changes in command lines
- When $(call if_changed,xxx) is used
3) kbuild knows what file to delete during "make clean"

Example:
#arch/i386/kernel/Makefile
EXTRA_TARGETS := head.o init_task.o

In this example EXTRA_TARGETS is used to list object files that
shall be built, but shall not be linked as part of built-in.o.

Example:
#arch/i386/boot/Makefile
EXTRA_TARGETS := vmlinux.bin bootsect bootsect.o

In this example EXTRA_TARGETS is used to list all intermediate
targets, and all final targets.
The targets are added to EXTRA_TARGETS to enable 2) and 3) above.

--- 6.6 Commands useful for building a boot image

Kbuild provide a few macros that are useful when building a
boot image.

if_changed

if_changed is the infrastructure used for the following commands.

Usage:
target: source(s) FORCE
$(call if_changed,ld/objcopy/gzip)

When the rule is evaluated it is checked to see if any files
needs an update, or the commandline has changed since last
invocation. The latter will force a rebuild if any options
to the executable have changed.
Any target that utilises if_changed must be listed in EXTRA_TARGETS,
otherwise the command line check will fail, and the target will
always be built.
if_changed may be used in conjunction with custom commands as
defined in 6.7 "Custom kbuild commands".
Note: It is a typical mistake to forget the FORCE prerequisite.

ld
Link target. Often LDFLAGS_$@ is used to set specific options to ld.

objcopy
Copy binary. Uses OBJCOPYFLAGS usually specified in
arch/$(ARCH)/Makefile.

gzip
Compress target. Use maximum compression to compress target.


--- 6.7 Custom kbuild commands

When kbuild is executing with KBUILD_VERBOSE=0 then only a shorthand
of a command is normally displayed.
To enable this behaviour for custom commands kbuild requires
two variables to be set:
quiet_cmd_<command> - what shall be echoed
cmd_<command> - the command to execute

Example:
#
quiet_cmd_image = BUILD $@
cmd_image = $(obj)/tools/build $(BUILDFLAGS) \
$(obj)/vmlinux.bin > $@

$(obj)/bzImage: $(obj)/vmlinux.bin $(obj)/tools/build FORCE
$(call if_changed,image)
@echo 'Kernel: $@ is ready'

When updating the $(obj)/bzImage target the line:

BUILD arch/i386/boot/bzImage

will be displayed with "make KBUILD_VERBOSE=0".


=== 7 Kbuild Variables

The top Makefile exports the following variables:

VERSION, PATCHLEVEL, SUBLEVEL, EXTRAVERSION

These variables define the current kernel version. A few arch
Makefiles actually use these values directly; they should use
$(KERNELRELEASE) instead.

$(VERSION), $(PATCHLEVEL), and $(SUBLEVEL) define the basic
three-part version number, such as "2", "4", and "0". These three
values are always numeric.

$(EXTRAVERSION) defines an even tinier sublevel for pre-patches
or additional patches. It is usually some non-numeric string
such as "-pre4", and is often blank.

KERNELRELEASE

$(KERNELRELEASE) is a single string such as "2.4.0-pre4", suitable
for constructing installation directory names or showing in
version strings. Some arch Makefiles use it for this purpose.

ARCH

This variable defines the target architecture, such as "i386",
"arm", or "sparc". Some kbuild Makefiles test $(ARCH) to
determine which files to compile.

By default, the top Makefile sets $(ARCH) to be the same as the
host system architecture. For a cross build, a user may
override the value of $(ARCH) on the command line:

make ARCH=m68k ...


INSTALL_PATH

This variable defines a place for the arch Makefiles to install
the resident kernel image and System.map file.
Use this for architecture specific install targets.

INSTALL_MOD_PATH, MODLIB

$(INSTALL_MOD_PATH) specifies a prefix to $(MODLIB) for module
installation. This variable is not defined in the Makefile but
may be passed in by the user if desired.

$(MODLIB) specifies the directory for module installation.
The top Makefile defines $(MODLIB) to
$(INSTALL_MOD_PATH)/lib/modules/$(KERNELRELEASE). The user may
override this value on the command line if desired.

=== 8 Makefile language

The kernel Makefiles are designed to run with GNU Make. The Makefiles
use only the documented features of GNU Make, but they do use many
GNU extensions.

GNU Make supports elementary list-processing functions. The kernel
Makefiles use a novel style of list building and manipulation with few
"if" statements.

GNU Make has two assignment operators, ":=" and "=". ":=" performs
immediate evaluation of the right-hand side and stores an actual string
into the left-hand side. "=" is like a formula definition; it stores the
right-hand side in an unevaluated form and then evaluates this form each
time the left-hand side is used.

There are some cases where "=" is appropriate. Usually, though, ":="
is the right choice.

=== 9 Credits

Original version made by Michael Elizabeth Chastain, <mailto:[email protected]>
Updates by Kai Germaschewski <[email protected]>
Updates by Sam Ravnborg <[email protected]>

=== 10 TODO

- Describe how kbuild support shipped files with _shipped.
- Generating offset header files.
- Add more variables to section 7?

2003-01-07 17:29:24

by Eli Carter

[permalink] [raw]
Subject: Re: [RFC] Documentation/kbuild/makefiles.txt

Sam Ravnborg wrote:
[snip]
> --- 4.2 Composite Host Programs
>
> Host programs can be made up based on composite objects.
> The syntax used to define composite objetcs for host programs is
> similar to the syntax used for kernel objects.
> $(<executeable>-objs) list all objects used to link the final
> executable.
>
> Example:
> #scripts/lxdialog/Makefile
> host-progs := lxdialog
> hex2bin-objs := checklist.o lxdialog.o
[snip]

You mean s/hex2bin/lxdialog/ right?

Eli
--------------------. "If it ain't broke now,
Eli Carter \ it will be soon." -- crypto-gram
eli.carter(a)inet.com `-------------------------------------------------