Subject: [PATCH v8 0/2] spi: cadence-quadpsi: Add support for the Cadence QSPI controller

Add support for the Cadence QSPI controller. This controller is
present in the Intel Lightning Mountain(LGM) SoCs, Altera and TI SoCs.
This driver has been tested on the Intel LGM SoCs.

This driver does not support generic SPI and also the implementation
only supports spi-mem interface to replace the existing driver in
mtd/spi-nor/cadence-quadspi.c, the existing driver only support SPI-NOR
flash memory.

Thanks Vignesh for the review, modify, test and confirm the patch
which is based on spi-mem based cadence driver working on TI's platform.
after few changes started working on Intel's platform as well.

changes from v7:
-- remove addr_buf kept like as original
-- drop bus-num, chipselect variable
-- add soc_selection varible to differetiate the features
-- replace dev->ddev in dma function
-- add seperate function to handle the 24bit slave device address
translation for lgm soc
-- correct sentence seems incomplete in Kconfig
-- add cqspi->soc_selection check to keep the original TI platform
working code.

changes from v6:
-- Add the Signed-off-by Vignesh in commit message
-- bus_num, num_chipselect added to avoid the garbage bus number
during the probe and spi_register.
-- master mode bits updated
-- address sequence is different from TI and Intel SoC Ip handling
so modified as per Intel and differentiating by use_dac_mode variable.
-- dummy cycles also different b/w two platforms, so keeping separate check
-- checkpatch errors which are intentional left as is for better readability

changes from v5:
-- kbuild test robot warnings fixed
-- Add Reported-By: Dan Carpenter <[email protected]>

changes from v4:
-- kbuild test robot warnings fixed
-- Add Reborted-by: tag

changes from v3:
spi-cadence-quadspi.c
-- static to all functions wrt to local to the file.
-- Prefix cqspi_ and make the function static
-- cmd_ops, data_ops and dummy_ops dropped
-- addr_ops kept since it is required for address calculation.
-- devm_ used for supported functions , removed legacy API's
-- removed "indirect" name from functions
-- replaced by master->mode_bits = SPI_RX_QUAD | SPI_TX_DUAL | SPI_RX_DUAL | SPI_RX_OCTAL;
as per Vignesh susggestion
-- removed free functions since devm_ handles automatically.
-- dropped all unused Macros

YAML file update:
-- cadence,qspi.yaml file name replace by cdns,qspi-nor.yaml
-- compatible string updated as per Vignesh suggestion
-- for single entry, removed descriptions
-- removed optional parameters
Build Result:
linux$ make DT_SCHEMA_FILES=Documentation/devicetree/bindings/spi/cdns,qspi-nor.yaml dt_binding_check
CHKDT Documentation/devicetree/bindings/spi/cdns,qspi-nor.yaml
SCHEMA Documentation/devicetree/bindings/processed-schema.yaml
DTC Documentation/devicetree/bindings/spi/cdns,qspi-nor.example.dt.yaml
CHECK Documentation/devicetree/bindings/spi/cdns,qspi-nor.example.dt.yaml

Ramuthevar Vadivel Murugan (2):
dt-bindings: spi: Add schema for Cadence QSPI Controller driver
spi: cadence-quadpsi: Add support for the Cadence QSPI controller

.../devicetree/bindings/spi/cdns,qspi-nor.yaml | 147 ++
drivers/spi/Kconfig | 9 +
drivers/spi/Makefile | 1 +
drivers/spi/spi-cadence-quadspi.c | 1510 ++++++++++++++++++++
4 files changed, 1667 insertions(+)
create mode 100644 Documentation/devicetree/bindings/spi/cdns,qspi-nor.yaml
create mode 100644 drivers/spi/spi-cadence-quadspi.c

--
2.11.0


Subject: [PATCH v8 2/2] spi: cadence-quadpsi: Add support for the Cadence QSPI controller

From: Ramuthevar Vadivel Murugan <[email protected]>

Add support for the Cadence QSPI controller. This controller is
present in the Intel Lightning Mountain(LGM) SoCs, Altera and TI SoCs.
This driver has been tested on the Intel LGM SoCs.

This driver does not support generic SPI and also the implementation
only supports spi-mem interface to replace the existing driver in
mtd/spi-nor/cadence-quadspi.c, the existing driver only support SPI-NOR
flash memory.

Signed-off-by: Vignesh Raghavendra <[email protected]>
Signed-off-by: Ramuthevar Vadivel Murugan <[email protected]>
Reported-by: kbuild test robot <[email protected]>
Reported-by: Dan Carpenter <[email protected]>
---
drivers/spi/Kconfig | 9 +
drivers/spi/Makefile | 1 +
drivers/spi/spi-cadence-quadspi.c | 1510 +++++++++++++++++++++++++++++++++++++
3 files changed, 1520 insertions(+)
create mode 100644 drivers/spi/spi-cadence-quadspi.c

diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig
index 870f7797b56b..2210e4582796 100644
--- a/drivers/spi/Kconfig
+++ b/drivers/spi/Kconfig
@@ -193,6 +193,15 @@ config SPI_CADENCE
This selects the Cadence SPI controller master driver
used by Xilinx Zynq and ZynqMP.

+config SPI_CADENCE_QUADSPI
+ tristate "Cadence Quad SPI controller"
+ depends on OF && (ARM || ARM64 || COMPILE_TEST || X86)
+ depends on MTD || MTD_SPI_NOR || MTD_SPI_NAND
+ help
+ Cadence QSPI is a specialized controller for connecting an SPI
+ Flash over 1/2/4/8-bit wide bus. This enables support for the Octal
+ and Quad SPI variants of Cadence QSPI IP.
+
config SPI_CLPS711X
tristate "CLPS711X host SPI controller"
depends on ARCH_CLPS711X || COMPILE_TEST
diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile
index bb49c9e6d0a0..288f5fa903fe 100644
--- a/drivers/spi/Makefile
+++ b/drivers/spi/Makefile
@@ -29,6 +29,7 @@ obj-$(CONFIG_SPI_BCM_QSPI) += spi-iproc-qspi.o spi-brcmstb-qspi.o spi-bcm-qspi.
obj-$(CONFIG_SPI_BITBANG) += spi-bitbang.o
obj-$(CONFIG_SPI_BUTTERFLY) += spi-butterfly.o
obj-$(CONFIG_SPI_CADENCE) += spi-cadence.o
+obj-$(CONFIG_SPI_CADENCE_QUADSPI) += spi-cadence-quadspi.o
obj-$(CONFIG_SPI_CLPS711X) += spi-clps711x.o
obj-$(CONFIG_SPI_COLDFIRE_QSPI) += spi-coldfire-qspi.o
obj-$(CONFIG_SPI_DAVINCI) += spi-davinci.o
diff --git a/drivers/spi/spi-cadence-quadspi.c b/drivers/spi/spi-cadence-quadspi.c
new file mode 100644
index 000000000000..5b0609260f73
--- /dev/null
+++ b/drivers/spi/spi-cadence-quadspi.c
@@ -0,0 +1,1510 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Driver for Cadence QSPI Controller
+ *
+ * Copyright Altera Corporation (C) 2012-2014. All rights reserved.
+ * Copyright Intel Corporation (C) 2019-2020. All rights reserved.
+ * Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
+ */
+#include <linux/clk.h>
+#include <linux/completion.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/err.h>
+#include <linux/errno.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/iopoll.h>
+#include <linux/jiffies.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/of_device.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/pm_runtime.h>
+#include <linux/reset.h>
+#include <linux/sched.h>
+#include <linux/spi/spi.h>
+#include <linux/spi/spi-mem.h>
+#include <linux/timer.h>
+
+#define CQSPI_NAME "cadence-qspi"
+#define CQSPI_MAX_CHIPSELECT 16
+
+/* Quirks */
+#define CQSPI_NEEDS_WR_DELAY BIT(0)
+#define CQSPI_DISABLE_DAC_MODE BIT(1)
+
+/* Capabilities*/
+#define CQSPI_SUPPORTS_OCTAL BIT(0)
+
+struct cqspi_st;
+
+struct cqspi_flash_pdata {
+ struct cqspi_st *cqspi;
+ u32 clk_rate;
+ u32 read_delay;
+ u32 tshsl_ns;
+ u32 tsd2d_ns;
+ u32 tchsh_ns;
+ u32 tslch_ns;
+ u8 inst_width;
+ u8 addr_width;
+ u8 data_width;
+ u8 cs;
+ bool registered;
+};
+
+struct cqspi_st {
+ struct platform_device *pdev;
+
+ struct clk *clk;
+ unsigned int sclk;
+
+ void __iomem *iobase;
+ void __iomem *ahb_base;
+ resource_size_t ahb_size;
+ struct completion transfer_complete;
+
+ struct dma_chan *rx_chan;
+ struct completion rx_dma_complete;
+ dma_addr_t mmap_phys_base;
+
+ int current_cs;
+ unsigned long master_ref_clk_hz;
+ u32 fifo_depth;
+ u32 fifo_width;
+ u32 bus_num;
+ u32 num_chipselect;
+ bool rclk_en;
+ u32 trigger_address;
+ u32 wr_delay;
+ bool use_dac_mode;
+ bool soc_selection;
+ struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
+};
+
+struct cqspi_driver_platdata {
+ u32 hwcaps_mask;
+ u8 quirks;
+};
+
+/* Operation timeout value */
+#define CQSPI_TIMEOUT_MS 500
+#define CQSPI_READ_TIMEOUT_MS 10
+
+/* Instruction type */
+#define CQSPI_INST_TYPE_SINGLE 0
+#define CQSPI_INST_TYPE_DUAL 1
+#define CQSPI_INST_TYPE_QUAD 2
+#define CQSPI_INST_TYPE_OCTAL 3
+
+#define CQSPI_DUMMY_CLKS_PER_BYTE 8
+#define CQSPI_DUMMY_BYTES_MAX 4
+#define CQSPI_DUMMY_CLKS_MAX 31
+
+#define CQSPI_STIG_DATA_LEN_MAX 8
+
+/* Register map */
+#define CQSPI_REG_CONFIG 0x00
+#define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
+#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
+#define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
+#define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
+#define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
+#define CQSPI_REG_CONFIG_BAUD_LSB 19
+#define CQSPI_REG_CONFIG_IDLE_LSB 31
+#define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
+#define CQSPI_REG_CONFIG_BAUD_MASK 0xF
+
+#define CQSPI_REG_RD_INSTR 0x04
+#define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
+#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
+#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
+#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
+#define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
+#define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
+#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
+#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
+#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
+#define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
+
+#define CQSPI_REG_WR_INSTR 0x08
+#define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
+#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
+#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
+#define CQSPI_REG_WR_INSTR_TYPE_ADDR_MASK 3
+#define CQSPI_REG_WR_INSTR_TYPE_DATA_MASK 3
+#define CQSPI_REG_WR_CONFIG_WEL_DIS_FLD_POS 8
+
+#define CQSPI_REG_DELAY 0x0C
+#define CQSPI_REG_DELAY_TSLCH_LSB 0
+#define CQSPI_REG_DELAY_TCHSH_LSB 8
+#define CQSPI_REG_DELAY_TSD2D_LSB 16
+#define CQSPI_REG_DELAY_TSHSL_LSB 24
+#define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
+#define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
+#define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
+#define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
+
+#define CQSPI_REG_READCAPTURE 0x10
+#define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
+#define CQSPI_REG_READCAPTURE_DELAY_LSB 1
+#define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
+
+#define CQSPI_REG_SIZE 0x14
+#define CQSPI_REG_SIZE_ADDRESS_LSB 0
+#define CQSPI_REG_SIZE_PAGE_LSB 4
+#define CQSPI_REG_SIZE_BLOCK_LSB 16
+#define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
+#define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
+#define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
+
+#define CQSPI_REG_SRAMPARTITION 0x18
+#define CQSPI_REG_INDIRECTTRIGGER 0x1C
+
+#define CQSPI_REG_DMA 0x20
+#define CQSPI_REG_DMA_SINGLE_LSB 0
+#define CQSPI_REG_DMA_BURST_LSB 8
+#define CQSPI_REG_DMA_SINGLE_MASK 0xFF
+#define CQSPI_REG_DMA_BURST_MASK 0xFF
+
+#define CQSPI_REG_REMAP 0x24
+#define CQSPI_REG_MODE_BIT 0x28
+
+#define CQSPI_REG_SDRAMLEVEL 0x2C
+#define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
+#define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
+#define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
+#define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
+
+#define CQSPI_REG_WR_COMPLETION_CTRL 0x38
+#define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14)
+
+#define CQSPI_REG_IRQSTATUS 0x40
+#define CQSPI_REG_IRQMASK 0x44
+
+#define CQSPI_REG_INDIRECTRD 0x60
+#define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
+#define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
+#define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
+
+#define CQSPI_REG_INDIRECTRDWATERMARK 0x64
+#define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
+#define CQSPI_REG_INDIRECTRDBYTES 0x6C
+
+#define CQSPI_REG_CMDCTRL 0x90
+#define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
+#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
+#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
+#define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
+#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
+#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
+#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
+#define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
+#define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
+#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
+#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
+#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
+
+#define CQSPI_REG_INDIRECTWR 0x70
+#define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
+#define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
+#define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
+
+#define CQSPI_REG_INDIRECTWRWATERMARK 0x74
+#define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
+#define CQSPI_REG_INDIRECTWRBYTES 0x7C
+
+#define CQSPI_REG_CMDADDRESS 0x94
+#define CQSPI_REG_CMDREADDATALOWER 0xA0
+#define CQSPI_REG_CMDREADDATAUPPER 0xA4
+#define CQSPI_REG_CMDWRITEDATALOWER 0xA8
+#define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
+
+/* Interrupt status bits */
+#define CQSPI_REG_IRQ_MODE_ERR BIT(0)
+#define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
+#define CQSPI_REG_IRQ_IND_COMP BIT(2)
+#define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
+#define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
+#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
+#define CQSPI_REG_IRQ_WATERMARK BIT(6)
+#define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
+
+#define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
+ CQSPI_REG_IRQ_IND_SRAM_FULL | \
+ CQSPI_REG_IRQ_IND_COMP)
+
+#define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
+ CQSPI_REG_IRQ_WATERMARK | \
+ CQSPI_REG_IRQ_UNDERFLOW)
+
+#define CQSPI_IRQ_STATUS_MASK 0x1FFFF
+
+static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
+{
+ u32 val;
+
+ return readl_relaxed_poll_timeout(reg, val,
+ (((clr ? ~val : val) & mask) == mask),
+ 10, CQSPI_TIMEOUT_MS * 1000);
+}
+
+static bool cqspi_is_idle(struct cqspi_st *cqspi)
+{
+ u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
+
+ return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
+}
+
+static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
+{
+ u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
+
+ reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
+ return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
+}
+
+static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
+{
+ struct cqspi_st *cqspi = dev;
+ unsigned int irq_status;
+
+ /* Read interrupt status */
+ irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
+
+ /* Clear interrupt */
+ writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
+
+ irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
+
+ if (irq_status)
+ complete(&cqspi->transfer_complete);
+
+ return IRQ_HANDLED;
+}
+
+static u32 cqspi_cmd2addr(const struct spi_mem_op *op)
+{
+ const unsigned char *addr_buf = NULL;
+ unsigned int tmpbufsize;
+ unsigned int addr = 0;
+ u8 *tmpbuf;
+ int i;
+
+ tmpbufsize = op->addr.nbytes + op->dummy.nbytes;
+ tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
+ if (!tmpbuf)
+ return -ENOMEM;
+
+ if (op->addr.nbytes) {
+ for (i = 0; i < op->addr.nbytes; i++)
+ tmpbuf[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
+
+ addr_buf = tmpbuf;
+ }
+ /* Invalid address return zero. */
+ if (op->addr.nbytes > 4)
+ return 0;
+
+ for (i = 0; i < op->addr.nbytes; i++) {
+ addr = addr << 8;
+ addr |= addr_buf[i];
+ }
+
+ return addr;
+}
+
+static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
+{
+ u32 rdreg = 0;
+
+ rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
+ rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
+ rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
+
+ return rdreg;
+}
+
+static int cqspi_wait_idle(struct cqspi_st *cqspi)
+{
+ const unsigned int poll_idle_retry = 3;
+ unsigned int count = 0;
+ unsigned long timeout;
+
+ timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
+ while (1) {
+ /*
+ * Read few times in succession to ensure the controller
+ * is indeed idle, that is, the bit does not transition
+ * low again.
+ */
+ if (cqspi_is_idle(cqspi))
+ count++;
+ else
+ count = 0;
+
+ if (count >= poll_idle_retry)
+ return 0;
+
+ if (time_after(jiffies, timeout)) {
+ /* Timeout, in busy mode. */
+ dev_err(&cqspi->pdev->dev,
+ "QSPI is still busy after %dms timeout.\n",
+ CQSPI_TIMEOUT_MS);
+ return -ETIMEDOUT;
+ }
+
+ cpu_relax();
+ }
+}
+
+static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
+{
+ void __iomem *reg_base = cqspi->iobase;
+ int ret;
+
+ /* Write the CMDCTRL without start execution. */
+ writel(reg, reg_base + CQSPI_REG_CMDCTRL);
+ /* Start execute */
+ reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
+ writel(reg, reg_base + CQSPI_REG_CMDCTRL);
+
+ /* Polling for completion. */
+ ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
+ CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
+ if (ret) {
+ dev_err(&cqspi->pdev->dev,
+ "Flash command execution timed out.\n");
+ return ret;
+ }
+
+ /* Polling QSPI idle status. */
+ return cqspi_wait_idle(cqspi);
+}
+
+static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
+ const struct spi_mem_op *op)
+{
+ struct cqspi_st *cqspi = f_pdata->cqspi;
+ void __iomem *reg_base = cqspi->iobase;
+ u8 *rxbuf = op->data.buf.in;
+ u8 opcode = op->cmd.opcode;
+ size_t n_rx = op->data.nbytes;
+ unsigned int rdreg;
+ unsigned int reg;
+ size_t read_len;
+ int status;
+
+ if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
+ dev_err(&cqspi->pdev->dev,
+ "Invalid input argument, len %zu rxbuf 0x%p\n",
+ n_rx, rxbuf);
+ return -EINVAL;
+ }
+
+ reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
+
+ rdreg = cqspi_calc_rdreg(f_pdata);
+ writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
+
+ reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
+
+ /* 0 means 1 byte. */
+ reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
+ << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
+ status = cqspi_exec_flash_cmd(cqspi, reg);
+ if (status)
+ return status;
+
+ reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
+
+ /* Put the read value into rx_buf */
+ read_len = (n_rx > 4) ? 4 : n_rx;
+ memcpy(rxbuf, &reg, read_len);
+ rxbuf += read_len;
+
+ if (n_rx > 4) {
+ reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
+
+ read_len = n_rx - read_len;
+ memcpy(rxbuf, &reg, read_len);
+ }
+
+ return 0;
+}
+
+static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
+ const struct spi_mem_op *op)
+{
+ struct cqspi_st *cqspi = f_pdata->cqspi;
+ void __iomem *reg_base = cqspi->iobase;
+ const u8 opcode = op->cmd.opcode;
+ const u8 *txbuf = op->data.buf.out;
+ size_t n_tx = op->data.nbytes;
+ unsigned int reg;
+ unsigned int data;
+ size_t write_len;
+
+ if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
+ dev_err(&cqspi->pdev->dev,
+ "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
+ n_tx, txbuf);
+ return -EINVAL;
+ }
+
+ reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
+
+ if (op->addr.nbytes) {
+ reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
+ reg |= ((op->addr.nbytes - 1) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
+ << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
+
+ writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
+ }
+
+ if (n_tx) {
+ reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
+ reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
+ << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
+ data = 0;
+ write_len = (n_tx > 4) ? 4 : n_tx;
+ memcpy(&data, txbuf, write_len);
+ txbuf += write_len;
+ writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
+
+ if (n_tx > 4) {
+ data = 0;
+ write_len = n_tx - 4;
+ memcpy(&data, txbuf, write_len);
+ writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
+ }
+ }
+
+ return cqspi_exec_flash_cmd(cqspi, reg);
+}
+
+static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
+ const struct spi_mem_op *op)
+{
+ struct cqspi_st *cqspi = f_pdata->cqspi;
+ void __iomem *reg_base = cqspi->iobase;
+ size_t dummy_bytes = op->dummy.nbytes;
+ unsigned int reg, addr_value;
+ unsigned int dummy_clk = 0;
+
+ if (op->addr.nbytes && cqspi->soc_selection) {
+ addr_value = cqspi_cmd2addr(op);
+ writel(addr_value, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
+ }
+
+ reg = op->cmd.opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
+ if (!cqspi->soc_selection) {
+ reg |= cqspi_calc_rdreg(f_pdata);
+
+ /* Setup dummy clock cycles */
+ dummy_clk = op->dummy.nbytes * 8;
+ if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
+ dummy_clk = CQSPI_DUMMY_CLKS_MAX;
+
+ if (dummy_clk / 8)
+ reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
+ << CQSPI_REG_RD_INSTR_DUMMY_LSB;
+ } else {
+ reg |= (CQSPI_INST_TYPE_QUAD & CQSPI_REG_RD_INSTR_TYPE_DATA_MASK) <<
+ CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
+
+ if (dummy_bytes) {
+ if (dummy_bytes > CQSPI_DUMMY_BYTES_MAX)
+ dummy_bytes = CQSPI_DUMMY_BYTES_MAX;
+
+ reg |= BIT(CQSPI_REG_RD_INSTR_MODE_EN_LSB);
+ writel(0xFF, reg_base + CQSPI_REG_MODE_BIT);
+
+ dummy_clk = dummy_bytes * CQSPI_DUMMY_CLKS_PER_BYTE;
+ dummy_clk -= CQSPI_DUMMY_CLKS_PER_BYTE;
+
+ if (dummy_clk)
+ reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
+ << CQSPI_REG_RD_INSTR_DUMMY_LSB;
+ }
+ }
+
+ writel(reg, reg_base + CQSPI_REG_RD_INSTR);
+
+ /* Set address width */
+ reg = readl(reg_base + CQSPI_REG_SIZE);
+ reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
+ reg |= (op->addr.nbytes - 1);
+ writel(reg, reg_base + CQSPI_REG_SIZE);
+ return 0;
+}
+
+static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
+ u8 *rxbuf, loff_t from_addr,
+ const size_t n_rx)
+{
+ struct cqspi_st *cqspi = f_pdata->cqspi;
+ struct device *dev = &cqspi->pdev->dev;
+ void __iomem *reg_base = cqspi->iobase;
+ void __iomem *ahb_base = cqspi->ahb_base;
+ unsigned int remaining = n_rx;
+ unsigned int mod_bytes = n_rx % 4;
+ unsigned int bytes_to_read = 0;
+ u8 *rxbuf_end = rxbuf + n_rx;
+ int ret = 0;
+
+ writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
+ writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
+
+ /* Clear all interrupts. */
+ writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
+
+ writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
+
+ reinit_completion(&cqspi->transfer_complete);
+ writel(CQSPI_REG_INDIRECTRD_START_MASK,
+ reg_base + CQSPI_REG_INDIRECTRD);
+
+ while (remaining > 0) {
+ if (!wait_for_completion_timeout(&cqspi->transfer_complete,
+ msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
+ ret = -ETIMEDOUT;
+
+ bytes_to_read = cqspi_get_rd_sram_level(cqspi);
+
+ if (ret && bytes_to_read == 0) {
+ dev_err(dev, "Indirect read timeout, no bytes\n");
+ goto failrd;
+ }
+
+ while (bytes_to_read != 0) {
+ unsigned int word_remain = round_down(remaining, 4);
+
+ bytes_to_read *= cqspi->fifo_width;
+ bytes_to_read = bytes_to_read > remaining ?
+ remaining : bytes_to_read;
+ bytes_to_read = round_down(bytes_to_read, 4);
+ /* Read 4 byte word chunks then single bytes */
+ if (bytes_to_read) {
+ ioread32_rep(ahb_base, rxbuf,
+ (bytes_to_read / 4));
+ } else if (!word_remain && mod_bytes) {
+ unsigned int temp = ioread32(ahb_base);
+
+ bytes_to_read = mod_bytes;
+ memcpy(rxbuf, &temp, min((unsigned int)
+ (rxbuf_end - rxbuf),
+ bytes_to_read));
+ }
+ rxbuf += bytes_to_read;
+ remaining -= bytes_to_read;
+ bytes_to_read = cqspi_get_rd_sram_level(cqspi);
+ }
+
+ if (remaining > 0)
+ reinit_completion(&cqspi->transfer_complete);
+ }
+
+ /* Check indirect done status */
+ ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
+ CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
+ if (ret) {
+ dev_err(dev, "Indirect read completion error (%i)\n", ret);
+ goto failrd;
+ }
+
+ /* Disable interrupt */
+ writel(0, reg_base + CQSPI_REG_IRQMASK);
+
+ /* Clear indirect completion status */
+ writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
+
+ return 0;
+
+failrd:
+ /* Disable interrupt */
+ writel(0, reg_base + CQSPI_REG_IRQMASK);
+
+ /* Cancel the indirect read */
+ writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
+ reg_base + CQSPI_REG_INDIRECTRD);
+ return ret;
+}
+
+static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
+ const struct spi_mem_op *op)
+{
+ struct cqspi_st *cqspi = f_pdata->cqspi;
+ void __iomem *reg_base = cqspi->iobase;
+ const u8 *txbuf = &op->cmd.opcode;
+ unsigned int reg;
+
+ if (!cqspi->soc_selection) {
+ /* Set opcode. */
+ reg = op->cmd.opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
+ writel(reg, reg_base + CQSPI_REG_WR_INSTR);
+ reg = cqspi_calc_rdreg(f_pdata);
+ writel(reg, reg_base + CQSPI_REG_RD_INSTR);
+ } else {
+ reg = readl(reg_base + CQSPI_REG_CONFIG);
+ reg &= ~(CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL);
+ reg &= ~(CQSPI_REG_CONFIG_DMA_MASK);
+ writel(reg, reg_base + CQSPI_REG_CONFIG);
+
+ /* Set opcode. */
+ reg = txbuf[0] << CQSPI_REG_WR_INSTR_OPCODE_LSB;
+ reg |= BIT(CQSPI_REG_WR_CONFIG_WEL_DIS_FLD_POS);
+ /* Configure the mode for address */
+ reg |= (CQSPI_INST_TYPE_QUAD & CQSPI_REG_WR_INSTR_TYPE_ADDR_MASK) <<
+ CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
+
+ /* Configure the mode for data */
+ reg |= (CQSPI_INST_TYPE_QUAD & CQSPI_REG_WR_INSTR_TYPE_DATA_MASK) <<
+ CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
+ writel(reg, reg_base + CQSPI_REG_WR_INSTR);
+ /* Setup write address. */
+ reg = cqspi_cmd2addr(op);
+ writel(reg, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
+ }
+
+ reg = readl(reg_base + CQSPI_REG_SIZE);
+ reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
+ reg |= (op->addr.nbytes - 1);
+ writel(reg, reg_base + CQSPI_REG_SIZE);
+ return 0;
+}
+
+static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
+ loff_t to_addr, const u8 *txbuf,
+ const size_t n_tx)
+{
+ struct cqspi_st *cqspi = f_pdata->cqspi;
+ struct device *dev = &cqspi->pdev->dev;
+ void __iomem *reg_base = cqspi->iobase;
+ unsigned int remaining = n_tx;
+ unsigned int write_bytes;
+ int ret;
+
+ writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
+ writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
+
+ /* Clear all interrupts. */
+ writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
+
+ writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
+
+ reinit_completion(&cqspi->transfer_complete);
+ writel(CQSPI_REG_INDIRECTWR_START_MASK,
+ reg_base + CQSPI_REG_INDIRECTWR);
+ /*
+ * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
+ * Controller programming sequence, couple of cycles of
+ * QSPI_REF_CLK delay is required for the above bit to
+ * be internally synchronized by the QSPI module. Provide 5
+ * cycles of delay.
+ */
+ if (cqspi->wr_delay)
+ ndelay(cqspi->wr_delay);
+
+ while (remaining > 0) {
+ size_t write_words, mod_bytes;
+
+ write_bytes = remaining;
+ write_words = write_bytes / 4;
+ mod_bytes = write_bytes % 4;
+ /* Write 4 bytes at a time then single bytes. */
+ if (write_words) {
+ iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
+ txbuf += (write_words * 4);
+ }
+ if (mod_bytes) {
+ unsigned int temp = 0xFFFFFFFF;
+
+ memcpy(&temp, txbuf, mod_bytes);
+ iowrite32(temp, cqspi->ahb_base);
+ txbuf += mod_bytes;
+ }
+
+ if (!wait_for_completion_timeout(&cqspi->transfer_complete,
+ msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
+ dev_err(dev, "Indirect write timeout\n");
+ ret = -ETIMEDOUT;
+ goto failwr;
+ }
+
+ remaining -= write_bytes;
+
+ if (remaining > 0)
+ reinit_completion(&cqspi->transfer_complete);
+ }
+
+ /* Check indirect done status */
+ ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
+ CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
+ if (ret) {
+ dev_err(dev, "Indirect write completion error (%i)\n", ret);
+ goto failwr;
+ }
+
+ /* Disable interrupt. */
+ writel(0, reg_base + CQSPI_REG_IRQMASK);
+
+ /* Clear indirect completion status */
+ writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
+
+ cqspi_wait_idle(cqspi);
+
+ return 0;
+
+failwr:
+ /* Disable interrupt. */
+ writel(0, reg_base + CQSPI_REG_IRQMASK);
+
+ /* Cancel the indirect write */
+ writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
+ reg_base + CQSPI_REG_INDIRECTWR);
+ return ret;
+}
+
+static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
+{
+ struct cqspi_st *cqspi = f_pdata->cqspi;
+ void __iomem *reg_base = cqspi->iobase;
+ unsigned int chip_select = f_pdata->cs;
+ unsigned int reg;
+
+ reg = readl(reg_base + CQSPI_REG_CONFIG);
+ reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
+
+ /* Convert CS if without decoder.
+ * CS0 to 4b'1110
+ * CS1 to 4b'1101
+ * CS2 to 4b'1011
+ * CS3 to 4b'0111
+ */
+ chip_select = 0xF & ~(1 << chip_select);
+
+ reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
+ << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
+ reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
+ << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
+ writel(reg, reg_base + CQSPI_REG_CONFIG);
+}
+
+static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
+ const unsigned int ns_val)
+{
+ unsigned int ticks;
+
+ ticks = ref_clk_hz / 1000; /* kHz */
+ ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
+
+ return ticks;
+}
+
+static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
+{
+ struct cqspi_st *cqspi = f_pdata->cqspi;
+ void __iomem *iobase = cqspi->iobase;
+ const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
+ unsigned int tshsl, tchsh, tslch, tsd2d;
+ unsigned int reg;
+ unsigned int tsclk;
+
+ /* calculate the number of ref ticks for one sclk tick */
+ tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
+
+ tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
+ /* this particular value must be at least one sclk */
+ if (tshsl < tsclk)
+ tshsl = tsclk;
+
+ tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
+ tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
+ tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
+
+ reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
+ << CQSPI_REG_DELAY_TSHSL_LSB;
+ reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
+ << CQSPI_REG_DELAY_TCHSH_LSB;
+ reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
+ << CQSPI_REG_DELAY_TSLCH_LSB;
+ reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
+ << CQSPI_REG_DELAY_TSD2D_LSB;
+ writel(reg, iobase + CQSPI_REG_DELAY);
+}
+
+static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
+{
+ const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
+ void __iomem *reg_base = cqspi->iobase;
+ u32 reg, div;
+
+ /* Recalculate the baudrate divisor based on QSPI specification. */
+ div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
+
+ reg = readl(reg_base + CQSPI_REG_CONFIG);
+ reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
+ reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
+ writel(reg, reg_base + CQSPI_REG_CONFIG);
+}
+
+static void cqspi_readdata_capture(struct cqspi_st *cqspi,
+ const bool bypass,
+ const unsigned int delay)
+{
+ void __iomem *reg_base = cqspi->iobase;
+ unsigned int reg;
+
+ reg = readl(reg_base + CQSPI_REG_READCAPTURE);
+
+ if (bypass)
+ reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
+ else
+ reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
+
+ reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
+ << CQSPI_REG_READCAPTURE_DELAY_LSB);
+
+ reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
+ << CQSPI_REG_READCAPTURE_DELAY_LSB;
+
+ writel(reg, reg_base + CQSPI_REG_READCAPTURE);
+}
+
+static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
+{
+ void __iomem *reg_base = cqspi->iobase;
+ unsigned int reg;
+
+ reg = readl(reg_base + CQSPI_REG_CONFIG);
+
+ if (enable)
+ reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
+ else
+ reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
+
+ writel(reg, reg_base + CQSPI_REG_CONFIG);
+}
+
+static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
+ unsigned long sclk)
+{
+ struct cqspi_st *cqspi = f_pdata->cqspi;
+ int switch_cs = (cqspi->current_cs != f_pdata->cs);
+ int switch_ck = (cqspi->sclk != sclk);
+
+ if (switch_cs || switch_ck)
+ cqspi_controller_enable(cqspi, 0);
+
+ /* Switch chip select. */
+ if (switch_cs) {
+ cqspi->current_cs = f_pdata->cs;
+ cqspi_chipselect(f_pdata);
+ }
+
+ /* Setup baudrate divisor and delays */
+ if (switch_ck) {
+ cqspi->sclk = sclk;
+ cqspi_config_baudrate_div(cqspi);
+ cqspi_delay(f_pdata);
+ cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
+ f_pdata->read_delay);
+ }
+
+ if (switch_cs || switch_ck)
+ cqspi_controller_enable(cqspi, 1);
+}
+
+static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
+ const struct spi_mem_op *op)
+{
+ f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
+ f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
+ f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
+
+ if (op->data.dir == SPI_MEM_DATA_IN) {
+ switch (op->data.buswidth) {
+ case 1:
+ f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
+ break;
+ case 2:
+ f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
+ break;
+ case 4:
+ f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
+ break;
+ case 8:
+ f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
+ break;
+ default:
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
+ const struct spi_mem_op *op)
+{
+ struct cqspi_st *cqspi = f_pdata->cqspi;
+ loff_t to = op->addr.val;
+ size_t len = op->data.nbytes;
+ const u_char *buf = op->data.buf.out;
+ int ret;
+
+ ret = cqspi_set_protocol(f_pdata, op);
+ if (ret)
+ return ret;
+
+ ret = cqspi_write_setup(f_pdata, op);
+ if (ret)
+ return ret;
+
+ if (cqspi->use_dac_mode && ((to + len) <= cqspi->ahb_size)) {
+ memcpy_toio(cqspi->ahb_base + to, buf, len);
+ return cqspi_wait_idle(cqspi);
+ }
+
+ return cqspi_indirect_write_execute(f_pdata, to, buf, len);
+}
+
+static void cqspi_rx_dma_callback(void *param)
+{
+ struct cqspi_st *cqspi = param;
+
+ complete(&cqspi->rx_dma_complete);
+}
+
+static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
+ u_char *buf, loff_t from, size_t len)
+{
+ struct cqspi_st *cqspi = f_pdata->cqspi;
+ struct device *ddev = cqspi->rx_chan->device->dev;
+ enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
+ dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
+ int ret = 0;
+ struct dma_async_tx_descriptor *tx;
+ dma_cookie_t cookie;
+ dma_addr_t dma_dst;
+
+ if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
+ memcpy_fromio(buf, cqspi->ahb_base + from, len);
+ return 0;
+ }
+
+ dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
+ if (dma_mapping_error(ddev, dma_dst)) {
+ dev_err(ddev, "dma mapping failed\n");
+ return -ENOMEM;
+ }
+ tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
+ len, flags);
+ if (!tx) {
+ dev_err(ddev, "device_prep_dma_memcpy error\n");
+ ret = -EIO;
+ goto err_unmap;
+ }
+
+ tx->callback = cqspi_rx_dma_callback;
+ tx->callback_param = cqspi;
+ cookie = tx->tx_submit(tx);
+ reinit_completion(&cqspi->rx_dma_complete);
+
+ ret = dma_submit_error(cookie);
+ if (ret) {
+ dev_err(ddev, "dma_submit_error %d\n", cookie);
+ ret = -EIO;
+ goto err_unmap;
+ }
+
+ dma_async_issue_pending(cqspi->rx_chan);
+ if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
+ msecs_to_jiffies(len))) {
+ dmaengine_terminate_sync(cqspi->rx_chan);
+ dev_err(ddev, "DMA wait_for_completion_timeout\n");
+ ret = -ETIMEDOUT;
+ goto err_unmap;
+ }
+
+err_unmap:
+ dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
+
+ return ret;
+}
+
+static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
+ const struct spi_mem_op *op)
+{
+ struct cqspi_st *cqspi = f_pdata->cqspi;
+ loff_t from = op->addr.val;
+ size_t len = op->data.nbytes;
+ u_char *buf = op->data.buf.in;
+ int ret;
+
+ ret = cqspi_set_protocol(f_pdata, op);
+ if (ret)
+ return ret;
+
+ ret = cqspi_read_setup(f_pdata, op);
+ if (ret)
+ return ret;
+
+ if (cqspi->use_dac_mode && ((from + len) <= cqspi->ahb_size))
+ return cqspi_direct_read_execute(f_pdata, buf, from, len);
+
+ return cqspi_indirect_read_execute(f_pdata, buf, from, len);
+}
+
+static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
+{
+ struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
+ struct cqspi_flash_pdata *f_pdata;
+
+ f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
+ cqspi_configure(f_pdata, mem->spi->max_speed_hz);
+
+ if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
+ if (!op->addr.nbytes)
+ return cqspi_command_read(f_pdata, op);
+
+ return cqspi_read(f_pdata, op);
+ }
+
+ if (!op->addr.nbytes || !op->data.buf.out)
+ return cqspi_command_write(f_pdata, op);
+
+ return cqspi_write(f_pdata, op);
+}
+
+static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
+{
+ int ret;
+
+ ret = cqspi_mem_process(mem, op);
+ if (ret)
+ dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
+
+ return ret;
+}
+
+static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
+ struct cqspi_flash_pdata *f_pdata,
+ struct device_node *np)
+{
+ if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
+ dev_err(&pdev->dev, "couldn't determine read-delay\n");
+ return -ENXIO;
+ }
+
+ if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
+ dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
+ return -ENXIO;
+ }
+
+ if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
+ dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
+ return -ENXIO;
+ }
+
+ if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
+ dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
+ return -ENXIO;
+ }
+
+ if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
+ dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
+ return -ENXIO;
+ }
+
+ if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
+ dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
+ return -ENXIO;
+ }
+
+ return 0;
+}
+
+static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
+{
+ struct device *dev = &cqspi->pdev->dev;
+ struct device_node *np = dev->of_node;
+
+ if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
+ dev_err(dev, "couldn't determine fifo-depth\n");
+ return -ENXIO;
+ }
+
+ if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
+ dev_err(dev, "couldn't determine fifo-width\n");
+ return -ENXIO;
+ }
+
+ if (of_property_read_u32(np, "cdns,trigger-address",
+ &cqspi->trigger_address)) {
+ dev_err(dev, "couldn't determine trigger-address\n");
+ return -ENXIO;
+ }
+
+ if (!cqspi->soc_selection)
+ cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
+
+ return 0;
+}
+
+static void cqspi_controller_init(struct cqspi_st *cqspi)
+{
+ cqspi_controller_enable(cqspi, 0);
+
+ /* Configure the remap address register, no remap */
+ writel(0, cqspi->iobase + CQSPI_REG_REMAP);
+
+ /* Disable all interrupts. */
+ writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
+
+ /* Configure the SRAM split to 1:1 . */
+ writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
+
+ /* Load indirect trigger address. */
+ writel(cqspi->trigger_address,
+ cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
+
+ /* Program read watermark -- 1/2 of the FIFO. */
+ writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
+ cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
+ /* Program write watermark -- 1/8 of the FIFO. */
+ writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
+ cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
+
+ if (!cqspi->use_dac_mode) {
+ u32 reg;
+
+ reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
+ reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
+ writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
+
+ reg = readl(cqspi->iobase + CQSPI_REG_WR_COMPLETION_CTRL);
+ reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
+ writel(reg, cqspi->iobase + CQSPI_REG_WR_COMPLETION_CTRL);
+ }
+
+ cqspi_controller_enable(cqspi, 1);
+}
+
+static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
+{
+ dma_cap_mask_t mask;
+
+ dma_cap_zero(mask);
+ dma_cap_set(DMA_MEMCPY, mask);
+
+ cqspi->rx_chan = dma_request_chan_by_mask(&mask);
+ if (IS_ERR(cqspi->rx_chan)) {
+ int ret = PTR_ERR(cqspi->rx_chan);
+
+ if (ret != -EPROBE_DEFER)
+ dev_err(&cqspi->pdev->dev, "No Rx DMA available\n");
+ cqspi->rx_chan = NULL;
+
+ return ret;
+ }
+ init_completion(&cqspi->rx_dma_complete);
+
+ return 0;
+}
+
+static const struct spi_controller_mem_ops cqspi_mem_ops = {
+ .exec_op = cqspi_exec_mem_op,
+};
+
+static int cqspi_setup_flash(struct cqspi_st *cqspi)
+{
+ struct platform_device *pdev = cqspi->pdev;
+ struct device *dev = &pdev->dev;
+ struct device_node *np = dev->of_node;
+ struct cqspi_flash_pdata *f_pdata;
+ unsigned int cs;
+ int ret;
+
+ /* Get flash device data */
+ for_each_available_child_of_node(dev->of_node, np) {
+ ret = of_property_read_u32(np, "reg", &cs);
+ if (ret) {
+ dev_err(dev, "Couldn't determine chip select.\n");
+ return -EINVAL;
+ }
+
+ if (cs >= CQSPI_MAX_CHIPSELECT) {
+ dev_err(dev, "Chip select %d out of range.\n", cs);
+ return -EINVAL;
+ }
+
+ f_pdata = &cqspi->f_pdata[cs];
+ f_pdata->cqspi = cqspi;
+ f_pdata->cs = cs;
+
+ return cqspi_of_get_flash_pdata(pdev, f_pdata, np);
+ }
+
+ return 0;
+}
+
+static int cqspi_probe(struct platform_device *pdev)
+{
+ const struct cqspi_driver_platdata *ddata;
+ struct reset_control *rstc, *rstc_ocp;
+ struct device *dev = &pdev->dev;
+ struct spi_master *master;
+ struct resource *res_ahb;
+ struct cqspi_st *cqspi;
+ struct resource *res;
+ int ret;
+ int irq;
+
+ master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
+ if (!master) {
+ dev_err(&pdev->dev, "spi_alloc_master failed\n");
+ return -ENOMEM;
+ }
+ master->mode_bits = SPI_RX_QUAD | SPI_TX_DUAL | SPI_RX_DUAL;
+ master->mem_ops = &cqspi_mem_ops;
+ master->dev.of_node = pdev->dev.of_node;
+
+ cqspi = spi_master_get_devdata(master);
+
+ cqspi->pdev = pdev;
+
+ ddata = of_device_get_match_data(dev);
+ if (ddata->quirks & CQSPI_DISABLE_DAC_MODE)
+ cqspi->soc_selection = true;
+
+ /* Obtain configuration from OF. */
+ ret = cqspi_of_get_pdata(cqspi);
+ if (ret) {
+ dev_err(dev, "Cannot get mandatory OF data.\n");
+ return -ENODEV;
+ }
+
+ /* Obtain QSPI clock. */
+ cqspi->clk = devm_clk_get(dev, NULL);
+ if (IS_ERR(cqspi->clk)) {
+ dev_err(dev, "Cannot claim QSPI clock.\n");
+ return PTR_ERR(cqspi->clk);
+ }
+
+ /* Obtain and remap controller address. */
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ cqspi->iobase = devm_ioremap_resource(dev, res);
+ if (IS_ERR(cqspi->iobase)) {
+ dev_err(dev, "Cannot remap controller address.\n");
+ return PTR_ERR(cqspi->iobase);
+ }
+
+ /* Obtain and remap AHB address. */
+ res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
+ cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
+ if (IS_ERR(cqspi->ahb_base)) {
+ dev_err(dev, "Cannot remap AHB address.\n");
+ return PTR_ERR(cqspi->ahb_base);
+ }
+ cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
+ cqspi->ahb_size = resource_size(res_ahb);
+
+ init_completion(&cqspi->transfer_complete);
+
+ /* Obtain IRQ line. */
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0)
+ return -ENXIO;
+
+ pm_runtime_enable(dev);
+ ret = pm_runtime_get_sync(dev);
+ if (ret < 0) {
+ pm_runtime_put_noidle(dev);
+ return ret;
+ }
+
+ ret = clk_prepare_enable(cqspi->clk);
+ if (ret) {
+ dev_err(dev, "Cannot enable QSPI clock.\n");
+ goto probe_clk_failed;
+ }
+
+ /* Obtain QSPI reset control */
+ rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
+ if (IS_ERR(rstc)) {
+ dev_err(dev, "Cannot get QSPI reset.\n");
+ goto probe_reset_failed;
+ }
+
+ rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
+ if (IS_ERR(rstc_ocp)) {
+ dev_err(dev, "Cannot get QSPI OCP reset.\n");
+ goto probe_reset_failed;
+ }
+
+ reset_control_assert(rstc);
+ reset_control_deassert(rstc);
+
+ reset_control_assert(rstc_ocp);
+ reset_control_deassert(rstc_ocp);
+
+ cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
+ ddata = of_device_get_match_data(dev);
+ if (ddata) {
+ if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
+ cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC,
+ cqspi->master_ref_clk_hz);
+ if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
+ master->mode_bits |= SPI_RX_OCTAL;
+ if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
+ cqspi->use_dac_mode = true;
+ }
+
+ ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
+ pdev->name, cqspi);
+ if (ret) {
+ dev_err(dev, "Cannot request IRQ.\n");
+ goto probe_reset_failed;
+ }
+
+ cqspi_wait_idle(cqspi);
+ cqspi_controller_init(cqspi);
+ cqspi->current_cs = -1;
+ cqspi->sclk = 0;
+
+ ret = cqspi_setup_flash(cqspi);
+ if (ret) {
+ dev_err(dev, "failed to setup flash parameters %d\n", ret);
+ goto probe_setup_failed;
+ }
+
+ if (cqspi->use_dac_mode) {
+ ret = cqspi_request_mmap_dma(cqspi);
+ if (ret == -EPROBE_DEFER)
+ goto probe_setup_failed;
+ }
+
+ ret = devm_spi_register_master(dev, master);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
+ goto probe_setup_failed;
+ }
+
+ return 0;
+probe_setup_failed:
+ cqspi_controller_enable(cqspi, 0);
+probe_reset_failed:
+ clk_disable_unprepare(cqspi->clk);
+probe_clk_failed:
+ pm_runtime_put_sync(dev);
+ pm_runtime_disable(dev);
+ return ret;
+}
+
+static int cqspi_remove(struct platform_device *pdev)
+{
+ struct cqspi_st *cqspi = platform_get_drvdata(pdev);
+
+ cqspi_controller_enable(cqspi, 0);
+
+ if (cqspi->rx_chan)
+ dma_release_channel(cqspi->rx_chan);
+
+ clk_disable_unprepare(cqspi->clk);
+
+ pm_runtime_put_sync(&pdev->dev);
+ pm_runtime_disable(&pdev->dev);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int cqspi_suspend(struct device *dev)
+{
+ struct cqspi_st *cqspi = dev_get_drvdata(dev);
+
+ cqspi_controller_enable(cqspi, 0);
+ return 0;
+}
+
+static int cqspi_resume(struct device *dev)
+{
+ struct cqspi_st *cqspi = dev_get_drvdata(dev);
+
+ cqspi_controller_enable(cqspi, 1);
+ return 0;
+}
+
+static const struct dev_pm_ops cqspi__dev_pm_ops = {
+ .suspend = cqspi_suspend,
+ .resume = cqspi_resume,
+};
+
+#define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
+#else
+#define CQSPI_DEV_PM_OPS NULL
+#endif
+
+static const struct cqspi_driver_platdata cdns_qspi = {
+ .quirks = CQSPI_DISABLE_DAC_MODE,
+};
+
+static const struct cqspi_driver_platdata k2g_qspi = {
+ .quirks = CQSPI_NEEDS_WR_DELAY,
+};
+
+static const struct cqspi_driver_platdata am654_ospi = {
+ .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
+ .quirks = CQSPI_NEEDS_WR_DELAY,
+};
+
+static const struct cqspi_driver_platdata intel_lgm_qspi = {
+ .quirks = CQSPI_DISABLE_DAC_MODE,
+};
+
+static const struct of_device_id cqspi_dt_ids[] = {
+ {
+ .compatible = "cdns,qspi-nor",
+ .data = &cdns_qspi,
+ },
+ {
+ .compatible = "ti,k2g-qspi",
+ .data = &k2g_qspi,
+ },
+ {
+ .compatible = "ti,am654-ospi",
+ .data = &am654_ospi,
+ },
+ {
+ .compatible = "intel,lgm-qspi",
+ .data = &intel_lgm_qspi,
+ },
+ { /* end of table */ }
+};
+
+MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
+
+static struct platform_driver cqspi_platform_driver = {
+ .probe = cqspi_probe,
+ .remove = cqspi_remove,
+ .driver = {
+ .name = CQSPI_NAME,
+ .pm = CQSPI_DEV_PM_OPS,
+ .of_match_table = cqspi_dt_ids,
+ },
+};
+
+module_platform_driver(cqspi_platform_driver);
+
+MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
+MODULE_LICENSE("GPL v2");
+MODULE_ALIAS("platform:" CQSPI_NAME);
+MODULE_AUTHOR("Ley Foon Tan <[email protected]>");
+MODULE_AUTHOR("Graham Moore <[email protected]>");
+MODULE_AUTHOR("Vadivel Murugan R <[email protected]>");
+MODULE_AUTHOR("Vignesh Raghavendra <[email protected]>");
--
2.11.0

2020-01-29 08:33:43

by Simon Goldschmidt

[permalink] [raw]
Subject: Re: [PATCH v8 2/2] spi: cadence-quadpsi: Add support for the Cadence QSPI controller

On Wed, Jan 29, 2020 at 8:25 AM Ramuthevar,Vadivel MuruganX
<[email protected]> wrote:
>
> From: Ramuthevar Vadivel Murugan <[email protected]>
>
> Add support for the Cadence QSPI controller. This controller is
> present in the Intel Lightning Mountain(LGM) SoCs, Altera and TI SoCs.
> This driver has been tested on the Intel LGM SoCs.

So it has been tested on LGM and Vignesh gave his ok for TI. Is there anyone
in the loop by now checking that this is valid for the 3rd platform using this
(Altera)?

Or am I wrong in thinking that this driver is meant to replace
drivers/mtd/spi-nor/cadence-quadspi.c used on that platform?

Regards,
Simon

>
> This driver does not support generic SPI and also the implementation
> only supports spi-mem interface to replace the existing driver in
> mtd/spi-nor/cadence-quadspi.c, the existing driver only support SPI-NOR
> flash memory.
>
> Signed-off-by: Vignesh Raghavendra <[email protected]>
> Signed-off-by: Ramuthevar Vadivel Murugan <[email protected]>
> Reported-by: kbuild test robot <[email protected]>
> Reported-by: Dan Carpenter <[email protected]>
> ---
> drivers/spi/Kconfig | 9 +
> drivers/spi/Makefile | 1 +
> drivers/spi/spi-cadence-quadspi.c | 1510 +++++++++++++++++++++++++++++++++++++
> 3 files changed, 1520 insertions(+)
> create mode 100644 drivers/spi/spi-cadence-quadspi.c
>
> diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig
> index 870f7797b56b..2210e4582796 100644
> --- a/drivers/spi/Kconfig
> +++ b/drivers/spi/Kconfig
> @@ -193,6 +193,15 @@ config SPI_CADENCE
> This selects the Cadence SPI controller master driver
> used by Xilinx Zynq and ZynqMP.
>
> +config SPI_CADENCE_QUADSPI
> + tristate "Cadence Quad SPI controller"
> + depends on OF && (ARM || ARM64 || COMPILE_TEST || X86)
> + depends on MTD || MTD_SPI_NOR || MTD_SPI_NAND
> + help
> + Cadence QSPI is a specialized controller for connecting an SPI
> + Flash over 1/2/4/8-bit wide bus. This enables support for the Octal
> + and Quad SPI variants of Cadence QSPI IP.
> +
> config SPI_CLPS711X
> tristate "CLPS711X host SPI controller"
> depends on ARCH_CLPS711X || COMPILE_TEST
> diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile
> index bb49c9e6d0a0..288f5fa903fe 100644
> --- a/drivers/spi/Makefile
> +++ b/drivers/spi/Makefile
> @@ -29,6 +29,7 @@ obj-$(CONFIG_SPI_BCM_QSPI) += spi-iproc-qspi.o spi-brcmstb-qspi.o spi-bcm-qspi.
> obj-$(CONFIG_SPI_BITBANG) += spi-bitbang.o
> obj-$(CONFIG_SPI_BUTTERFLY) += spi-butterfly.o
> obj-$(CONFIG_SPI_CADENCE) += spi-cadence.o
> +obj-$(CONFIG_SPI_CADENCE_QUADSPI) += spi-cadence-quadspi.o
> obj-$(CONFIG_SPI_CLPS711X) += spi-clps711x.o
> obj-$(CONFIG_SPI_COLDFIRE_QSPI) += spi-coldfire-qspi.o
> obj-$(CONFIG_SPI_DAVINCI) += spi-davinci.o
> diff --git a/drivers/spi/spi-cadence-quadspi.c b/drivers/spi/spi-cadence-quadspi.c
> new file mode 100644
> index 000000000000..5b0609260f73
> --- /dev/null
> +++ b/drivers/spi/spi-cadence-quadspi.c
> @@ -0,0 +1,1510 @@
> +// SPDX-License-Identifier: GPL-2.0-only
> +/*
> + * Driver for Cadence QSPI Controller
> + *
> + * Copyright Altera Corporation (C) 2012-2014. All rights reserved.
> + * Copyright Intel Corporation (C) 2019-2020. All rights reserved.
> + * Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
> + */
> +#include <linux/clk.h>
> +#include <linux/completion.h>
> +#include <linux/delay.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/dmaengine.h>
> +#include <linux/err.h>
> +#include <linux/errno.h>
> +#include <linux/interrupt.h>
> +#include <linux/io.h>
> +#include <linux/iopoll.h>
> +#include <linux/jiffies.h>
> +#include <linux/kernel.h>
> +#include <linux/module.h>
> +#include <linux/of_device.h>
> +#include <linux/of.h>
> +#include <linux/platform_device.h>
> +#include <linux/pm_runtime.h>
> +#include <linux/reset.h>
> +#include <linux/sched.h>
> +#include <linux/spi/spi.h>
> +#include <linux/spi/spi-mem.h>
> +#include <linux/timer.h>
> +
> +#define CQSPI_NAME "cadence-qspi"
> +#define CQSPI_MAX_CHIPSELECT 16
> +
> +/* Quirks */
> +#define CQSPI_NEEDS_WR_DELAY BIT(0)
> +#define CQSPI_DISABLE_DAC_MODE BIT(1)
> +
> +/* Capabilities*/
> +#define CQSPI_SUPPORTS_OCTAL BIT(0)
> +
> +struct cqspi_st;
> +
> +struct cqspi_flash_pdata {
> + struct cqspi_st *cqspi;
> + u32 clk_rate;
> + u32 read_delay;
> + u32 tshsl_ns;
> + u32 tsd2d_ns;
> + u32 tchsh_ns;
> + u32 tslch_ns;
> + u8 inst_width;
> + u8 addr_width;
> + u8 data_width;
> + u8 cs;
> + bool registered;
> +};
> +
> +struct cqspi_st {
> + struct platform_device *pdev;
> +
> + struct clk *clk;
> + unsigned int sclk;
> +
> + void __iomem *iobase;
> + void __iomem *ahb_base;
> + resource_size_t ahb_size;
> + struct completion transfer_complete;
> +
> + struct dma_chan *rx_chan;
> + struct completion rx_dma_complete;
> + dma_addr_t mmap_phys_base;
> +
> + int current_cs;
> + unsigned long master_ref_clk_hz;
> + u32 fifo_depth;
> + u32 fifo_width;
> + u32 bus_num;
> + u32 num_chipselect;
> + bool rclk_en;
> + u32 trigger_address;
> + u32 wr_delay;
> + bool use_dac_mode;
> + bool soc_selection;
> + struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
> +};
> +
> +struct cqspi_driver_platdata {
> + u32 hwcaps_mask;
> + u8 quirks;
> +};
> +
> +/* Operation timeout value */
> +#define CQSPI_TIMEOUT_MS 500
> +#define CQSPI_READ_TIMEOUT_MS 10
> +
> +/* Instruction type */
> +#define CQSPI_INST_TYPE_SINGLE 0
> +#define CQSPI_INST_TYPE_DUAL 1
> +#define CQSPI_INST_TYPE_QUAD 2
> +#define CQSPI_INST_TYPE_OCTAL 3
> +
> +#define CQSPI_DUMMY_CLKS_PER_BYTE 8
> +#define CQSPI_DUMMY_BYTES_MAX 4
> +#define CQSPI_DUMMY_CLKS_MAX 31
> +
> +#define CQSPI_STIG_DATA_LEN_MAX 8
> +
> +/* Register map */
> +#define CQSPI_REG_CONFIG 0x00
> +#define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
> +#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
> +#define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
> +#define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
> +#define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
> +#define CQSPI_REG_CONFIG_BAUD_LSB 19
> +#define CQSPI_REG_CONFIG_IDLE_LSB 31
> +#define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
> +#define CQSPI_REG_CONFIG_BAUD_MASK 0xF
> +
> +#define CQSPI_REG_RD_INSTR 0x04
> +#define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
> +#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
> +#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
> +#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
> +#define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
> +#define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
> +#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
> +#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
> +#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
> +#define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
> +
> +#define CQSPI_REG_WR_INSTR 0x08
> +#define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
> +#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
> +#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
> +#define CQSPI_REG_WR_INSTR_TYPE_ADDR_MASK 3
> +#define CQSPI_REG_WR_INSTR_TYPE_DATA_MASK 3
> +#define CQSPI_REG_WR_CONFIG_WEL_DIS_FLD_POS 8
> +
> +#define CQSPI_REG_DELAY 0x0C
> +#define CQSPI_REG_DELAY_TSLCH_LSB 0
> +#define CQSPI_REG_DELAY_TCHSH_LSB 8
> +#define CQSPI_REG_DELAY_TSD2D_LSB 16
> +#define CQSPI_REG_DELAY_TSHSL_LSB 24
> +#define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
> +#define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
> +#define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
> +#define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
> +
> +#define CQSPI_REG_READCAPTURE 0x10
> +#define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
> +#define CQSPI_REG_READCAPTURE_DELAY_LSB 1
> +#define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
> +
> +#define CQSPI_REG_SIZE 0x14
> +#define CQSPI_REG_SIZE_ADDRESS_LSB 0
> +#define CQSPI_REG_SIZE_PAGE_LSB 4
> +#define CQSPI_REG_SIZE_BLOCK_LSB 16
> +#define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
> +#define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
> +#define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
> +
> +#define CQSPI_REG_SRAMPARTITION 0x18
> +#define CQSPI_REG_INDIRECTTRIGGER 0x1C
> +
> +#define CQSPI_REG_DMA 0x20
> +#define CQSPI_REG_DMA_SINGLE_LSB 0
> +#define CQSPI_REG_DMA_BURST_LSB 8
> +#define CQSPI_REG_DMA_SINGLE_MASK 0xFF
> +#define CQSPI_REG_DMA_BURST_MASK 0xFF
> +
> +#define CQSPI_REG_REMAP 0x24
> +#define CQSPI_REG_MODE_BIT 0x28
> +
> +#define CQSPI_REG_SDRAMLEVEL 0x2C
> +#define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
> +#define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
> +#define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
> +#define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
> +
> +#define CQSPI_REG_WR_COMPLETION_CTRL 0x38
> +#define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14)
> +
> +#define CQSPI_REG_IRQSTATUS 0x40
> +#define CQSPI_REG_IRQMASK 0x44
> +
> +#define CQSPI_REG_INDIRECTRD 0x60
> +#define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
> +#define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
> +#define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
> +
> +#define CQSPI_REG_INDIRECTRDWATERMARK 0x64
> +#define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
> +#define CQSPI_REG_INDIRECTRDBYTES 0x6C
> +
> +#define CQSPI_REG_CMDCTRL 0x90
> +#define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
> +#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
> +#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
> +#define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
> +#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
> +#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
> +#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
> +#define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
> +#define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
> +#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
> +#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
> +#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
> +
> +#define CQSPI_REG_INDIRECTWR 0x70
> +#define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
> +#define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
> +#define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
> +
> +#define CQSPI_REG_INDIRECTWRWATERMARK 0x74
> +#define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
> +#define CQSPI_REG_INDIRECTWRBYTES 0x7C
> +
> +#define CQSPI_REG_CMDADDRESS 0x94
> +#define CQSPI_REG_CMDREADDATALOWER 0xA0
> +#define CQSPI_REG_CMDREADDATAUPPER 0xA4
> +#define CQSPI_REG_CMDWRITEDATALOWER 0xA8
> +#define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
> +
> +/* Interrupt status bits */
> +#define CQSPI_REG_IRQ_MODE_ERR BIT(0)
> +#define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
> +#define CQSPI_REG_IRQ_IND_COMP BIT(2)
> +#define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
> +#define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
> +#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
> +#define CQSPI_REG_IRQ_WATERMARK BIT(6)
> +#define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
> +
> +#define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
> + CQSPI_REG_IRQ_IND_SRAM_FULL | \
> + CQSPI_REG_IRQ_IND_COMP)
> +
> +#define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
> + CQSPI_REG_IRQ_WATERMARK | \
> + CQSPI_REG_IRQ_UNDERFLOW)
> +
> +#define CQSPI_IRQ_STATUS_MASK 0x1FFFF
> +
> +static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
> +{
> + u32 val;
> +
> + return readl_relaxed_poll_timeout(reg, val,
> + (((clr ? ~val : val) & mask) == mask),
> + 10, CQSPI_TIMEOUT_MS * 1000);
> +}
> +
> +static bool cqspi_is_idle(struct cqspi_st *cqspi)
> +{
> + u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
> +
> + return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
> +}
> +
> +static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
> +{
> + u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
> +
> + reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
> + return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
> +}
> +
> +static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
> +{
> + struct cqspi_st *cqspi = dev;
> + unsigned int irq_status;
> +
> + /* Read interrupt status */
> + irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
> +
> + /* Clear interrupt */
> + writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
> +
> + irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
> +
> + if (irq_status)
> + complete(&cqspi->transfer_complete);
> +
> + return IRQ_HANDLED;
> +}
> +
> +static u32 cqspi_cmd2addr(const struct spi_mem_op *op)
> +{
> + const unsigned char *addr_buf = NULL;
> + unsigned int tmpbufsize;
> + unsigned int addr = 0;
> + u8 *tmpbuf;
> + int i;
> +
> + tmpbufsize = op->addr.nbytes + op->dummy.nbytes;
> + tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
> + if (!tmpbuf)
> + return -ENOMEM;
> +
> + if (op->addr.nbytes) {
> + for (i = 0; i < op->addr.nbytes; i++)
> + tmpbuf[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
> +
> + addr_buf = tmpbuf;
> + }
> + /* Invalid address return zero. */
> + if (op->addr.nbytes > 4)
> + return 0;
> +
> + for (i = 0; i < op->addr.nbytes; i++) {
> + addr = addr << 8;
> + addr |= addr_buf[i];
> + }
> +
> + return addr;
> +}
> +
> +static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
> +{
> + u32 rdreg = 0;
> +
> + rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
> + rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
> + rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
> +
> + return rdreg;
> +}
> +
> +static int cqspi_wait_idle(struct cqspi_st *cqspi)
> +{
> + const unsigned int poll_idle_retry = 3;
> + unsigned int count = 0;
> + unsigned long timeout;
> +
> + timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
> + while (1) {
> + /*
> + * Read few times in succession to ensure the controller
> + * is indeed idle, that is, the bit does not transition
> + * low again.
> + */
> + if (cqspi_is_idle(cqspi))
> + count++;
> + else
> + count = 0;
> +
> + if (count >= poll_idle_retry)
> + return 0;
> +
> + if (time_after(jiffies, timeout)) {
> + /* Timeout, in busy mode. */
> + dev_err(&cqspi->pdev->dev,
> + "QSPI is still busy after %dms timeout.\n",
> + CQSPI_TIMEOUT_MS);
> + return -ETIMEDOUT;
> + }
> +
> + cpu_relax();
> + }
> +}
> +
> +static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
> +{
> + void __iomem *reg_base = cqspi->iobase;
> + int ret;
> +
> + /* Write the CMDCTRL without start execution. */
> + writel(reg, reg_base + CQSPI_REG_CMDCTRL);
> + /* Start execute */
> + reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
> + writel(reg, reg_base + CQSPI_REG_CMDCTRL);
> +
> + /* Polling for completion. */
> + ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
> + CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
> + if (ret) {
> + dev_err(&cqspi->pdev->dev,
> + "Flash command execution timed out.\n");
> + return ret;
> + }
> +
> + /* Polling QSPI idle status. */
> + return cqspi_wait_idle(cqspi);
> +}
> +
> +static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
> + const struct spi_mem_op *op)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + void __iomem *reg_base = cqspi->iobase;
> + u8 *rxbuf = op->data.buf.in;
> + u8 opcode = op->cmd.opcode;
> + size_t n_rx = op->data.nbytes;
> + unsigned int rdreg;
> + unsigned int reg;
> + size_t read_len;
> + int status;
> +
> + if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
> + dev_err(&cqspi->pdev->dev,
> + "Invalid input argument, len %zu rxbuf 0x%p\n",
> + n_rx, rxbuf);
> + return -EINVAL;
> + }
> +
> + reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
> +
> + rdreg = cqspi_calc_rdreg(f_pdata);
> + writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
> +
> + reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
> +
> + /* 0 means 1 byte. */
> + reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
> + << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
> + status = cqspi_exec_flash_cmd(cqspi, reg);
> + if (status)
> + return status;
> +
> + reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
> +
> + /* Put the read value into rx_buf */
> + read_len = (n_rx > 4) ? 4 : n_rx;
> + memcpy(rxbuf, &reg, read_len);
> + rxbuf += read_len;
> +
> + if (n_rx > 4) {
> + reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
> +
> + read_len = n_rx - read_len;
> + memcpy(rxbuf, &reg, read_len);
> + }
> +
> + return 0;
> +}
> +
> +static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
> + const struct spi_mem_op *op)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + void __iomem *reg_base = cqspi->iobase;
> + const u8 opcode = op->cmd.opcode;
> + const u8 *txbuf = op->data.buf.out;
> + size_t n_tx = op->data.nbytes;
> + unsigned int reg;
> + unsigned int data;
> + size_t write_len;
> +
> + if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
> + dev_err(&cqspi->pdev->dev,
> + "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
> + n_tx, txbuf);
> + return -EINVAL;
> + }
> +
> + reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
> +
> + if (op->addr.nbytes) {
> + reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
> + reg |= ((op->addr.nbytes - 1) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
> + << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
> +
> + writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
> + }
> +
> + if (n_tx) {
> + reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
> + reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
> + << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
> + data = 0;
> + write_len = (n_tx > 4) ? 4 : n_tx;
> + memcpy(&data, txbuf, write_len);
> + txbuf += write_len;
> + writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
> +
> + if (n_tx > 4) {
> + data = 0;
> + write_len = n_tx - 4;
> + memcpy(&data, txbuf, write_len);
> + writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
> + }
> + }
> +
> + return cqspi_exec_flash_cmd(cqspi, reg);
> +}
> +
> +static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
> + const struct spi_mem_op *op)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + void __iomem *reg_base = cqspi->iobase;
> + size_t dummy_bytes = op->dummy.nbytes;
> + unsigned int reg, addr_value;
> + unsigned int dummy_clk = 0;
> +
> + if (op->addr.nbytes && cqspi->soc_selection) {
> + addr_value = cqspi_cmd2addr(op);
> + writel(addr_value, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
> + }
> +
> + reg = op->cmd.opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
> + if (!cqspi->soc_selection) {
> + reg |= cqspi_calc_rdreg(f_pdata);
> +
> + /* Setup dummy clock cycles */
> + dummy_clk = op->dummy.nbytes * 8;
> + if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
> + dummy_clk = CQSPI_DUMMY_CLKS_MAX;
> +
> + if (dummy_clk / 8)
> + reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
> + << CQSPI_REG_RD_INSTR_DUMMY_LSB;
> + } else {
> + reg |= (CQSPI_INST_TYPE_QUAD & CQSPI_REG_RD_INSTR_TYPE_DATA_MASK) <<
> + CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
> +
> + if (dummy_bytes) {
> + if (dummy_bytes > CQSPI_DUMMY_BYTES_MAX)
> + dummy_bytes = CQSPI_DUMMY_BYTES_MAX;
> +
> + reg |= BIT(CQSPI_REG_RD_INSTR_MODE_EN_LSB);
> + writel(0xFF, reg_base + CQSPI_REG_MODE_BIT);
> +
> + dummy_clk = dummy_bytes * CQSPI_DUMMY_CLKS_PER_BYTE;
> + dummy_clk -= CQSPI_DUMMY_CLKS_PER_BYTE;
> +
> + if (dummy_clk)
> + reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
> + << CQSPI_REG_RD_INSTR_DUMMY_LSB;
> + }
> + }
> +
> + writel(reg, reg_base + CQSPI_REG_RD_INSTR);
> +
> + /* Set address width */
> + reg = readl(reg_base + CQSPI_REG_SIZE);
> + reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
> + reg |= (op->addr.nbytes - 1);
> + writel(reg, reg_base + CQSPI_REG_SIZE);
> + return 0;
> +}
> +
> +static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
> + u8 *rxbuf, loff_t from_addr,
> + const size_t n_rx)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + struct device *dev = &cqspi->pdev->dev;
> + void __iomem *reg_base = cqspi->iobase;
> + void __iomem *ahb_base = cqspi->ahb_base;
> + unsigned int remaining = n_rx;
> + unsigned int mod_bytes = n_rx % 4;
> + unsigned int bytes_to_read = 0;
> + u8 *rxbuf_end = rxbuf + n_rx;
> + int ret = 0;
> +
> + writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
> + writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
> +
> + /* Clear all interrupts. */
> + writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
> +
> + writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
> +
> + reinit_completion(&cqspi->transfer_complete);
> + writel(CQSPI_REG_INDIRECTRD_START_MASK,
> + reg_base + CQSPI_REG_INDIRECTRD);
> +
> + while (remaining > 0) {
> + if (!wait_for_completion_timeout(&cqspi->transfer_complete,
> + msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
> + ret = -ETIMEDOUT;
> +
> + bytes_to_read = cqspi_get_rd_sram_level(cqspi);
> +
> + if (ret && bytes_to_read == 0) {
> + dev_err(dev, "Indirect read timeout, no bytes\n");
> + goto failrd;
> + }
> +
> + while (bytes_to_read != 0) {
> + unsigned int word_remain = round_down(remaining, 4);
> +
> + bytes_to_read *= cqspi->fifo_width;
> + bytes_to_read = bytes_to_read > remaining ?
> + remaining : bytes_to_read;
> + bytes_to_read = round_down(bytes_to_read, 4);
> + /* Read 4 byte word chunks then single bytes */
> + if (bytes_to_read) {
> + ioread32_rep(ahb_base, rxbuf,
> + (bytes_to_read / 4));
> + } else if (!word_remain && mod_bytes) {
> + unsigned int temp = ioread32(ahb_base);
> +
> + bytes_to_read = mod_bytes;
> + memcpy(rxbuf, &temp, min((unsigned int)
> + (rxbuf_end - rxbuf),
> + bytes_to_read));
> + }
> + rxbuf += bytes_to_read;
> + remaining -= bytes_to_read;
> + bytes_to_read = cqspi_get_rd_sram_level(cqspi);
> + }
> +
> + if (remaining > 0)
> + reinit_completion(&cqspi->transfer_complete);
> + }
> +
> + /* Check indirect done status */
> + ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
> + CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
> + if (ret) {
> + dev_err(dev, "Indirect read completion error (%i)\n", ret);
> + goto failrd;
> + }
> +
> + /* Disable interrupt */
> + writel(0, reg_base + CQSPI_REG_IRQMASK);
> +
> + /* Clear indirect completion status */
> + writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
> +
> + return 0;
> +
> +failrd:
> + /* Disable interrupt */
> + writel(0, reg_base + CQSPI_REG_IRQMASK);
> +
> + /* Cancel the indirect read */
> + writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
> + reg_base + CQSPI_REG_INDIRECTRD);
> + return ret;
> +}
> +
> +static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
> + const struct spi_mem_op *op)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + void __iomem *reg_base = cqspi->iobase;
> + const u8 *txbuf = &op->cmd.opcode;
> + unsigned int reg;
> +
> + if (!cqspi->soc_selection) {
> + /* Set opcode. */
> + reg = op->cmd.opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
> + writel(reg, reg_base + CQSPI_REG_WR_INSTR);
> + reg = cqspi_calc_rdreg(f_pdata);
> + writel(reg, reg_base + CQSPI_REG_RD_INSTR);
> + } else {
> + reg = readl(reg_base + CQSPI_REG_CONFIG);
> + reg &= ~(CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL);
> + reg &= ~(CQSPI_REG_CONFIG_DMA_MASK);
> + writel(reg, reg_base + CQSPI_REG_CONFIG);
> +
> + /* Set opcode. */
> + reg = txbuf[0] << CQSPI_REG_WR_INSTR_OPCODE_LSB;
> + reg |= BIT(CQSPI_REG_WR_CONFIG_WEL_DIS_FLD_POS);
> + /* Configure the mode for address */
> + reg |= (CQSPI_INST_TYPE_QUAD & CQSPI_REG_WR_INSTR_TYPE_ADDR_MASK) <<
> + CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
> +
> + /* Configure the mode for data */
> + reg |= (CQSPI_INST_TYPE_QUAD & CQSPI_REG_WR_INSTR_TYPE_DATA_MASK) <<
> + CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
> + writel(reg, reg_base + CQSPI_REG_WR_INSTR);
> + /* Setup write address. */
> + reg = cqspi_cmd2addr(op);
> + writel(reg, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
> + }
> +
> + reg = readl(reg_base + CQSPI_REG_SIZE);
> + reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
> + reg |= (op->addr.nbytes - 1);
> + writel(reg, reg_base + CQSPI_REG_SIZE);
> + return 0;
> +}
> +
> +static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
> + loff_t to_addr, const u8 *txbuf,
> + const size_t n_tx)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + struct device *dev = &cqspi->pdev->dev;
> + void __iomem *reg_base = cqspi->iobase;
> + unsigned int remaining = n_tx;
> + unsigned int write_bytes;
> + int ret;
> +
> + writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
> + writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
> +
> + /* Clear all interrupts. */
> + writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
> +
> + writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
> +
> + reinit_completion(&cqspi->transfer_complete);
> + writel(CQSPI_REG_INDIRECTWR_START_MASK,
> + reg_base + CQSPI_REG_INDIRECTWR);
> + /*
> + * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
> + * Controller programming sequence, couple of cycles of
> + * QSPI_REF_CLK delay is required for the above bit to
> + * be internally synchronized by the QSPI module. Provide 5
> + * cycles of delay.
> + */
> + if (cqspi->wr_delay)
> + ndelay(cqspi->wr_delay);
> +
> + while (remaining > 0) {
> + size_t write_words, mod_bytes;
> +
> + write_bytes = remaining;
> + write_words = write_bytes / 4;
> + mod_bytes = write_bytes % 4;
> + /* Write 4 bytes at a time then single bytes. */
> + if (write_words) {
> + iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
> + txbuf += (write_words * 4);
> + }
> + if (mod_bytes) {
> + unsigned int temp = 0xFFFFFFFF;
> +
> + memcpy(&temp, txbuf, mod_bytes);
> + iowrite32(temp, cqspi->ahb_base);
> + txbuf += mod_bytes;
> + }
> +
> + if (!wait_for_completion_timeout(&cqspi->transfer_complete,
> + msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
> + dev_err(dev, "Indirect write timeout\n");
> + ret = -ETIMEDOUT;
> + goto failwr;
> + }
> +
> + remaining -= write_bytes;
> +
> + if (remaining > 0)
> + reinit_completion(&cqspi->transfer_complete);
> + }
> +
> + /* Check indirect done status */
> + ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
> + CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
> + if (ret) {
> + dev_err(dev, "Indirect write completion error (%i)\n", ret);
> + goto failwr;
> + }
> +
> + /* Disable interrupt. */
> + writel(0, reg_base + CQSPI_REG_IRQMASK);
> +
> + /* Clear indirect completion status */
> + writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
> +
> + cqspi_wait_idle(cqspi);
> +
> + return 0;
> +
> +failwr:
> + /* Disable interrupt. */
> + writel(0, reg_base + CQSPI_REG_IRQMASK);
> +
> + /* Cancel the indirect write */
> + writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
> + reg_base + CQSPI_REG_INDIRECTWR);
> + return ret;
> +}
> +
> +static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + void __iomem *reg_base = cqspi->iobase;
> + unsigned int chip_select = f_pdata->cs;
> + unsigned int reg;
> +
> + reg = readl(reg_base + CQSPI_REG_CONFIG);
> + reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
> +
> + /* Convert CS if without decoder.
> + * CS0 to 4b'1110
> + * CS1 to 4b'1101
> + * CS2 to 4b'1011
> + * CS3 to 4b'0111
> + */
> + chip_select = 0xF & ~(1 << chip_select);
> +
> + reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
> + << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
> + reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
> + << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
> + writel(reg, reg_base + CQSPI_REG_CONFIG);
> +}
> +
> +static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
> + const unsigned int ns_val)
> +{
> + unsigned int ticks;
> +
> + ticks = ref_clk_hz / 1000; /* kHz */
> + ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
> +
> + return ticks;
> +}
> +
> +static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + void __iomem *iobase = cqspi->iobase;
> + const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
> + unsigned int tshsl, tchsh, tslch, tsd2d;
> + unsigned int reg;
> + unsigned int tsclk;
> +
> + /* calculate the number of ref ticks for one sclk tick */
> + tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
> +
> + tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
> + /* this particular value must be at least one sclk */
> + if (tshsl < tsclk)
> + tshsl = tsclk;
> +
> + tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
> + tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
> + tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
> +
> + reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
> + << CQSPI_REG_DELAY_TSHSL_LSB;
> + reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
> + << CQSPI_REG_DELAY_TCHSH_LSB;
> + reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
> + << CQSPI_REG_DELAY_TSLCH_LSB;
> + reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
> + << CQSPI_REG_DELAY_TSD2D_LSB;
> + writel(reg, iobase + CQSPI_REG_DELAY);
> +}
> +
> +static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
> +{
> + const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
> + void __iomem *reg_base = cqspi->iobase;
> + u32 reg, div;
> +
> + /* Recalculate the baudrate divisor based on QSPI specification. */
> + div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
> +
> + reg = readl(reg_base + CQSPI_REG_CONFIG);
> + reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
> + reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
> + writel(reg, reg_base + CQSPI_REG_CONFIG);
> +}
> +
> +static void cqspi_readdata_capture(struct cqspi_st *cqspi,
> + const bool bypass,
> + const unsigned int delay)
> +{
> + void __iomem *reg_base = cqspi->iobase;
> + unsigned int reg;
> +
> + reg = readl(reg_base + CQSPI_REG_READCAPTURE);
> +
> + if (bypass)
> + reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
> + else
> + reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
> +
> + reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
> + << CQSPI_REG_READCAPTURE_DELAY_LSB);
> +
> + reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
> + << CQSPI_REG_READCAPTURE_DELAY_LSB;
> +
> + writel(reg, reg_base + CQSPI_REG_READCAPTURE);
> +}
> +
> +static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
> +{
> + void __iomem *reg_base = cqspi->iobase;
> + unsigned int reg;
> +
> + reg = readl(reg_base + CQSPI_REG_CONFIG);
> +
> + if (enable)
> + reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
> + else
> + reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
> +
> + writel(reg, reg_base + CQSPI_REG_CONFIG);
> +}
> +
> +static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
> + unsigned long sclk)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + int switch_cs = (cqspi->current_cs != f_pdata->cs);
> + int switch_ck = (cqspi->sclk != sclk);
> +
> + if (switch_cs || switch_ck)
> + cqspi_controller_enable(cqspi, 0);
> +
> + /* Switch chip select. */
> + if (switch_cs) {
> + cqspi->current_cs = f_pdata->cs;
> + cqspi_chipselect(f_pdata);
> + }
> +
> + /* Setup baudrate divisor and delays */
> + if (switch_ck) {
> + cqspi->sclk = sclk;
> + cqspi_config_baudrate_div(cqspi);
> + cqspi_delay(f_pdata);
> + cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
> + f_pdata->read_delay);
> + }
> +
> + if (switch_cs || switch_ck)
> + cqspi_controller_enable(cqspi, 1);
> +}
> +
> +static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
> + const struct spi_mem_op *op)
> +{
> + f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
> + f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
> + f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
> +
> + if (op->data.dir == SPI_MEM_DATA_IN) {
> + switch (op->data.buswidth) {
> + case 1:
> + f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
> + break;
> + case 2:
> + f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
> + break;
> + case 4:
> + f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
> + break;
> + case 8:
> + f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
> + break;
> + default:
> + return -EINVAL;
> + }
> + }
> +
> + return 0;
> +}
> +
> +static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
> + const struct spi_mem_op *op)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + loff_t to = op->addr.val;
> + size_t len = op->data.nbytes;
> + const u_char *buf = op->data.buf.out;
> + int ret;
> +
> + ret = cqspi_set_protocol(f_pdata, op);
> + if (ret)
> + return ret;
> +
> + ret = cqspi_write_setup(f_pdata, op);
> + if (ret)
> + return ret;
> +
> + if (cqspi->use_dac_mode && ((to + len) <= cqspi->ahb_size)) {
> + memcpy_toio(cqspi->ahb_base + to, buf, len);
> + return cqspi_wait_idle(cqspi);
> + }
> +
> + return cqspi_indirect_write_execute(f_pdata, to, buf, len);
> +}
> +
> +static void cqspi_rx_dma_callback(void *param)
> +{
> + struct cqspi_st *cqspi = param;
> +
> + complete(&cqspi->rx_dma_complete);
> +}
> +
> +static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
> + u_char *buf, loff_t from, size_t len)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + struct device *ddev = cqspi->rx_chan->device->dev;
> + enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
> + dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
> + int ret = 0;
> + struct dma_async_tx_descriptor *tx;
> + dma_cookie_t cookie;
> + dma_addr_t dma_dst;
> +
> + if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
> + memcpy_fromio(buf, cqspi->ahb_base + from, len);
> + return 0;
> + }
> +
> + dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
> + if (dma_mapping_error(ddev, dma_dst)) {
> + dev_err(ddev, "dma mapping failed\n");
> + return -ENOMEM;
> + }
> + tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
> + len, flags);
> + if (!tx) {
> + dev_err(ddev, "device_prep_dma_memcpy error\n");
> + ret = -EIO;
> + goto err_unmap;
> + }
> +
> + tx->callback = cqspi_rx_dma_callback;
> + tx->callback_param = cqspi;
> + cookie = tx->tx_submit(tx);
> + reinit_completion(&cqspi->rx_dma_complete);
> +
> + ret = dma_submit_error(cookie);
> + if (ret) {
> + dev_err(ddev, "dma_submit_error %d\n", cookie);
> + ret = -EIO;
> + goto err_unmap;
> + }
> +
> + dma_async_issue_pending(cqspi->rx_chan);
> + if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
> + msecs_to_jiffies(len))) {
> + dmaengine_terminate_sync(cqspi->rx_chan);
> + dev_err(ddev, "DMA wait_for_completion_timeout\n");
> + ret = -ETIMEDOUT;
> + goto err_unmap;
> + }
> +
> +err_unmap:
> + dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
> +
> + return ret;
> +}
> +
> +static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
> + const struct spi_mem_op *op)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + loff_t from = op->addr.val;
> + size_t len = op->data.nbytes;
> + u_char *buf = op->data.buf.in;
> + int ret;
> +
> + ret = cqspi_set_protocol(f_pdata, op);
> + if (ret)
> + return ret;
> +
> + ret = cqspi_read_setup(f_pdata, op);
> + if (ret)
> + return ret;
> +
> + if (cqspi->use_dac_mode && ((from + len) <= cqspi->ahb_size))
> + return cqspi_direct_read_execute(f_pdata, buf, from, len);
> +
> + return cqspi_indirect_read_execute(f_pdata, buf, from, len);
> +}
> +
> +static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
> +{
> + struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
> + struct cqspi_flash_pdata *f_pdata;
> +
> + f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
> + cqspi_configure(f_pdata, mem->spi->max_speed_hz);
> +
> + if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
> + if (!op->addr.nbytes)
> + return cqspi_command_read(f_pdata, op);
> +
> + return cqspi_read(f_pdata, op);
> + }
> +
> + if (!op->addr.nbytes || !op->data.buf.out)
> + return cqspi_command_write(f_pdata, op);
> +
> + return cqspi_write(f_pdata, op);
> +}
> +
> +static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
> +{
> + int ret;
> +
> + ret = cqspi_mem_process(mem, op);
> + if (ret)
> + dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
> +
> + return ret;
> +}
> +
> +static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
> + struct cqspi_flash_pdata *f_pdata,
> + struct device_node *np)
> +{
> + if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
> + dev_err(&pdev->dev, "couldn't determine read-delay\n");
> + return -ENXIO;
> + }
> +
> + if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
> + dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
> + return -ENXIO;
> + }
> +
> + if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
> + dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
> + return -ENXIO;
> + }
> +
> + if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
> + dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
> + return -ENXIO;
> + }
> +
> + if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
> + dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
> + return -ENXIO;
> + }
> +
> + if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
> + dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
> + return -ENXIO;
> + }
> +
> + return 0;
> +}
> +
> +static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
> +{
> + struct device *dev = &cqspi->pdev->dev;
> + struct device_node *np = dev->of_node;
> +
> + if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
> + dev_err(dev, "couldn't determine fifo-depth\n");
> + return -ENXIO;
> + }
> +
> + if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
> + dev_err(dev, "couldn't determine fifo-width\n");
> + return -ENXIO;
> + }
> +
> + if (of_property_read_u32(np, "cdns,trigger-address",
> + &cqspi->trigger_address)) {
> + dev_err(dev, "couldn't determine trigger-address\n");
> + return -ENXIO;
> + }
> +
> + if (!cqspi->soc_selection)
> + cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
> +
> + return 0;
> +}
> +
> +static void cqspi_controller_init(struct cqspi_st *cqspi)
> +{
> + cqspi_controller_enable(cqspi, 0);
> +
> + /* Configure the remap address register, no remap */
> + writel(0, cqspi->iobase + CQSPI_REG_REMAP);
> +
> + /* Disable all interrupts. */
> + writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
> +
> + /* Configure the SRAM split to 1:1 . */
> + writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
> +
> + /* Load indirect trigger address. */
> + writel(cqspi->trigger_address,
> + cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
> +
> + /* Program read watermark -- 1/2 of the FIFO. */
> + writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
> + cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
> + /* Program write watermark -- 1/8 of the FIFO. */
> + writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
> + cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
> +
> + if (!cqspi->use_dac_mode) {
> + u32 reg;
> +
> + reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
> + reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
> + writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
> +
> + reg = readl(cqspi->iobase + CQSPI_REG_WR_COMPLETION_CTRL);
> + reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
> + writel(reg, cqspi->iobase + CQSPI_REG_WR_COMPLETION_CTRL);
> + }
> +
> + cqspi_controller_enable(cqspi, 1);
> +}
> +
> +static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
> +{
> + dma_cap_mask_t mask;
> +
> + dma_cap_zero(mask);
> + dma_cap_set(DMA_MEMCPY, mask);
> +
> + cqspi->rx_chan = dma_request_chan_by_mask(&mask);
> + if (IS_ERR(cqspi->rx_chan)) {
> + int ret = PTR_ERR(cqspi->rx_chan);
> +
> + if (ret != -EPROBE_DEFER)
> + dev_err(&cqspi->pdev->dev, "No Rx DMA available\n");
> + cqspi->rx_chan = NULL;
> +
> + return ret;
> + }
> + init_completion(&cqspi->rx_dma_complete);
> +
> + return 0;
> +}
> +
> +static const struct spi_controller_mem_ops cqspi_mem_ops = {
> + .exec_op = cqspi_exec_mem_op,
> +};
> +
> +static int cqspi_setup_flash(struct cqspi_st *cqspi)
> +{
> + struct platform_device *pdev = cqspi->pdev;
> + struct device *dev = &pdev->dev;
> + struct device_node *np = dev->of_node;
> + struct cqspi_flash_pdata *f_pdata;
> + unsigned int cs;
> + int ret;
> +
> + /* Get flash device data */
> + for_each_available_child_of_node(dev->of_node, np) {
> + ret = of_property_read_u32(np, "reg", &cs);
> + if (ret) {
> + dev_err(dev, "Couldn't determine chip select.\n");
> + return -EINVAL;
> + }
> +
> + if (cs >= CQSPI_MAX_CHIPSELECT) {
> + dev_err(dev, "Chip select %d out of range.\n", cs);
> + return -EINVAL;
> + }
> +
> + f_pdata = &cqspi->f_pdata[cs];
> + f_pdata->cqspi = cqspi;
> + f_pdata->cs = cs;
> +
> + return cqspi_of_get_flash_pdata(pdev, f_pdata, np);
> + }
> +
> + return 0;
> +}
> +
> +static int cqspi_probe(struct platform_device *pdev)
> +{
> + const struct cqspi_driver_platdata *ddata;
> + struct reset_control *rstc, *rstc_ocp;
> + struct device *dev = &pdev->dev;
> + struct spi_master *master;
> + struct resource *res_ahb;
> + struct cqspi_st *cqspi;
> + struct resource *res;
> + int ret;
> + int irq;
> +
> + master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
> + if (!master) {
> + dev_err(&pdev->dev, "spi_alloc_master failed\n");
> + return -ENOMEM;
> + }
> + master->mode_bits = SPI_RX_QUAD | SPI_TX_DUAL | SPI_RX_DUAL;
> + master->mem_ops = &cqspi_mem_ops;
> + master->dev.of_node = pdev->dev.of_node;
> +
> + cqspi = spi_master_get_devdata(master);
> +
> + cqspi->pdev = pdev;
> +
> + ddata = of_device_get_match_data(dev);
> + if (ddata->quirks & CQSPI_DISABLE_DAC_MODE)
> + cqspi->soc_selection = true;
> +
> + /* Obtain configuration from OF. */
> + ret = cqspi_of_get_pdata(cqspi);
> + if (ret) {
> + dev_err(dev, "Cannot get mandatory OF data.\n");
> + return -ENODEV;
> + }
> +
> + /* Obtain QSPI clock. */
> + cqspi->clk = devm_clk_get(dev, NULL);
> + if (IS_ERR(cqspi->clk)) {
> + dev_err(dev, "Cannot claim QSPI clock.\n");
> + return PTR_ERR(cqspi->clk);
> + }
> +
> + /* Obtain and remap controller address. */
> + res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> + cqspi->iobase = devm_ioremap_resource(dev, res);
> + if (IS_ERR(cqspi->iobase)) {
> + dev_err(dev, "Cannot remap controller address.\n");
> + return PTR_ERR(cqspi->iobase);
> + }
> +
> + /* Obtain and remap AHB address. */
> + res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
> + cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
> + if (IS_ERR(cqspi->ahb_base)) {
> + dev_err(dev, "Cannot remap AHB address.\n");
> + return PTR_ERR(cqspi->ahb_base);
> + }
> + cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
> + cqspi->ahb_size = resource_size(res_ahb);
> +
> + init_completion(&cqspi->transfer_complete);
> +
> + /* Obtain IRQ line. */
> + irq = platform_get_irq(pdev, 0);
> + if (irq < 0)
> + return -ENXIO;
> +
> + pm_runtime_enable(dev);
> + ret = pm_runtime_get_sync(dev);
> + if (ret < 0) {
> + pm_runtime_put_noidle(dev);
> + return ret;
> + }
> +
> + ret = clk_prepare_enable(cqspi->clk);
> + if (ret) {
> + dev_err(dev, "Cannot enable QSPI clock.\n");
> + goto probe_clk_failed;
> + }
> +
> + /* Obtain QSPI reset control */
> + rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
> + if (IS_ERR(rstc)) {
> + dev_err(dev, "Cannot get QSPI reset.\n");
> + goto probe_reset_failed;
> + }
> +
> + rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
> + if (IS_ERR(rstc_ocp)) {
> + dev_err(dev, "Cannot get QSPI OCP reset.\n");
> + goto probe_reset_failed;
> + }
> +
> + reset_control_assert(rstc);
> + reset_control_deassert(rstc);
> +
> + reset_control_assert(rstc_ocp);
> + reset_control_deassert(rstc_ocp);
> +
> + cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
> + ddata = of_device_get_match_data(dev);
> + if (ddata) {
> + if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
> + cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC,
> + cqspi->master_ref_clk_hz);
> + if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
> + master->mode_bits |= SPI_RX_OCTAL;
> + if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
> + cqspi->use_dac_mode = true;
> + }
> +
> + ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
> + pdev->name, cqspi);
> + if (ret) {
> + dev_err(dev, "Cannot request IRQ.\n");
> + goto probe_reset_failed;
> + }
> +
> + cqspi_wait_idle(cqspi);
> + cqspi_controller_init(cqspi);
> + cqspi->current_cs = -1;
> + cqspi->sclk = 0;
> +
> + ret = cqspi_setup_flash(cqspi);
> + if (ret) {
> + dev_err(dev, "failed to setup flash parameters %d\n", ret);
> + goto probe_setup_failed;
> + }
> +
> + if (cqspi->use_dac_mode) {
> + ret = cqspi_request_mmap_dma(cqspi);
> + if (ret == -EPROBE_DEFER)
> + goto probe_setup_failed;
> + }
> +
> + ret = devm_spi_register_master(dev, master);
> + if (ret) {
> + dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
> + goto probe_setup_failed;
> + }
> +
> + return 0;
> +probe_setup_failed:
> + cqspi_controller_enable(cqspi, 0);
> +probe_reset_failed:
> + clk_disable_unprepare(cqspi->clk);
> +probe_clk_failed:
> + pm_runtime_put_sync(dev);
> + pm_runtime_disable(dev);
> + return ret;
> +}
> +
> +static int cqspi_remove(struct platform_device *pdev)
> +{
> + struct cqspi_st *cqspi = platform_get_drvdata(pdev);
> +
> + cqspi_controller_enable(cqspi, 0);
> +
> + if (cqspi->rx_chan)
> + dma_release_channel(cqspi->rx_chan);
> +
> + clk_disable_unprepare(cqspi->clk);
> +
> + pm_runtime_put_sync(&pdev->dev);
> + pm_runtime_disable(&pdev->dev);
> +
> + return 0;
> +}
> +
> +#ifdef CONFIG_PM_SLEEP
> +static int cqspi_suspend(struct device *dev)
> +{
> + struct cqspi_st *cqspi = dev_get_drvdata(dev);
> +
> + cqspi_controller_enable(cqspi, 0);
> + return 0;
> +}
> +
> +static int cqspi_resume(struct device *dev)
> +{
> + struct cqspi_st *cqspi = dev_get_drvdata(dev);
> +
> + cqspi_controller_enable(cqspi, 1);
> + return 0;
> +}
> +
> +static const struct dev_pm_ops cqspi__dev_pm_ops = {
> + .suspend = cqspi_suspend,
> + .resume = cqspi_resume,
> +};
> +
> +#define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
> +#else
> +#define CQSPI_DEV_PM_OPS NULL
> +#endif
> +
> +static const struct cqspi_driver_platdata cdns_qspi = {
> + .quirks = CQSPI_DISABLE_DAC_MODE,
> +};
> +
> +static const struct cqspi_driver_platdata k2g_qspi = {
> + .quirks = CQSPI_NEEDS_WR_DELAY,
> +};
> +
> +static const struct cqspi_driver_platdata am654_ospi = {
> + .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
> + .quirks = CQSPI_NEEDS_WR_DELAY,
> +};
> +
> +static const struct cqspi_driver_platdata intel_lgm_qspi = {
> + .quirks = CQSPI_DISABLE_DAC_MODE,
> +};
> +
> +static const struct of_device_id cqspi_dt_ids[] = {
> + {
> + .compatible = "cdns,qspi-nor",
> + .data = &cdns_qspi,
> + },
> + {
> + .compatible = "ti,k2g-qspi",
> + .data = &k2g_qspi,
> + },
> + {
> + .compatible = "ti,am654-ospi",
> + .data = &am654_ospi,
> + },
> + {
> + .compatible = "intel,lgm-qspi",
> + .data = &intel_lgm_qspi,
> + },
> + { /* end of table */ }
> +};
> +
> +MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
> +
> +static struct platform_driver cqspi_platform_driver = {
> + .probe = cqspi_probe,
> + .remove = cqspi_remove,
> + .driver = {
> + .name = CQSPI_NAME,
> + .pm = CQSPI_DEV_PM_OPS,
> + .of_match_table = cqspi_dt_ids,
> + },
> +};
> +
> +module_platform_driver(cqspi_platform_driver);
> +
> +MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
> +MODULE_LICENSE("GPL v2");
> +MODULE_ALIAS("platform:" CQSPI_NAME);
> +MODULE_AUTHOR("Ley Foon Tan <[email protected]>");
> +MODULE_AUTHOR("Graham Moore <[email protected]>");
> +MODULE_AUTHOR("Vadivel Murugan R <[email protected]>");
> +MODULE_AUTHOR("Vignesh Raghavendra <[email protected]>");
> --
> 2.11.0
>

2020-01-29 12:03:18

by Simon Goldschmidt

[permalink] [raw]
Subject: Re: [PATCH v8 2/2] spi: cadence-quadpsi: Add support for the Cadence QSPI controller

+ some people possibly interested in this for the Altera platforms (see below)

Hi all,

This is about moving the cadence qspi driver (which is used on TI, Altera FPGAs
and a new Intel SoC) to spi-mem.Vadivel asked me to include some Altera people
in the loop (see below), as this is the only platform currently untested,
I think.

Right now, I'm not in the position to test this myself as we're currently stuck
on an older RT kernel, so I cannot test with HEAD.

Feel free to involve other Intel/Altera if you're interested in that peripheral
not being broke for socfpga in one of the next releases :-)

On Wed, Jan 29, 2020 at 10:18 AM Ramuthevar, Vadivel MuruganX
<[email protected]> wrote:
>
> Hi,
>
> Thank you for the query and confirmation.
>
> On 29/1/2020 4:31 PM, Simon Goldschmidt wrote:
>
> On Wed, Jan 29, 2020 at 8:25 AM Ramuthevar,Vadivel MuruganX
> <[email protected]> wrote:
>
> From: Ramuthevar Vadivel Murugan <[email protected]>
>
> Add support for the Cadence QSPI controller. This controller is
> present in the Intel Lightning Mountain(LGM) SoCs, Altera and TI SoCs.
> This driver has been tested on the Intel LGM SoCs.
>
> So it has been tested on LGM and Vignesh gave his ok for TI. Is there anyone
> in the loop by now checking that this is valid for the 3rd platform using this
> (Altera)?
>
> Or am I wrong in thinking that this driver is meant to replace
> drivers/mtd/spi-nor/cadence-quadspi.c used on that platform?
>
> Absolutely , You are right, this driver is meant to replace to drivers/mtd/spi-nor/cadence-quadspi.c
> for Intel, TI and Altera SoC's using Cadence-QSPI IP.
>
> Meanwhile we have adapted to spi-mem framework (to support spi-nor/nand)and also didn't change the existing
> functionalities of spi-nor flash operations like hw_init/read/write/erase in drivers/mtd/spi-nor/cadence-quadspi.c,
> so it works fine (might be in Altera as well).
>
> Already I checked that Graham Moore <[email protected]> who has submitted the existing driver patches to upstream,
> His mail-id is bouncing back, then I decided that you are the right person to ask, could you please add them in loop if you know the team
> (socfpga platform engineers).

OK, done that. I mainly know them from U-Boot development, so I'm not sure
who's responsible for the Linux drivers...

Regards,
Simon

>
> Regards
> Vadivel
>
> Regards,
> Simon
>

Subject: Re: [PATCH v8 2/2] spi: cadence-quadpsi: Add support for the Cadence QSPI controller

Hi Simon,

On 29/1/2020 8:01 PM, Simon Goldschmidt wrote:
> + some people possibly interested in this for the Altera platforms (see below)
>
> Hi all,
>
> This is about moving the cadence qspi driver (which is used on TI, Altera FPGAs
> and a new Intel SoC) to spi-mem.Vadivel asked me to include some Altera people
> in the loop (see below), as this is the only platform currently untested,
> I think.
>
> Right now, I'm not in the position to test this myself as we're currently stuck
> on an older RT kernel, so I cannot test with HEAD.
>
> Feel free to involve other Intel/Altera if you're interested in that peripheral
> not being broke for socfpga in one of the next releases :-)
>
> On Wed, Jan 29, 2020 at 10:18 AM Ramuthevar, Vadivel MuruganX
> <[email protected]> wrote:
>> Hi,
>>
>> Thank you for the query and confirmation.
>>
>> On 29/1/2020 4:31 PM, Simon Goldschmidt wrote:
>>
>> On Wed, Jan 29, 2020 at 8:25 AM Ramuthevar,Vadivel MuruganX
>> <[email protected]> wrote:
>>
>> From: Ramuthevar Vadivel Murugan <[email protected]>
>>
>> Add support for the Cadence QSPI controller. This controller is
>> present in the Intel Lightning Mountain(LGM) SoCs, Altera and TI SoCs.
>> This driver has been tested on the Intel LGM SoCs.
>>
>> So it has been tested on LGM and Vignesh gave his ok for TI. Is there anyone
>> in the loop by now checking that this is valid for the 3rd platform using this
>> (Altera)?
>>
>> Or am I wrong in thinking that this driver is meant to replace
>> drivers/mtd/spi-nor/cadence-quadspi.c used on that platform?
>>
>> Absolutely , You are right, this driver is meant to replace to drivers/mtd/spi-nor/cadence-quadspi.c
>> for Intel, TI and Altera SoC's using Cadence-QSPI IP.
>>
>> Meanwhile we have adapted to spi-mem framework (to support spi-nor/nand)and also didn't change the existing
>> functionalities of spi-nor flash operations like hw_init/read/write/erase in drivers/mtd/spi-nor/cadence-quadspi.c,
>> so it works fine (might be in Altera as well).
>>
>> Already I checked that Graham Moore <[email protected]> who has submitted the existing driver patches to upstream,
>> His mail-id is bouncing back, then I decided that you are the right person to ask, could you please add them in loop if you know the team
>> (socfpga platform engineers).
> OK, done that. I mainly know them from U-Boot development, so I'm not sure
> who's responsible for the Linux drivers...
Thank you for adding the team and respective members, let's see.

Regards
vadivel
>
> Regards,
> Simon
>
>> Regards
>> Vadivel
>>
>> Regards,
>> Simon
>>

2020-02-04 15:59:54

by Dinh Nguyen

[permalink] [raw]
Subject: Re: [PATCH v8 2/2] spi: cadence-quadpsi: Add support for the Cadence QSPI controller

Hi

On 1/29/20 9:41 PM, Ramuthevar, Vadivel MuruganX wrote:
> Hi Simon,
>
> On 29/1/2020 8:01 PM, Simon Goldschmidt wrote:
>> + some people possibly interested in this for the Altera platforms
>> (see below)
>>
>> Hi all,
>>
>> This is about moving the cadence qspi driver (which is used on TI,
>> Altera FPGAs
>> and a new Intel SoC) to spi-mem.Vadivel asked me to include some
>> Altera people
>> in the loop (see below), as this is the only platform currently untested,
>> I think.
>>
>> Right now, I'm not in the position to test this myself as we're
>> currently stuck
>> on an older RT kernel, so I cannot test with HEAD.
>>
>> Feel free to involve other Intel/Altera if you're interested in that
>> peripheral
>> not being broke for socfpga in one of the next releases :-)
>>
>> On Wed, Jan 29, 2020 at 10:18 AM Ramuthevar, Vadivel MuruganX
>> <[email protected]> wrote:
>>> Hi,
>>>
>>>    Thank you for the query and confirmation.
>>>
>>> On 29/1/2020 4:31 PM, Simon Goldschmidt wrote:
>>>
>>> On Wed, Jan 29, 2020 at 8:25 AM Ramuthevar,Vadivel MuruganX
>>> <[email protected]> wrote:
>>>
>>> From: Ramuthevar Vadivel Murugan
>>> <[email protected]>
>>>
>>> Add support for the Cadence QSPI controller. This controller is
>>> present in the Intel Lightning Mountain(LGM) SoCs, Altera and TI SoCs.
>>> This driver has been tested on the Intel LGM SoCs.
>>>
>>> So it has been tested on LGM and Vignesh gave his ok for TI. Is there
>>> anyone
>>> in the loop by now checking that this is valid for the 3rd platform
>>> using this
>>> (Altera)?
>>>
>>> Or am I wrong in thinking that this driver is meant to replace
>>> drivers/mtd/spi-nor/cadence-quadspi.c used on that platform?
>>>
>>> Absolutely , You are right, this driver is meant to replace to
>>> drivers/mtd/spi-nor/cadence-quadspi.c
>>> for Intel, TI and Altera SoC's using Cadence-QSPI IP.
>>>
>>> Meanwhile we have adapted to spi-mem framework (to support
>>> spi-nor/nand)and also didn't change the existing
>>> functionalities of spi-nor flash operations like
>>> hw_init/read/write/erase in drivers/mtd/spi-nor/cadence-quadspi.c,
>>> so it works fine (might be in Altera as well).
>>>
>>> Already I checked that Graham Moore <[email protected]>
>>> who has submitted the existing driver patches to upstream,
>>> His mail-id is bouncing back, then I decided that you are the right
>>> person to ask, could you please add them in loop if you know the team
>>> (socfpga platform engineers).

Thanks for including Graham, but he's moved on to a different career
that no longer includes Linux.

>> OK, done that. I mainly know them from U-Boot development, so I'm not
>> sure
>> who's responsible for the Linux drivers...
> Thank you for adding the team and respective members, let's see.
>

I don't have the original patch series, but will monitor going forward.
As long as the new driver does not break legacy SoCFPGA products that
use the cadence-quadspi driver then it should be ok.

Dinh

2020-02-05 04:09:24

by Vignesh Raghavendra

[permalink] [raw]
Subject: Re: [PATCH v8 2/2] spi: cadence-quadpsi: Add support for the Cadence QSPI controller

Hi Dinh,

On 04/02/20 9:27 pm, Dinh Nguyen wrote:
[...]
>>>> Already I checked that Graham Moore <[email protected]>
>>>> who has submitted the existing driver patches to upstream,
>>>> His mail-id is bouncing back, then I decided that you are the right
>>>> person to ask, could you please add them in loop if you know the team
>>>> (socfpga platform engineers).
>
> Thanks for including Graham, but he's moved on to a different career
> that no longer includes Linux.
>
>>> OK, done that. I mainly know them from U-Boot development, so I'm not
>>> sure
>>> who's responsible for the Linux drivers...
>> Thank you for adding the team and respective members, let's see.
>>
>
> I don't have the original patch series, but will monitor going forward.
> As long as the new driver does not break legacy SoCFPGA products that
> use the cadence-quadspi driver then it should be ok.
>

The legacy driver under drivers/mtd/spi-nor will be removed as we cannot
support both SPI NOR and SPI NAND with single driver if its under
spi-nor. New driver should be functionally equivalent to existing one.
So I suggest you test this driver on legcay SoCFPGA products.


--
Regards
Vignesh

2020-02-05 05:38:55

by Vignesh Raghavendra

[permalink] [raw]
Subject: Re: [PATCH v8 2/2] spi: cadence-quadpsi: Add support for the Cadence QSPI controller



On 1/29/2020 12:54 PM, Ramuthevar,Vadivel MuruganX wrote:
> From: Ramuthevar Vadivel Murugan <[email protected]>
>
> Add support for the Cadence QSPI controller. This controller is
> present in the Intel Lightning Mountain(LGM) SoCs, Altera and TI SoCs.
> This driver has been tested on the Intel LGM SoCs.
>
> This driver does not support generic SPI and also the implementation
> only supports spi-mem interface to replace the existing driver in
> mtd/spi-nor/cadence-quadspi.c, the existing driver only support SPI-NOR
> flash memory.
>
> Signed-off-by: Vignesh Raghavendra <[email protected]>
> Signed-off-by: Ramuthevar Vadivel Murugan <[email protected]>
> Reported-by: kbuild test robot <[email protected]>
> Reported-by: Dan Carpenter <[email protected]>
> ---
> drivers/spi/Kconfig | 9 +
> drivers/spi/Makefile | 1 +
> drivers/spi/spi-cadence-quadspi.c | 1510 +++++++++++++++++++++++++++++++++++++
> 3 files changed, 1520 insertions(+)
> create mode 100644 drivers/spi/spi-cadence-quadspi.c
>
> diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig
> index 870f7797b56b..2210e4582796 100644
> --- a/drivers/spi/Kconfig
> +++ b/drivers/spi/Kconfig
> @@ -193,6 +193,15 @@ config SPI_CADENCE
> This selects the Cadence SPI controller master driver
> used by Xilinx Zynq and ZynqMP.
>
> +config SPI_CADENCE_QUADSPI
> + tristate "Cadence Quad SPI controller"
> + depends on OF && (ARM || ARM64 || COMPILE_TEST || X86)
> + depends on MTD || MTD_SPI_NOR || MTD_SPI_NAND

Note that this driver is now a SPI MEM driver and therefore has no
dependency on any part of MTD code. Although we need MTD layer to
communicate with SPI Flash, we should be able to compile and enable this
driver even with MTD framework disabled.

So I suggest to drop this depends on clause. This also increase build
test coverage with rand configs

> + help
> + Cadence QSPI is a specialized controller for connecting an SPI
> + Flash over 1/2/4/8-bit wide bus. This enables support for the Octal
> + and Quad SPI variants of Cadence QSPI IP.
> +
> config SPI_CLPS711X
> tristate "CLPS711X host SPI controller"
> depends on ARCH_CLPS711X || COMPILE_TEST
> diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile
> index bb49c9e6d0a0..288f5fa903fe 100644
> --- a/drivers/spi/Makefile
> +++ b/drivers/spi/Makefile
> @@ -29,6 +29,7 @@ obj-$(CONFIG_SPI_BCM_QSPI) += spi-iproc-qspi.o spi-brcmstb-qspi.o spi-bcm-qspi.
> obj-$(CONFIG_SPI_BITBANG) += spi-bitbang.o
> obj-$(CONFIG_SPI_BUTTERFLY) += spi-butterfly.o
> obj-$(CONFIG_SPI_CADENCE) += spi-cadence.o
> +obj-$(CONFIG_SPI_CADENCE_QUADSPI) += spi-cadence-quadspi.o
> obj-$(CONFIG_SPI_CLPS711X) += spi-clps711x.o
> obj-$(CONFIG_SPI_COLDFIRE_QSPI) += spi-coldfire-qspi.o
> obj-$(CONFIG_SPI_DAVINCI) += spi-davinci.o
> diff --git a/drivers/spi/spi-cadence-quadspi.c b/drivers/spi/spi-cadence-quadspi.c
> new file mode 100644
> index 000000000000..5b0609260f73
> --- /dev/null
> +++ b/drivers/spi/spi-cadence-quadspi.c
> @@ -0,0 +1,1510 @@
> +// SPDX-License-Identifier: GPL-2.0-only
> +/*
> + * Driver for Cadence QSPI Controller
> + *
> + * Copyright Altera Corporation (C) 2012-2014. All rights reserved.
> + * Copyright Intel Corporation (C) 2019-2020. All rights reserved.
> + * Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
> + */

Could you convert this entire comment into C++ style (// for all lines)
like rest of the files under drivers/spi

> +#include <linux/clk.h>
> +#include <linux/completion.h>
> +#include <linux/delay.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/dmaengine.h>
> +#include <linux/err.h>
> +#include <linux/errno.h>
> +#include <linux/interrupt.h>
> +#include <linux/io.h>
> +#include <linux/iopoll.h>
> +#include <linux/jiffies.h>
> +#include <linux/kernel.h>
> +#include <linux/module.h>
> +#include <linux/of_device.h>
> +#include <linux/of.h>
> +#include <linux/platform_device.h>
> +#include <linux/pm_runtime.h>
> +#include <linux/reset.h>
> +#include <linux/sched.h>
> +#include <linux/spi/spi.h>
> +#include <linux/spi/spi-mem.h>
> +#include <linux/timer.h>
> +
> +#define CQSPI_NAME "cadence-qspi"
> +#define CQSPI_MAX_CHIPSELECT 16
> +
> +/* Quirks */
> +#define CQSPI_NEEDS_WR_DELAY BIT(0)
> +#define CQSPI_DISABLE_DAC_MODE BIT(1)
> +
> +/* Capabilities*/
> +#define CQSPI_SUPPORTS_OCTAL BIT(0)
> +
> +struct cqspi_st;
> +
> +struct cqspi_flash_pdata {
> + struct cqspi_st *cqspi;
> + u32 clk_rate;
> + u32 read_delay;
> + u32 tshsl_ns;
> + u32 tsd2d_ns;
> + u32 tchsh_ns;
> + u32 tslch_ns;
> + u8 inst_width;
> + u8 addr_width;
> + u8 data_width;
> + u8 cs;
> + bool registered;
> +};
> +
> +struct cqspi_st {
> + struct platform_device *pdev;
> +
> + struct clk *clk;
> + unsigned int sclk;
> +
> + void __iomem *iobase;
> + void __iomem *ahb_base;
> + resource_size_t ahb_size;
> + struct completion transfer_complete;
> +
> + struct dma_chan *rx_chan;
> + struct completion rx_dma_complete;
> + dma_addr_t mmap_phys_base;
> +
> + int current_cs;
> + unsigned long master_ref_clk_hz;
> + u32 fifo_depth;
> + u32 fifo_width;
> + u32 bus_num;
> + u32 num_chipselect;
> + bool rclk_en;
> + u32 trigger_address;
> + u32 wr_delay;
> + bool use_dac_mode;
> + bool soc_selection;
> + struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
> +};
> +
> +struct cqspi_driver_platdata {
> + u32 hwcaps_mask;
> + u8 quirks;
> +};
> +
> +/* Operation timeout value */
> +#define CQSPI_TIMEOUT_MS 500
> +#define CQSPI_READ_TIMEOUT_MS 10
> +
> +/* Instruction type */
> +#define CQSPI_INST_TYPE_SINGLE 0
> +#define CQSPI_INST_TYPE_DUAL 1
> +#define CQSPI_INST_TYPE_QUAD 2
> +#define CQSPI_INST_TYPE_OCTAL 3
> +
> +#define CQSPI_DUMMY_CLKS_PER_BYTE 8
> +#define CQSPI_DUMMY_BYTES_MAX 4
> +#define CQSPI_DUMMY_CLKS_MAX 31
> +
> +#define CQSPI_STIG_DATA_LEN_MAX 8
> +
> +/* Register map */
> +#define CQSPI_REG_CONFIG 0x00
> +#define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
> +#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
> +#define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
> +#define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
> +#define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
> +#define CQSPI_REG_CONFIG_BAUD_LSB 19
> +#define CQSPI_REG_CONFIG_IDLE_LSB 31
> +#define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
> +#define CQSPI_REG_CONFIG_BAUD_MASK 0xF
> +
> +#define CQSPI_REG_RD_INSTR 0x04
> +#define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
> +#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
> +#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
> +#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
> +#define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
> +#define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
> +#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
> +#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
> +#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
> +#define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
> +
> +#define CQSPI_REG_WR_INSTR 0x08
> +#define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
> +#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
> +#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16


> +#define CQSPI_REG_WR_INSTR_TYPE_ADDR_MASK 3
> +#define CQSPI_REG_WR_INSTR_TYPE_DATA_MASK 3
> +#define CQSPI_REG_WR_CONFIG_WEL_DIS_FLD_POS 8
> +

Please use space b/w #define and Macro name to be consistent with rest
of the Macro definitions.

> +#define CQSPI_REG_DELAY 0x0C
> +#define CQSPI_REG_DELAY_TSLCH_LSB 0
> +#define CQSPI_REG_DELAY_TCHSH_LSB 8
> +#define CQSPI_REG_DELAY_TSD2D_LSB 16
> +#define CQSPI_REG_DELAY_TSHSL_LSB 24
> +#define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
> +#define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
> +#define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
> +#define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
> +
> +#define CQSPI_REG_READCAPTURE 0x10
> +#define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
> +#define CQSPI_REG_READCAPTURE_DELAY_LSB 1
> +#define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
> +
> +#define CQSPI_REG_SIZE 0x14
> +#define CQSPI_REG_SIZE_ADDRESS_LSB 0
> +#define CQSPI_REG_SIZE_PAGE_LSB 4
> +#define CQSPI_REG_SIZE_BLOCK_LSB 16
> +#define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
> +#define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
> +#define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
> +
> +#define CQSPI_REG_SRAMPARTITION 0x18
> +#define CQSPI_REG_INDIRECTTRIGGER 0x1C
> +
> +#define CQSPI_REG_DMA 0x20
> +#define CQSPI_REG_DMA_SINGLE_LSB 0
> +#define CQSPI_REG_DMA_BURST_LSB 8
> +#define CQSPI_REG_DMA_SINGLE_MASK 0xFF
> +#define CQSPI_REG_DMA_BURST_MASK 0xFF
> +
> +#define CQSPI_REG_REMAP 0x24
> +#define CQSPI_REG_MODE_BIT 0x28
> +
> +#define CQSPI_REG_SDRAMLEVEL 0x2C
> +#define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
> +#define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
> +#define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
> +#define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
> +
> +#define CQSPI_REG_WR_COMPLETION_CTRL 0x38
> +#define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14)
> +
> +#define CQSPI_REG_IRQSTATUS 0x40
> +#define CQSPI_REG_IRQMASK 0x44
> +
> +#define CQSPI_REG_INDIRECTRD 0x60
> +#define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
> +#define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
> +#define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
> +
> +#define CQSPI_REG_INDIRECTRDWATERMARK 0x64
> +#define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
> +#define CQSPI_REG_INDIRECTRDBYTES 0x6C
> +
> +#define CQSPI_REG_CMDCTRL 0x90
> +#define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
> +#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
> +#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
> +#define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
> +#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
> +#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
> +#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
> +#define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
> +#define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
> +#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
> +#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
> +#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
> +
> +#define CQSPI_REG_INDIRECTWR 0x70
> +#define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
> +#define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
> +#define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
> +
> +#define CQSPI_REG_INDIRECTWRWATERMARK 0x74
> +#define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
> +#define CQSPI_REG_INDIRECTWRBYTES 0x7C
> +
> +#define CQSPI_REG_CMDADDRESS 0x94
> +#define CQSPI_REG_CMDREADDATALOWER 0xA0
> +#define CQSPI_REG_CMDREADDATAUPPER 0xA4
> +#define CQSPI_REG_CMDWRITEDATALOWER 0xA8
> +#define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
> +
> +/* Interrupt status bits */
> +#define CQSPI_REG_IRQ_MODE_ERR BIT(0)
> +#define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
> +#define CQSPI_REG_IRQ_IND_COMP BIT(2)
> +#define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
> +#define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
> +#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
> +#define CQSPI_REG_IRQ_WATERMARK BIT(6)
> +#define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
> +
> +#define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
> + CQSPI_REG_IRQ_IND_SRAM_FULL | \
> + CQSPI_REG_IRQ_IND_COMP)
> +
> +#define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
> + CQSPI_REG_IRQ_WATERMARK | \
> + CQSPI_REG_IRQ_UNDERFLOW)
> +
> +#define CQSPI_IRQ_STATUS_MASK 0x1FFFF
> +
> +static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
> +{
> + u32 val;
> +
> + return readl_relaxed_poll_timeout(reg, val,
> + (((clr ? ~val : val) & mask) == mask),
> + 10, CQSPI_TIMEOUT_MS * 1000);
> +}
> +
> +static bool cqspi_is_idle(struct cqspi_st *cqspi)
> +{
> + u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
> +
> + return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
> +}
> +
> +static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
> +{
> + u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
> +
> + reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
> + return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
> +}
> +
> +static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
> +{
> + struct cqspi_st *cqspi = dev;
> + unsigned int irq_status;
> +
> + /* Read interrupt status */
> + irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
> +
> + /* Clear interrupt */
> + writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
> +
> + irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
> +
> + if (irq_status)
> + complete(&cqspi->transfer_complete);
> +
> + return IRQ_HANDLED;
> +}
> +
> +static u32 cqspi_cmd2addr(const struct spi_mem_op *op)
> +{
> + const unsigned char *addr_buf = NULL;
> + unsigned int tmpbufsize;
> + unsigned int addr = 0;
> + u8 *tmpbuf;
> + int i;
> +
> + tmpbufsize = op->addr.nbytes + op->dummy.nbytes;
> + tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
> + if (!tmpbuf)
> + return -ENOMEM;
> +
> + if (op->addr.nbytes) {
> + for (i = 0; i < op->addr.nbytes; i++)
> + tmpbuf[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
> +
> + addr_buf = tmpbuf;
> + }
> + /* Invalid address return zero. */
> + if (op->addr.nbytes > 4)
> + return 0;
> +

Too late, should have checked this at the beginning.

> + for (i = 0; i < op->addr.nbytes; i++) {
> + addr = addr << 8;
> + addr |= addr_buf[i];
> + }
> +
> + return addr;
> +}
> +
> +static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
> +{
> + u32 rdreg = 0;
> +
> + rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
> + rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
> + rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
> +
> + return rdreg;
> +}
> +
> +static int cqspi_wait_idle(struct cqspi_st *cqspi)
> +{
> + const unsigned int poll_idle_retry = 3;
> + unsigned int count = 0;
> + unsigned long timeout;
> +
> + timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
> + while (1) {
> + /*
> + * Read few times in succession to ensure the controller
> + * is indeed idle, that is, the bit does not transition
> + * low again.
> + */
> + if (cqspi_is_idle(cqspi))
> + count++;
> + else
> + count = 0;
> +
> + if (count >= poll_idle_retry)
> + return 0;
> +
> + if (time_after(jiffies, timeout)) {
> + /* Timeout, in busy mode. */
> + dev_err(&cqspi->pdev->dev,
> + "QSPI is still busy after %dms timeout.\n",
> + CQSPI_TIMEOUT_MS);
> + return -ETIMEDOUT;
> + }
> +
> + cpu_relax();
> + }
> +}
> +
> +static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
> +{
> + void __iomem *reg_base = cqspi->iobase;
> + int ret;
> +
> + /* Write the CMDCTRL without start execution. */
> + writel(reg, reg_base + CQSPI_REG_CMDCTRL);
> + /* Start execute */
> + reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
> + writel(reg, reg_base + CQSPI_REG_CMDCTRL);
> +
> + /* Polling for completion. */
> + ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
> + CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
> + if (ret) {
> + dev_err(&cqspi->pdev->dev,
> + "Flash command execution timed out.\n");
> + return ret;
> + }
> +
> + /* Polling QSPI idle status. */
> + return cqspi_wait_idle(cqspi);
> +}
> +
> +static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
> + const struct spi_mem_op *op)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + void __iomem *reg_base = cqspi->iobase;
> + u8 *rxbuf = op->data.buf.in;
> + u8 opcode = op->cmd.opcode;
> + size_t n_rx = op->data.nbytes;
> + unsigned int rdreg;
> + unsigned int reg;
> + size_t read_len;
> + int status;
> +
> + if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
> + dev_err(&cqspi->pdev->dev,
> + "Invalid input argument, len %zu rxbuf 0x%p\n",
> + n_rx, rxbuf);
> + return -EINVAL;
> + }
> +
> + reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
> +
> + rdreg = cqspi_calc_rdreg(f_pdata);
> + writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
> +
> + reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
> +
> + /* 0 means 1 byte. */
> + reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
> + << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
> + status = cqspi_exec_flash_cmd(cqspi, reg);
> + if (status)
> + return status;
> +
> + reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
> +
> + /* Put the read value into rx_buf */
> + read_len = (n_rx > 4) ? 4 : n_rx;
> + memcpy(rxbuf, &reg, read_len);
> + rxbuf += read_len;
> +
> + if (n_rx > 4) {
> + reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
> +
> + read_len = n_rx - read_len;
> + memcpy(rxbuf, &reg, read_len);
> + }
> +
> + return 0;
> +}
> +
> +static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
> + const struct spi_mem_op *op)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + void __iomem *reg_base = cqspi->iobase;
> + const u8 opcode = op->cmd.opcode;
> + const u8 *txbuf = op->data.buf.out;
> + size_t n_tx = op->data.nbytes;
> + unsigned int reg;
> + unsigned int data;
> + size_t write_len;
> +
> + if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
> + dev_err(&cqspi->pdev->dev,
> + "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
> + n_tx, txbuf);
> + return -EINVAL;
> + }
> +
> + reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
> +
> + if (op->addr.nbytes) {
> + reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
> + reg |= ((op->addr.nbytes - 1) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
> + << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
> +
> + writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);

Don't you need to call cqspi_cmd2addr() before writing address to
register here?

> + }
> +
> + if (n_tx) {
> + reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
> + reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
> + << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
> + data = 0;
> + write_len = (n_tx > 4) ? 4 : n_tx;
> + memcpy(&data, txbuf, write_len);
> + txbuf += write_len;
> + writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
> +
> + if (n_tx > 4) {
> + data = 0;
> + write_len = n_tx - 4;
> + memcpy(&data, txbuf, write_len);
> + writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
> + }
> + }
> +
> + return cqspi_exec_flash_cmd(cqspi, reg);
> +}
> +
> +static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
> + const struct spi_mem_op *op)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + void __iomem *reg_base = cqspi->iobase;
> + size_t dummy_bytes = op->dummy.nbytes;
> + unsigned int reg, addr_value;
> + unsigned int dummy_clk = 0;
> +
> + if (op->addr.nbytes && cqspi->soc_selection) {
> + addr_value = cqspi_cmd2addr(op);
> + writel(addr_value, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
> + }
> +
> + reg = op->cmd.opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
> + if (!cqspi->soc_selection) {> + reg |= cqspi_calc_rdreg(f_pdata);
> +
> + /* Setup dummy clock cycles */
> + dummy_clk = op->dummy.nbytes * 8;
> + if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
> + dummy_clk = CQSPI_DUMMY_CLKS_MAX;
> +
> + if (dummy_clk / 8)
> + reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
> + << CQSPI_REG_RD_INSTR_DUMMY_LSB;
> + } else {
> + reg |= (CQSPI_INST_TYPE_QUAD & CQSPI_REG_RD_INSTR_TYPE_DATA_MASK) <<
> + CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
> +
> + if (dummy_bytes) {
> + if (dummy_bytes > CQSPI_DUMMY_BYTES_MAX)
> + dummy_bytes = CQSPI_DUMMY_BYTES_MAX;
> +
> + reg |= BIT(CQSPI_REG_RD_INSTR_MODE_EN_LSB);
> + writel(0xFF, reg_base + CQSPI_REG_MODE_BIT);
> +
> + dummy_clk = dummy_bytes * CQSPI_DUMMY_CLKS_PER_BYTE;
> + dummy_clk -= CQSPI_DUMMY_CLKS_PER_BYTE;
> +
> + if (dummy_clk)
> + reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
> + << CQSPI_REG_RD_INSTR_DUMMY_LSB;
> + }
> + }

Looks ugly.. Why would MODE BIT needs to be set in non XIP mode? Could
you drop else {} part and make if (){} block run unconditionally and see
if this still works?

> +
> + writel(reg, reg_base + CQSPI_REG_RD_INSTR);
> +
> + /* Set address width */
> + reg = readl(reg_base + CQSPI_REG_SIZE);
> + reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
> + reg |= (op->addr.nbytes - 1);
> + writel(reg, reg_base + CQSPI_REG_SIZE);
> + return 0;
> +}
> +
> +static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
> + u8 *rxbuf, loff_t from_addr,
> + const size_t n_rx)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + struct device *dev = &cqspi->pdev->dev;
> + void __iomem *reg_base = cqspi->iobase;
> + void __iomem *ahb_base = cqspi->ahb_base;
> + unsigned int remaining = n_rx;
> + unsigned int mod_bytes = n_rx % 4;
> + unsigned int bytes_to_read = 0;
> + u8 *rxbuf_end = rxbuf + n_rx;
> + int ret = 0;
> +
> + writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
> + writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
> +
> + /* Clear all interrupts. */
> + writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
> +
> + writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
> +
> + reinit_completion(&cqspi->transfer_complete);
> + writel(CQSPI_REG_INDIRECTRD_START_MASK,
> + reg_base + CQSPI_REG_INDIRECTRD);
> +
> + while (remaining > 0) {
> + if (!wait_for_completion_timeout(&cqspi->transfer_complete,
> + msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
> + ret = -ETIMEDOUT;
> +
> + bytes_to_read = cqspi_get_rd_sram_level(cqspi);
> +
> + if (ret && bytes_to_read == 0) {
> + dev_err(dev, "Indirect read timeout, no bytes\n");
> + goto failrd;
> + }
> +
> + while (bytes_to_read != 0) {
> + unsigned int word_remain = round_down(remaining, 4);
> +
> + bytes_to_read *= cqspi->fifo_width;
> + bytes_to_read = bytes_to_read > remaining ?
> + remaining : bytes_to_read;
> + bytes_to_read = round_down(bytes_to_read, 4);
> + /* Read 4 byte word chunks then single bytes */
> + if (bytes_to_read) {
> + ioread32_rep(ahb_base, rxbuf,
> + (bytes_to_read / 4));
> + } else if (!word_remain && mod_bytes) {
> + unsigned int temp = ioread32(ahb_base);
> +
> + bytes_to_read = mod_bytes;
> + memcpy(rxbuf, &temp, min((unsigned int)
> + (rxbuf_end - rxbuf),
> + bytes_to_read));
> + }
> + rxbuf += bytes_to_read;
> + remaining -= bytes_to_read;
> + bytes_to_read = cqspi_get_rd_sram_level(cqspi);
> + }
> +
> + if (remaining > 0)
> + reinit_completion(&cqspi->transfer_complete);
> + }
> +
> + /* Check indirect done status */
> + ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
> + CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
> + if (ret) {
> + dev_err(dev, "Indirect read completion error (%i)\n", ret);
> + goto failrd;
> + }
> +
> + /* Disable interrupt */
> + writel(0, reg_base + CQSPI_REG_IRQMASK);
> +
> + /* Clear indirect completion status */
> + writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
> +
> + return 0;
> +
> +failrd:
> + /* Disable interrupt */
> + writel(0, reg_base + CQSPI_REG_IRQMASK);
> +
> + /* Cancel the indirect read */
> + writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
> + reg_base + CQSPI_REG_INDIRECTRD);
> + return ret;
> +}
> +
> +static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
> + const struct spi_mem_op *op)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + void __iomem *reg_base = cqspi->iobase;
> + const u8 *txbuf = &op->cmd.opcode;
> + unsigned int reg;
> +
> + if (!cqspi->soc_selection) {

cqspi->soc_selection sounds weird. Instead just have a driver level
quirk. Something like, CQSPI_NEEDS_ADDR_SWAP in
cqspi_driver_platdata->quirks.

> + /* Set opcode. */
> + reg = op->cmd.opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
> + writel(reg, reg_base + CQSPI_REG_WR_INSTR);
> + reg = cqspi_calc_rdreg(f_pdata);
> + writel(reg, reg_base + CQSPI_REG_RD_INSTR);
> + } else {
> + reg = readl(reg_base + CQSPI_REG_CONFIG);
> + reg &= ~(CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL);
> + reg &= ~(CQSPI_REG_CONFIG_DMA_MASK);
> + writel(reg, reg_base + CQSPI_REG_CONFIG);
> +

This is fustrating... :( Why do you need to clear these bits for every
write? Isn't the code in cqspi_controller_init() enough?
I have same set of comments on multiple versions of your patch.

> + /* Set opcode. */
> + reg = txbuf[0] << CQSPI_REG_WR_INSTR_OPCODE_LSB;
> + reg |= BIT(CQSPI_REG_WR_CONFIG_WEL_DIS_FLD_POS);

Same here..

> + /* Configure the mode for address */
> + reg |= (CQSPI_INST_TYPE_QUAD & CQSPI_REG_WR_INSTR_TYPE_ADDR_MASK) <<
> + CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
> +

You keep ignoring my comments... This is wrong... DO NOT hardcode
address mode to QUAD mode without looking at op->addr.nbits


> + /* Configure the mode for data */
> + reg |= (CQSPI_INST_TYPE_QUAD & CQSPI_REG_WR_INSTR_TYPE_DATA_MASK) <<
> + CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
> + writel(reg, reg_base + CQSPI_REG_WR_INSTR);
> + /* Setup write address. */
> + reg = cqspi_cmd2addr(op);
> + writel(reg, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
> + }
> +
> + reg = readl(reg_base + CQSPI_REG_SIZE);
> + reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
> + reg |= (op->addr.nbytes - 1);
> + writel(reg, reg_base + CQSPI_REG_SIZE);
> + return 0;
> +}
> +
> +static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
> + loff_t to_addr, const u8 *txbuf,
> + const size_t n_tx)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + struct device *dev = &cqspi->pdev->dev;
> + void __iomem *reg_base = cqspi->iobase;
> + unsigned int remaining = n_tx;
> + unsigned int write_bytes;
> + int ret;
> +
> + writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
> + writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
> +
> + /* Clear all interrupts. */
> + writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
> +
> + writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
> +
> + reinit_completion(&cqspi->transfer_complete);
> + writel(CQSPI_REG_INDIRECTWR_START_MASK,
> + reg_base + CQSPI_REG_INDIRECTWR);
> + /*
> + * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
> + * Controller programming sequence, couple of cycles of
> + * QSPI_REF_CLK delay is required for the above bit to
> + * be internally synchronized by the QSPI module. Provide 5
> + * cycles of delay.
> + */
> + if (cqspi->wr_delay)
> + ndelay(cqspi->wr_delay);
> +
> + while (remaining > 0) {
> + size_t write_words, mod_bytes;
> +
> + write_bytes = remaining;
> + write_words = write_bytes / 4;
> + mod_bytes = write_bytes % 4;
> + /* Write 4 bytes at a time then single bytes. */
> + if (write_words) {
> + iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
> + txbuf += (write_words * 4);
> + }
> + if (mod_bytes) {
> + unsigned int temp = 0xFFFFFFFF;
> +
> + memcpy(&temp, txbuf, mod_bytes);
> + iowrite32(temp, cqspi->ahb_base);
> + txbuf += mod_bytes;
> + }
> +
> + if (!wait_for_completion_timeout(&cqspi->transfer_complete,
> + msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
> + dev_err(dev, "Indirect write timeout\n");
> + ret = -ETIMEDOUT;
> + goto failwr;
> + }
> +
> + remaining -= write_bytes;
> +
> + if (remaining > 0)
> + reinit_completion(&cqspi->transfer_complete);
> + }
> +
> + /* Check indirect done status */
> + ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
> + CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
> + if (ret) {
> + dev_err(dev, "Indirect write completion error (%i)\n", ret);
> + goto failwr;
> + }
> +
> + /* Disable interrupt. */
> + writel(0, reg_base + CQSPI_REG_IRQMASK);
> +
> + /* Clear indirect completion status */
> + writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
> +
> + cqspi_wait_idle(cqspi);
> +
> + return 0;
> +
> +failwr:
> + /* Disable interrupt. */
> + writel(0, reg_base + CQSPI_REG_IRQMASK);
> +
> + /* Cancel the indirect write */
> + writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
> + reg_base + CQSPI_REG_INDIRECTWR);
> + return ret;
> +}
> +
> +static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + void __iomem *reg_base = cqspi->iobase;
> + unsigned int chip_select = f_pdata->cs;
> + unsigned int reg;
> +
> + reg = readl(reg_base + CQSPI_REG_CONFIG);
> + reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
> +
> + /* Convert CS if without decoder.
> + * CS0 to 4b'1110
> + * CS1 to 4b'1101
> + * CS2 to 4b'1011
> + * CS3 to 4b'0111
> + */
> + chip_select = 0xF & ~(1 << chip_select);
> +
> + reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
> + << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
> + reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
> + << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
> + writel(reg, reg_base + CQSPI_REG_CONFIG);
> +}
> +
> +static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
> + const unsigned int ns_val)
> +{
> + unsigned int ticks;
> +
> + ticks = ref_clk_hz / 1000; /* kHz */
> + ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
> +
> + return ticks;
> +}
> +
> +static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + void __iomem *iobase = cqspi->iobase;
> + const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
> + unsigned int tshsl, tchsh, tslch, tsd2d;
> + unsigned int reg;
> + unsigned int tsclk;
> +
> + /* calculate the number of ref ticks for one sclk tick */
> + tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
> +
> + tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
> + /* this particular value must be at least one sclk */
> + if (tshsl < tsclk)
> + tshsl = tsclk;
> +
> + tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
> + tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
> + tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
> +
> + reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
> + << CQSPI_REG_DELAY_TSHSL_LSB;
> + reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
> + << CQSPI_REG_DELAY_TCHSH_LSB;
> + reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
> + << CQSPI_REG_DELAY_TSLCH_LSB;
> + reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
> + << CQSPI_REG_DELAY_TSD2D_LSB;
> + writel(reg, iobase + CQSPI_REG_DELAY);
> +}
> +
> +static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
> +{
> + const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
> + void __iomem *reg_base = cqspi->iobase;
> + u32 reg, div;
> +
> + /* Recalculate the baudrate divisor based on QSPI specification. */
> + div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
> +
> + reg = readl(reg_base + CQSPI_REG_CONFIG);
> + reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
> + reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
> + writel(reg, reg_base + CQSPI_REG_CONFIG);
> +}
> +
> +static void cqspi_readdata_capture(struct cqspi_st *cqspi,
> + const bool bypass,
> + const unsigned int delay)
> +{
> + void __iomem *reg_base = cqspi->iobase;
> + unsigned int reg;
> +
> + reg = readl(reg_base + CQSPI_REG_READCAPTURE);
> +
> + if (bypass)
> + reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
> + else
> + reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
> +
> + reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
> + << CQSPI_REG_READCAPTURE_DELAY_LSB);
> +
> + reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
> + << CQSPI_REG_READCAPTURE_DELAY_LSB;
> +
> + writel(reg, reg_base + CQSPI_REG_READCAPTURE);
> +}
> +
> +static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
> +{
> + void __iomem *reg_base = cqspi->iobase;
> + unsigned int reg;
> +
> + reg = readl(reg_base + CQSPI_REG_CONFIG);
> +
> + if (enable)
> + reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
> + else
> + reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
> +
> + writel(reg, reg_base + CQSPI_REG_CONFIG);
> +}
> +
> +static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
> + unsigned long sclk)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + int switch_cs = (cqspi->current_cs != f_pdata->cs);
> + int switch_ck = (cqspi->sclk != sclk);
> +
> + if (switch_cs || switch_ck)
> + cqspi_controller_enable(cqspi, 0);
> +
> + /* Switch chip select. */
> + if (switch_cs) {
> + cqspi->current_cs = f_pdata->cs;
> + cqspi_chipselect(f_pdata);
> + }
> +
> + /* Setup baudrate divisor and delays */
> + if (switch_ck) {
> + cqspi->sclk = sclk;
> + cqspi_config_baudrate_div(cqspi);
> + cqspi_delay(f_pdata);
> + cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
> + f_pdata->read_delay);
> + }
> +
> + if (switch_cs || switch_ck)
> + cqspi_controller_enable(cqspi, 1);
> +}
> +
> +static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
> + const struct spi_mem_op *op)
> +{
> + f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
> + f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
> + f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
> +
> + if (op->data.dir == SPI_MEM_DATA_IN) {
> + switch (op->data.buswidth) {
> + case 1:
> + f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
> + break;
> + case 2:
> + f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
> + break;
> + case 4:
> + f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
> + break;
> + case 8:
> + f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
> + break;
> + default:
> + return -EINVAL;
> + }
> + }
> +
> + return 0;
> +}
> +
> +static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
> + const struct spi_mem_op *op)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + loff_t to = op->addr.val;
> + size_t len = op->data.nbytes;
> + const u_char *buf = op->data.buf.out;
> + int ret;
> +
> + ret = cqspi_set_protocol(f_pdata, op);
> + if (ret)
> + return ret;
> +
> + ret = cqspi_write_setup(f_pdata, op);
> + if (ret)
> + return ret;
> +
> + if (cqspi->use_dac_mode && ((to + len) <= cqspi->ahb_size)) {
> + memcpy_toio(cqspi->ahb_base + to, buf, len);
> + return cqspi_wait_idle(cqspi);
> + }
> +
> + return cqspi_indirect_write_execute(f_pdata, to, buf, len);
> +}
> +
> +static void cqspi_rx_dma_callback(void *param)
> +{
> + struct cqspi_st *cqspi = param;
> +
> + complete(&cqspi->rx_dma_complete);
> +}
> +
> +static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
> + u_char *buf, loff_t from, size_t len)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + struct device *ddev = cqspi->rx_chan->device->dev;
> + enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
> + dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
> + int ret = 0;
> + struct dma_async_tx_descriptor *tx;
> + dma_cookie_t cookie;
> + dma_addr_t dma_dst;
> +
> + if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
> + memcpy_fromio(buf, cqspi->ahb_base + from, len);
> + return 0;
> + }
> +
> + dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
> + if (dma_mapping_error(ddev, dma_dst)) {
> + dev_err(ddev, "dma mapping failed\n");
> + return -ENOMEM;
> + }
> + tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
> + len, flags);
> + if (!tx) {
> + dev_err(ddev, "device_prep_dma_memcpy error\n");
> + ret = -EIO;
> + goto err_unmap;
> + }
> +
> + tx->callback = cqspi_rx_dma_callback;
> + tx->callback_param = cqspi;
> + cookie = tx->tx_submit(tx);
> + reinit_completion(&cqspi->rx_dma_complete);
> +
> + ret = dma_submit_error(cookie);
> + if (ret) {
> + dev_err(ddev, "dma_submit_error %d\n", cookie);
> + ret = -EIO;
> + goto err_unmap;
> + }
> +
> + dma_async_issue_pending(cqspi->rx_chan);
> + if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
> + msecs_to_jiffies(len))) {
> + dmaengine_terminate_sync(cqspi->rx_chan);
> + dev_err(ddev, "DMA wait_for_completion_timeout\n");
> + ret = -ETIMEDOUT;
> + goto err_unmap;
> + }
> +
> +err_unmap:
> + dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
> +
> + return ret;
> +}
> +
> +static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
> + const struct spi_mem_op *op)
> +{
> + struct cqspi_st *cqspi = f_pdata->cqspi;
> + loff_t from = op->addr.val;
> + size_t len = op->data.nbytes;
> + u_char *buf = op->data.buf.in;
> + int ret;
> +
> + ret = cqspi_set_protocol(f_pdata, op);
> + if (ret)
> + return ret;
> +
> + ret = cqspi_read_setup(f_pdata, op);
> + if (ret)
> + return ret;
> +
> + if (cqspi->use_dac_mode && ((from + len) <= cqspi->ahb_size))
> + return cqspi_direct_read_execute(f_pdata, buf, from, len);
> +
> + return cqspi_indirect_read_execute(f_pdata, buf, from, len);
> +}
> +
> +static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
> +{
> + struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
> + struct cqspi_flash_pdata *f_pdata;
> +
> + f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
> + cqspi_configure(f_pdata, mem->spi->max_speed_hz);
> +
> + if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
> + if (!op->addr.nbytes)
> + return cqspi_command_read(f_pdata, op);
> +
> + return cqspi_read(f_pdata, op);
> + }
> +
> + if (!op->addr.nbytes || !op->data.buf.out)
> + return cqspi_command_write(f_pdata, op);
> +
> + return cqspi_write(f_pdata, op);
> +}
> +
> +static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
> +{
> + int ret;
> +
> + ret = cqspi_mem_process(mem, op);
> + if (ret)
> + dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
> +
> + return ret;
> +}
> +
> +static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
> + struct cqspi_flash_pdata *f_pdata,
> + struct device_node *np)
> +{
> + if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
> + dev_err(&pdev->dev, "couldn't determine read-delay\n");
> + return -ENXIO;
> + }
> +
> + if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
> + dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
> + return -ENXIO;
> + }
> +
> + if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
> + dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
> + return -ENXIO;
> + }
> +
> + if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
> + dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
> + return -ENXIO;
> + }
> +
> + if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
> + dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
> + return -ENXIO;
> + }
> +
> + if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
> + dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
> + return -ENXIO;
> + }
> +
> + return 0;
> +}
> +
> +static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
> +{
> + struct device *dev = &cqspi->pdev->dev;
> + struct device_node *np = dev->of_node;
> +
> + if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
> + dev_err(dev, "couldn't determine fifo-depth\n");
> + return -ENXIO;
> + }
> +
> + if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
> + dev_err(dev, "couldn't determine fifo-width\n");
> + return -ENXIO;
> + }
> +
> + if (of_property_read_u32(np, "cdns,trigger-address",
> + &cqspi->trigger_address)) {
> + dev_err(dev, "couldn't determine trigger-address\n");
> + return -ENXIO;
> + }
> +
> + if (!cqspi->soc_selection)
> + cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
> +
> + return 0;
> +}
> +
> +static void cqspi_controller_init(struct cqspi_st *cqspi)
> +{
> + cqspi_controller_enable(cqspi, 0);
> +
> + /* Configure the remap address register, no remap */
> + writel(0, cqspi->iobase + CQSPI_REG_REMAP);
> +
> + /* Disable all interrupts. */
> + writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
> +
> + /* Configure the SRAM split to 1:1 . */
> + writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
> +
> + /* Load indirect trigger address. */
> + writel(cqspi->trigger_address,
> + cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
> +
> + /* Program read watermark -- 1/2 of the FIFO. */
> + writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
> + cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
> + /* Program write watermark -- 1/8 of the FIFO. */
> + writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
> + cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
> +
> + if (!cqspi->use_dac_mode) {
> + u32 reg;
> +
> + reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
> + reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
> + writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
> +
> + reg = readl(cqspi->iobase + CQSPI_REG_WR_COMPLETION_CTRL);
> + reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
> + writel(reg, cqspi->iobase + CQSPI_REG_WR_COMPLETION_CTRL);
> + }
> +
> + cqspi_controller_enable(cqspi, 1);
> +}
> +
> +static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
> +{
> + dma_cap_mask_t mask;
> +
> + dma_cap_zero(mask);
> + dma_cap_set(DMA_MEMCPY, mask);
> +
> + cqspi->rx_chan = dma_request_chan_by_mask(&mask);
> + if (IS_ERR(cqspi->rx_chan)) {
> + int ret = PTR_ERR(cqspi->rx_chan);
> +
> + if (ret != -EPROBE_DEFER)
> + dev_err(&cqspi->pdev->dev, "No Rx DMA available\n");
> + cqspi->rx_chan = NULL;
> +
> + return ret;
> + }
> + init_completion(&cqspi->rx_dma_complete);
> +
> + return 0;
> +}
> +
> +static const struct spi_controller_mem_ops cqspi_mem_ops = {
> + .exec_op = cqspi_exec_mem_op,
> +};
> +
> +static int cqspi_setup_flash(struct cqspi_st *cqspi)
> +{
> + struct platform_device *pdev = cqspi->pdev;
> + struct device *dev = &pdev->dev;
> + struct device_node *np = dev->of_node;
> + struct cqspi_flash_pdata *f_pdata;
> + unsigned int cs;
> + int ret;
> +
> + /* Get flash device data */
> + for_each_available_child_of_node(dev->of_node, np) {
> + ret = of_property_read_u32(np, "reg", &cs);
> + if (ret) {
> + dev_err(dev, "Couldn't determine chip select.\n");
> + return -EINVAL;
> + }
> +
> + if (cs >= CQSPI_MAX_CHIPSELECT) {
> + dev_err(dev, "Chip select %d out of range.\n", cs);
> + return -EINVAL;
> + }
> +
> + f_pdata = &cqspi->f_pdata[cs];
> + f_pdata->cqspi = cqspi;
> + f_pdata->cs = cs;
> +
> + return cqspi_of_get_flash_pdata(pdev, f_pdata, np);
> + }
> +
> + return 0;
> +}
> +
> +static int cqspi_probe(struct platform_device *pdev)
> +{
> + const struct cqspi_driver_platdata *ddata;
> + struct reset_control *rstc, *rstc_ocp;
> + struct device *dev = &pdev->dev;
> + struct spi_master *master;
> + struct resource *res_ahb;
> + struct cqspi_st *cqspi;
> + struct resource *res;
> + int ret;
> + int irq;
> +
> + master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
> + if (!master) {
> + dev_err(&pdev->dev, "spi_alloc_master failed\n");
> + return -ENOMEM;
> + }
> + master->mode_bits = SPI_RX_QUAD | SPI_TX_DUAL | SPI_RX_DUAL;
> + master->mem_ops = &cqspi_mem_ops;
> + master->dev.of_node = pdev->dev.of_node;
> +
> + cqspi = spi_master_get_devdata(master);
> +
> + cqspi->pdev = pdev;
> +
> + ddata = of_device_get_match_data(dev);
> + if (ddata->quirks & CQSPI_DISABLE_DAC_MODE)
> + cqspi->soc_selection = true;
> +
> + /* Obtain configuration from OF. */
> + ret = cqspi_of_get_pdata(cqspi);
> + if (ret) {
> + dev_err(dev, "Cannot get mandatory OF data.\n");
> + return -ENODEV;
> + }
> +
> + /* Obtain QSPI clock. */
> + cqspi->clk = devm_clk_get(dev, NULL);
> + if (IS_ERR(cqspi->clk)) {
> + dev_err(dev, "Cannot claim QSPI clock.\n");
> + return PTR_ERR(cqspi->clk);
> + }
> +
> + /* Obtain and remap controller address. */
> + res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> + cqspi->iobase = devm_ioremap_resource(dev, res);
> + if (IS_ERR(cqspi->iobase)) {
> + dev_err(dev, "Cannot remap controller address.\n");
> + return PTR_ERR(cqspi->iobase);
> + }
> +
> + /* Obtain and remap AHB address. */
> + res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
> + cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
> + if (IS_ERR(cqspi->ahb_base)) {
> + dev_err(dev, "Cannot remap AHB address.\n");
> + return PTR_ERR(cqspi->ahb_base);
> + }
> + cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
> + cqspi->ahb_size = resource_size(res_ahb);
> +
> + init_completion(&cqspi->transfer_complete);
> +
> + /* Obtain IRQ line. */
> + irq = platform_get_irq(pdev, 0);
> + if (irq < 0)
> + return -ENXIO;
> +
> + pm_runtime_enable(dev);
> + ret = pm_runtime_get_sync(dev);
> + if (ret < 0) {
> + pm_runtime_put_noidle(dev);
> + return ret;
> + }
> +
> + ret = clk_prepare_enable(cqspi->clk);
> + if (ret) {
> + dev_err(dev, "Cannot enable QSPI clock.\n");
> + goto probe_clk_failed;
> + }
> +
> + /* Obtain QSPI reset control */
> + rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
> + if (IS_ERR(rstc)) {
> + dev_err(dev, "Cannot get QSPI reset.\n");
> + goto probe_reset_failed;
> + }
> +
> + rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
> + if (IS_ERR(rstc_ocp)) {
> + dev_err(dev, "Cannot get QSPI OCP reset.\n");
> + goto probe_reset_failed;
> + }
> +
> + reset_control_assert(rstc);
> + reset_control_deassert(rstc);
> +
> + reset_control_assert(rstc_ocp);
> + reset_control_deassert(rstc_ocp);
> +
> + cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
> + ddata = of_device_get_match_data(dev);
> + if (ddata) {
> + if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
> + cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC,
> + cqspi->master_ref_clk_hz);
> + if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
> + master->mode_bits |= SPI_RX_OCTAL;
> + if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
> + cqspi->use_dac_mode = true;
> + }
> +
> + ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
> + pdev->name, cqspi);
> + if (ret) {
> + dev_err(dev, "Cannot request IRQ.\n");
> + goto probe_reset_failed;
> + }
> +
> + cqspi_wait_idle(cqspi);
> + cqspi_controller_init(cqspi);
> + cqspi->current_cs = -1;
> + cqspi->sclk = 0;
> +
> + ret = cqspi_setup_flash(cqspi);
> + if (ret) {
> + dev_err(dev, "failed to setup flash parameters %d\n", ret);
> + goto probe_setup_failed;
> + }
> +
> + if (cqspi->use_dac_mode) {
> + ret = cqspi_request_mmap_dma(cqspi);
> + if (ret == -EPROBE_DEFER)
> + goto probe_setup_failed;
> + }
> +
> + ret = devm_spi_register_master(dev, master);
> + if (ret) {
> + dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
> + goto probe_setup_failed;
> + }
> +
> + return 0;
> +probe_setup_failed:
> + cqspi_controller_enable(cqspi, 0);
> +probe_reset_failed:
> + clk_disable_unprepare(cqspi->clk);
> +probe_clk_failed:
> + pm_runtime_put_sync(dev);
> + pm_runtime_disable(dev);
> + return ret;
> +}
> +
> +static int cqspi_remove(struct platform_device *pdev)
> +{
> + struct cqspi_st *cqspi = platform_get_drvdata(pdev);
> +
> + cqspi_controller_enable(cqspi, 0);
> +
> + if (cqspi->rx_chan)
> + dma_release_channel(cqspi->rx_chan);
> +
> + clk_disable_unprepare(cqspi->clk);
> +
> + pm_runtime_put_sync(&pdev->dev);
> + pm_runtime_disable(&pdev->dev);
> +
> + return 0;
> +}
> +
> +#ifdef CONFIG_PM_SLEEP
> +static int cqspi_suspend(struct device *dev)
> +{
> + struct cqspi_st *cqspi = dev_get_drvdata(dev);
> +
> + cqspi_controller_enable(cqspi, 0);
> + return 0;
> +}
> +
> +static int cqspi_resume(struct device *dev)
> +{
> + struct cqspi_st *cqspi = dev_get_drvdata(dev);
> +
> + cqspi_controller_enable(cqspi, 1);
> + return 0;
> +}
> +
> +static const struct dev_pm_ops cqspi__dev_pm_ops = {
> + .suspend = cqspi_suspend,
> + .resume = cqspi_resume,
> +};
> +
> +#define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
> +#else
> +#define CQSPI_DEV_PM_OPS NULL
> +#endif
> +
> +static const struct cqspi_driver_platdata cdns_qspi = {
> + .quirks = CQSPI_DISABLE_DAC_MODE,
> +};
> +
> +static const struct cqspi_driver_platdata k2g_qspi = {
> + .quirks = CQSPI_NEEDS_WR_DELAY,
> +};
> +
> +static const struct cqspi_driver_platdata am654_ospi = {
> + .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
> + .quirks = CQSPI_NEEDS_WR_DELAY,
> +};
> +
> +static const struct cqspi_driver_platdata intel_lgm_qspi = {
> + .quirks = CQSPI_DISABLE_DAC_MODE,
> +};
> +
> +static const struct of_device_id cqspi_dt_ids[] = {
> + {
> + .compatible = "cdns,qspi-nor",
> + .data = &cdns_qspi,
> + },
> + {
> + .compatible = "ti,k2g-qspi",
> + .data = &k2g_qspi,
> + },
> + {
> + .compatible = "ti,am654-ospi",
> + .data = &am654_ospi,
> + },
> + {
> + .compatible = "intel,lgm-qspi",
> + .data = &intel_lgm_qspi,
> + },
> + { /* end of table */ }
> +};
> +
> +MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
> +
> +static struct platform_driver cqspi_platform_driver = {
> + .probe = cqspi_probe,
> + .remove = cqspi_remove,
> + .driver = {
> + .name = CQSPI_NAME,
> + .pm = CQSPI_DEV_PM_OPS,
> + .of_match_table = cqspi_dt_ids,
> + },
> +};
> +
> +module_platform_driver(cqspi_platform_driver);
> +
> +MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
> +MODULE_LICENSE("GPL v2");
> +MODULE_ALIAS("platform:" CQSPI_NAME);
> +MODULE_AUTHOR("Ley Foon Tan <[email protected]>");
> +MODULE_AUTHOR("Graham Moore <[email protected]>");
> +MODULE_AUTHOR("Vadivel Murugan R <[email protected]>");
> +MODULE_AUTHOR("Vignesh Raghavendra <[email protected]>");
>

Subject: Re: [PATCH v8 2/2] spi: cadence-quadpsi: Add support for the Cadence QSPI controller

Hi Vignesh,

   Thank you so much for the review comments, kindly please find my
answers in inline.

On 5/2/2020 1:36 PM, Vignesh Raghavendra wrote:
>
> On 1/29/2020 12:54 PM, Ramuthevar,Vadivel MuruganX wrote:
>> From: Ramuthevar Vadivel Murugan <[email protected]>
>>
>> Add support for the Cadence QSPI controller. This controller is
>> present in the Intel Lightning Mountain(LGM) SoCs, Altera and TI SoCs.
>> This driver has been tested on the Intel LGM SoCs.
>>
>> This driver does not support generic SPI and also the implementation
>> only supports spi-mem interface to replace the existing driver in
>> mtd/spi-nor/cadence-quadspi.c, the existing driver only support SPI-NOR
>> flash memory.
>>
>> Signed-off-by: Vignesh Raghavendra <[email protected]>
>> Signed-off-by: Ramuthevar Vadivel Murugan <[email protected]>
>> Reported-by: kbuild test robot <[email protected]>
>> Reported-by: Dan Carpenter <[email protected]>
>> ---
>> drivers/spi/Kconfig | 9 +
>> drivers/spi/Makefile | 1 +
>> drivers/spi/spi-cadence-quadspi.c | 1510 +++++++++++++++++++++++++++++++++++++
>> 3 files changed, 1520 insertions(+)
>> create mode 100644 drivers/spi/spi-cadence-quadspi.c
>>
>> diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig
>> index 870f7797b56b..2210e4582796 100644
>> --- a/drivers/spi/Kconfig
>> +++ b/drivers/spi/Kconfig
>> @@ -193,6 +193,15 @@ config SPI_CADENCE
>> This selects the Cadence SPI controller master driver
>> used by Xilinx Zynq and ZynqMP.
>>
>> +config SPI_CADENCE_QUADSPI
>> + tristate "Cadence Quad SPI controller"
>> + depends on OF && (ARM || ARM64 || COMPILE_TEST || X86)
>> + depends on MTD || MTD_SPI_NOR || MTD_SPI_NAND
> Note that this driver is now a SPI MEM driver and therefore has no
> dependency on any part of MTD code. Although we need MTD layer to
> communicate with SPI Flash, we should be able to compile and enable this
> driver even with MTD framework disabled.
>
> So I suggest to drop this depends on clause. This also increase build
> test coverage with rand configs
Okay, will drop it, didn't aware of test coverage, Thanks!
>> + help
>> + Cadence QSPI is a specialized controller for connecting an SPI
>> + Flash over 1/2/4/8-bit wide bus. This enables support for the Octal
>> + and Quad SPI variants of Cadence QSPI IP.
>> +
>> config SPI_CLPS711X
>> tristate "CLPS711X host SPI controller"
>> depends on ARCH_CLPS711X || COMPILE_TEST
>> diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile
>> index bb49c9e6d0a0..288f5fa903fe 100644
>> --- a/drivers/spi/Makefile
>> +++ b/drivers/spi/Makefile
>> @@ -29,6 +29,7 @@ obj-$(CONFIG_SPI_BCM_QSPI) += spi-iproc-qspi.o spi-brcmstb-qspi.o spi-bcm-qspi.
>> obj-$(CONFIG_SPI_BITBANG) += spi-bitbang.o
>> obj-$(CONFIG_SPI_BUTTERFLY) += spi-butterfly.o
>> obj-$(CONFIG_SPI_CADENCE) += spi-cadence.o
>> +obj-$(CONFIG_SPI_CADENCE_QUADSPI) += spi-cadence-quadspi.o
>> obj-$(CONFIG_SPI_CLPS711X) += spi-clps711x.o
>> obj-$(CONFIG_SPI_COLDFIRE_QSPI) += spi-coldfire-qspi.o
>> obj-$(CONFIG_SPI_DAVINCI) += spi-davinci.o
>> diff --git a/drivers/spi/spi-cadence-quadspi.c b/drivers/spi/spi-cadence-quadspi.c
>> new file mode 100644
>> index 000000000000..5b0609260f73
>> --- /dev/null
>> +++ b/drivers/spi/spi-cadence-quadspi.c
>> @@ -0,0 +1,1510 @@
>> +// SPDX-License-Identifier: GPL-2.0-only
>> +/*
>> + * Driver for Cadence QSPI Controller
>> + *
>> + * Copyright Altera Corporation (C) 2012-2014. All rights reserved.
>> + * Copyright Intel Corporation (C) 2019-2020. All rights reserved.
>> + * Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
>> + */
> Could you convert this entire comment into C++ style (// for all lines)
> like rest of the files under drivers/spi
Sure , I will do that.
>> +#include <linux/clk.h>
>> +#include <linux/completion.h>
>> +#include <linux/delay.h>
>> +#include <linux/dma-mapping.h>
>> +#include <linux/dmaengine.h>
>> +#include <linux/err.h>
>> +#include <linux/errno.h>
>> +#include <linux/interrupt.h>
>> +#include <linux/io.h>
>> +#include <linux/iopoll.h>
>> +#include <linux/jiffies.h>
>> +#include <linux/kernel.h>
>> +#include <linux/module.h>
>> +#include <linux/of_device.h>
>> +#include <linux/of.h>
>> +#include <linux/platform_device.h>
>> +#include <linux/pm_runtime.h>
>> +#include <linux/reset.h>
>> +#include <linux/sched.h>
>> +#include <linux/spi/spi.h>
>> +#include <linux/spi/spi-mem.h>
>> +#include <linux/timer.h>
>> +
>> +#define CQSPI_NAME "cadence-qspi"
>> +#define CQSPI_MAX_CHIPSELECT 16
>> +
>> +/* Quirks */
>> +#define CQSPI_NEEDS_WR_DELAY BIT(0)
>> +#define CQSPI_DISABLE_DAC_MODE BIT(1)
>> +
>> +/* Capabilities*/
>> +#define CQSPI_SUPPORTS_OCTAL BIT(0)
>> +
>> +struct cqspi_st;
>> +
>> +struct cqspi_flash_pdata {
>> + struct cqspi_st *cqspi;
>> + u32 clk_rate;
>> + u32 read_delay;
>> + u32 tshsl_ns;
>> + u32 tsd2d_ns;
>> + u32 tchsh_ns;
>> + u32 tslch_ns;
>> + u8 inst_width;
>> + u8 addr_width;
>> + u8 data_width;
>> + u8 cs;
>> + bool registered;
>> +};
>> +
>> +struct cqspi_st {
>> + struct platform_device *pdev;
>> +
>> + struct clk *clk;
>> + unsigned int sclk;
>> +
>> + void __iomem *iobase;
>> + void __iomem *ahb_base;
>> + resource_size_t ahb_size;
>> + struct completion transfer_complete;
>> +
>> + struct dma_chan *rx_chan;
>> + struct completion rx_dma_complete;
>> + dma_addr_t mmap_phys_base;
>> +
>> + int current_cs;
>> + unsigned long master_ref_clk_hz;
>> + u32 fifo_depth;
>> + u32 fifo_width;
>> + u32 bus_num;
>> + u32 num_chipselect;
>> + bool rclk_en;
>> + u32 trigger_address;
>> + u32 wr_delay;
>> + bool use_dac_mode;
>> + bool soc_selection;
>> + struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
>> +};
>> +
>> +struct cqspi_driver_platdata {
>> + u32 hwcaps_mask;
>> + u8 quirks;
>> +};
>> +
>> +/* Operation timeout value */
>> +#define CQSPI_TIMEOUT_MS 500
>> +#define CQSPI_READ_TIMEOUT_MS 10
>> +
>> +/* Instruction type */
>> +#define CQSPI_INST_TYPE_SINGLE 0
>> +#define CQSPI_INST_TYPE_DUAL 1
>> +#define CQSPI_INST_TYPE_QUAD 2
>> +#define CQSPI_INST_TYPE_OCTAL 3
>> +
>> +#define CQSPI_DUMMY_CLKS_PER_BYTE 8
>> +#define CQSPI_DUMMY_BYTES_MAX 4
>> +#define CQSPI_DUMMY_CLKS_MAX 31
>> +
>> +#define CQSPI_STIG_DATA_LEN_MAX 8
>> +
>> +/* Register map */
>> +#define CQSPI_REG_CONFIG 0x00
>> +#define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
>> +#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
>> +#define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
>> +#define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
>> +#define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
>> +#define CQSPI_REG_CONFIG_BAUD_LSB 19
>> +#define CQSPI_REG_CONFIG_IDLE_LSB 31
>> +#define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
>> +#define CQSPI_REG_CONFIG_BAUD_MASK 0xF
>> +
>> +#define CQSPI_REG_RD_INSTR 0x04
>> +#define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
>> +#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
>> +#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
>> +#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
>> +#define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
>> +#define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
>> +#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
>> +#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
>> +#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
>> +#define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
>> +
>> +#define CQSPI_REG_WR_INSTR 0x08
>> +#define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
>> +#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
>> +#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
>
>> +#define CQSPI_REG_WR_INSTR_TYPE_ADDR_MASK 3
>> +#define CQSPI_REG_WR_INSTR_TYPE_DATA_MASK 3
>> +#define CQSPI_REG_WR_CONFIG_WEL_DIS_FLD_POS 8
>> +
> Please use space b/w #define and Macro name to be consistent with rest
> of the Macro definitions.
Noted, will fix it .
>> +#define CQSPI_REG_DELAY 0x0C
>> +#define CQSPI_REG_DELAY_TSLCH_LSB 0
>> +#define CQSPI_REG_DELAY_TCHSH_LSB 8
>> +#define CQSPI_REG_DELAY_TSD2D_LSB 16
>> +#define CQSPI_REG_DELAY_TSHSL_LSB 24
>> +#define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
>> +#define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
>> +#define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
>> +#define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
>> +
>> +#define CQSPI_REG_READCAPTURE 0x10
>> +#define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
>> +#define CQSPI_REG_READCAPTURE_DELAY_LSB 1
>> +#define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
>> +
>> +#define CQSPI_REG_SIZE 0x14
>> +#define CQSPI_REG_SIZE_ADDRESS_LSB 0
>> +#define CQSPI_REG_SIZE_PAGE_LSB 4
>> +#define CQSPI_REG_SIZE_BLOCK_LSB 16
>> +#define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
>> +#define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
>> +#define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
>> +
>> +#define CQSPI_REG_SRAMPARTITION 0x18
>> +#define CQSPI_REG_INDIRECTTRIGGER 0x1C
>> +
>> +#define CQSPI_REG_DMA 0x20
>> +#define CQSPI_REG_DMA_SINGLE_LSB 0
>> +#define CQSPI_REG_DMA_BURST_LSB 8
>> +#define CQSPI_REG_DMA_SINGLE_MASK 0xFF
>> +#define CQSPI_REG_DMA_BURST_MASK 0xFF
>> +
>> +#define CQSPI_REG_REMAP 0x24
>> +#define CQSPI_REG_MODE_BIT 0x28
>> +
>> +#define CQSPI_REG_SDRAMLEVEL 0x2C
>> +#define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
>> +#define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
>> +#define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
>> +#define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
>> +
>> +#define CQSPI_REG_WR_COMPLETION_CTRL 0x38
>> +#define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14)
>> +
>> +#define CQSPI_REG_IRQSTATUS 0x40
>> +#define CQSPI_REG_IRQMASK 0x44
>> +
>> +#define CQSPI_REG_INDIRECTRD 0x60
>> +#define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
>> +#define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
>> +#define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
>> +
>> +#define CQSPI_REG_INDIRECTRDWATERMARK 0x64
>> +#define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
>> +#define CQSPI_REG_INDIRECTRDBYTES 0x6C
>> +
>> +#define CQSPI_REG_CMDCTRL 0x90
>> +#define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
>> +#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
>> +#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
>> +#define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
>> +#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
>> +#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
>> +#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
>> +#define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
>> +#define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
>> +#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
>> +#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
>> +#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
>> +
>> +#define CQSPI_REG_INDIRECTWR 0x70
>> +#define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
>> +#define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
>> +#define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
>> +
>> +#define CQSPI_REG_INDIRECTWRWATERMARK 0x74
>> +#define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
>> +#define CQSPI_REG_INDIRECTWRBYTES 0x7C
>> +
>> +#define CQSPI_REG_CMDADDRESS 0x94
>> +#define CQSPI_REG_CMDREADDATALOWER 0xA0
>> +#define CQSPI_REG_CMDREADDATAUPPER 0xA4
>> +#define CQSPI_REG_CMDWRITEDATALOWER 0xA8
>> +#define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
>> +
>> +/* Interrupt status bits */
>> +#define CQSPI_REG_IRQ_MODE_ERR BIT(0)
>> +#define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
>> +#define CQSPI_REG_IRQ_IND_COMP BIT(2)
>> +#define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
>> +#define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
>> +#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
>> +#define CQSPI_REG_IRQ_WATERMARK BIT(6)
>> +#define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
>> +
>> +#define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
>> + CQSPI_REG_IRQ_IND_SRAM_FULL | \
>> + CQSPI_REG_IRQ_IND_COMP)
>> +
>> +#define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
>> + CQSPI_REG_IRQ_WATERMARK | \
>> + CQSPI_REG_IRQ_UNDERFLOW)
>> +
>> +#define CQSPI_IRQ_STATUS_MASK 0x1FFFF
>> +
>> +static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
>> +{
>> + u32 val;
>> +
>> + return readl_relaxed_poll_timeout(reg, val,
>> + (((clr ? ~val : val) & mask) == mask),
>> + 10, CQSPI_TIMEOUT_MS * 1000);
>> +}
>> +
>> +static bool cqspi_is_idle(struct cqspi_st *cqspi)
>> +{
>> + u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
>> +
>> + return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
>> +}
>> +
>> +static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
>> +{
>> + u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
>> +
>> + reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
>> + return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
>> +}
>> +
>> +static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
>> +{
>> + struct cqspi_st *cqspi = dev;
>> + unsigned int irq_status;
>> +
>> + /* Read interrupt status */
>> + irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
>> +
>> + /* Clear interrupt */
>> + writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
>> +
>> + irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
>> +
>> + if (irq_status)
>> + complete(&cqspi->transfer_complete);
>> +
>> + return IRQ_HANDLED;
>> +}
>> +
>> +static u32 cqspi_cmd2addr(const struct spi_mem_op *op)
>> +{
>> + const unsigned char *addr_buf = NULL;
>> + unsigned int tmpbufsize;
>> + unsigned int addr = 0;
>> + u8 *tmpbuf;
>> + int i;
>> +
>> + tmpbufsize = op->addr.nbytes + op->dummy.nbytes;
>> + tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
>> + if (!tmpbuf)
>> + return -ENOMEM;
>> +
>> + if (op->addr.nbytes) {
>> + for (i = 0; i < op->addr.nbytes; i++)
>> + tmpbuf[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
>> +
>> + addr_buf = tmpbuf;
>> + }
>> + /* Invalid address return zero. */
>> + if (op->addr.nbytes > 4)
>> + return 0;
>> +
> Too late, should have checked this at the beginning.
sure,  try to keep at early.
>> + for (i = 0; i < op->addr.nbytes; i++) {
>> + addr = addr << 8;
>> + addr |= addr_buf[i];
>> + }
>> +
>> + return addr;
>> +}
>> +
>> +static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
>> +{
>> + u32 rdreg = 0;
>> +
>> + rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
>> + rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
>> + rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
>> +
>> + return rdreg;
>> +}
>> +
>> +static int cqspi_wait_idle(struct cqspi_st *cqspi)
>> +{
>> + const unsigned int poll_idle_retry = 3;
>> + unsigned int count = 0;
>> + unsigned long timeout;
>> +
>> + timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
>> + while (1) {
>> + /*
>> + * Read few times in succession to ensure the controller
>> + * is indeed idle, that is, the bit does not transition
>> + * low again.
>> + */
>> + if (cqspi_is_idle(cqspi))
>> + count++;
>> + else
>> + count = 0;
>> +
>> + if (count >= poll_idle_retry)
>> + return 0;
>> +
>> + if (time_after(jiffies, timeout)) {
>> + /* Timeout, in busy mode. */
>> + dev_err(&cqspi->pdev->dev,
>> + "QSPI is still busy after %dms timeout.\n",
>> + CQSPI_TIMEOUT_MS);
>> + return -ETIMEDOUT;
>> + }
>> +
>> + cpu_relax();
>> + }
>> +}
>> +
>> +static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
>> +{
>> + void __iomem *reg_base = cqspi->iobase;
>> + int ret;
>> +
>> + /* Write the CMDCTRL without start execution. */
>> + writel(reg, reg_base + CQSPI_REG_CMDCTRL);
>> + /* Start execute */
>> + reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
>> + writel(reg, reg_base + CQSPI_REG_CMDCTRL);
>> +
>> + /* Polling for completion. */
>> + ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
>> + CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
>> + if (ret) {
>> + dev_err(&cqspi->pdev->dev,
>> + "Flash command execution timed out.\n");
>> + return ret;
>> + }
>> +
>> + /* Polling QSPI idle status. */
>> + return cqspi_wait_idle(cqspi);
>> +}
>> +
>> +static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
>> + const struct spi_mem_op *op)
>> +{
>> + struct cqspi_st *cqspi = f_pdata->cqspi;
>> + void __iomem *reg_base = cqspi->iobase;
>> + u8 *rxbuf = op->data.buf.in;
>> + u8 opcode = op->cmd.opcode;
>> + size_t n_rx = op->data.nbytes;
>> + unsigned int rdreg;
>> + unsigned int reg;
>> + size_t read_len;
>> + int status;
>> +
>> + if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
>> + dev_err(&cqspi->pdev->dev,
>> + "Invalid input argument, len %zu rxbuf 0x%p\n",
>> + n_rx, rxbuf);
>> + return -EINVAL;
>> + }
>> +
>> + reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
>> +
>> + rdreg = cqspi_calc_rdreg(f_pdata);
>> + writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
>> +
>> + reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
>> +
>> + /* 0 means 1 byte. */
>> + reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
>> + << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
>> + status = cqspi_exec_flash_cmd(cqspi, reg);
>> + if (status)
>> + return status;
>> +
>> + reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
>> +
>> + /* Put the read value into rx_buf */
>> + read_len = (n_rx > 4) ? 4 : n_rx;
>> + memcpy(rxbuf, &reg, read_len);
>> + rxbuf += read_len;
>> +
>> + if (n_rx > 4) {
>> + reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
>> +
>> + read_len = n_rx - read_len;
>> + memcpy(rxbuf, &reg, read_len);
>> + }
>> +
>> + return 0;
>> +}
>> +
>> +static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
>> + const struct spi_mem_op *op)
>> +{
>> + struct cqspi_st *cqspi = f_pdata->cqspi;
>> + void __iomem *reg_base = cqspi->iobase;
>> + const u8 opcode = op->cmd.opcode;
>> + const u8 *txbuf = op->data.buf.out;
>> + size_t n_tx = op->data.nbytes;
>> + unsigned int reg;
>> + unsigned int data;
>> + size_t write_len;
>> +
>> + if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
>> + dev_err(&cqspi->pdev->dev,
>> + "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
>> + n_tx, txbuf);
>> + return -EINVAL;
>> + }
>> +
>> + reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
>> +
>> + if (op->addr.nbytes) {
>> + reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
>> + reg |= ((op->addr.nbytes - 1) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
>> + << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
>> +
>> + writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
> Don't you need to call cqspi_cmd2addr() before writing address to
> register here?
Okay, Agreed.
>> + }
>> +
>> + if (n_tx) {
>> + reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
>> + reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
>> + << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
>> + data = 0;
>> + write_len = (n_tx > 4) ? 4 : n_tx;
>> + memcpy(&data, txbuf, write_len);
>> + txbuf += write_len;
>> + writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
>> +
>> + if (n_tx > 4) {
>> + data = 0;
>> + write_len = n_tx - 4;
>> + memcpy(&data, txbuf, write_len);
>> + writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
>> + }
>> + }
>> +
>> + return cqspi_exec_flash_cmd(cqspi, reg);
>> +}
>> +
>> +static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
>> + const struct spi_mem_op *op)
>> +{
>> + struct cqspi_st *cqspi = f_pdata->cqspi;
>> + void __iomem *reg_base = cqspi->iobase;
>> + size_t dummy_bytes = op->dummy.nbytes;
>> + unsigned int reg, addr_value;
>> + unsigned int dummy_clk = 0;
>> +
>> + if (op->addr.nbytes && cqspi->soc_selection) {
>> + addr_value = cqspi_cmd2addr(op);
>> + writel(addr_value, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
>> + }
>> +
>> + reg = op->cmd.opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
>> + if (!cqspi->soc_selection) {> + reg |= cqspi_calc_rdreg(f_pdata);
>> +
>> + /* Setup dummy clock cycles */
>> + dummy_clk = op->dummy.nbytes * 8;
>> + if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
>> + dummy_clk = CQSPI_DUMMY_CLKS_MAX;
>> +
>> + if (dummy_clk / 8)
>> + reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
>> + << CQSPI_REG_RD_INSTR_DUMMY_LSB;
>> + } else {
>> + reg |= (CQSPI_INST_TYPE_QUAD & CQSPI_REG_RD_INSTR_TYPE_DATA_MASK) <<
>> + CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
>> +
>> + if (dummy_bytes) {
>> + if (dummy_bytes > CQSPI_DUMMY_BYTES_MAX)
>> + dummy_bytes = CQSPI_DUMMY_BYTES_MAX;
>> +
>> + reg |= BIT(CQSPI_REG_RD_INSTR_MODE_EN_LSB);
>> + writel(0xFF, reg_base + CQSPI_REG_MODE_BIT);
>> +
>> + dummy_clk = dummy_bytes * CQSPI_DUMMY_CLKS_PER_BYTE;
>> + dummy_clk -= CQSPI_DUMMY_CLKS_PER_BYTE;
>> +
>> + if (dummy_clk)
>> + reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
>> + << CQSPI_REG_RD_INSTR_DUMMY_LSB;
>> + }
>> + }
> Looks ugly.. Why would MODE BIT needs to be set in non XIP mode? Could
> you drop else {} part and make if (){} block run unconditionally and see
> if this still works?

Sorry Vignesh, Intel LGM SoC cadence IP operates with 8bit dummy clocks
for read, so I kept it .

In next patch, fix it in a proper code format.

>> +
>> + writel(reg, reg_base + CQSPI_REG_RD_INSTR);
>> +
>> + /* Set address width */
>> + reg = readl(reg_base + CQSPI_REG_SIZE);
>> + reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
>> + reg |= (op->addr.nbytes - 1);
>> + writel(reg, reg_base + CQSPI_REG_SIZE);
>> + return 0;
>> +}
>> +
>> +static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
>> + u8 *rxbuf, loff_t from_addr,
>> + const size_t n_rx)
>> +{
>> + struct cqspi_st *cqspi = f_pdata->cqspi;
>> + struct device *dev = &cqspi->pdev->dev;
>> + void __iomem *reg_base = cqspi->iobase;
>> + void __iomem *ahb_base = cqspi->ahb_base;
>> + unsigned int remaining = n_rx;
>> + unsigned int mod_bytes = n_rx % 4;
>> + unsigned int bytes_to_read = 0;
>> + u8 *rxbuf_end = rxbuf + n_rx;
>> + int ret = 0;
>> +
>> + writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
>> + writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
>> +
>> + /* Clear all interrupts. */
>> + writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
>> +
>> + writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
>> +
>> + reinit_completion(&cqspi->transfer_complete);
>> + writel(CQSPI_REG_INDIRECTRD_START_MASK,
>> + reg_base + CQSPI_REG_INDIRECTRD);
>> +
>> + while (remaining > 0) {
>> + if (!wait_for_completion_timeout(&cqspi->transfer_complete,
>> + msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
>> + ret = -ETIMEDOUT;
>> +
>> + bytes_to_read = cqspi_get_rd_sram_level(cqspi);
>> +
>> + if (ret && bytes_to_read == 0) {
>> + dev_err(dev, "Indirect read timeout, no bytes\n");
>> + goto failrd;
>> + }
>> +
>> + while (bytes_to_read != 0) {
>> + unsigned int word_remain = round_down(remaining, 4);
>> +
>> + bytes_to_read *= cqspi->fifo_width;
>> + bytes_to_read = bytes_to_read > remaining ?
>> + remaining : bytes_to_read;
>> + bytes_to_read = round_down(bytes_to_read, 4);
>> + /* Read 4 byte word chunks then single bytes */
>> + if (bytes_to_read) {
>> + ioread32_rep(ahb_base, rxbuf,
>> + (bytes_to_read / 4));
>> + } else if (!word_remain && mod_bytes) {
>> + unsigned int temp = ioread32(ahb_base);
>> +
>> + bytes_to_read = mod_bytes;
>> + memcpy(rxbuf, &temp, min((unsigned int)
>> + (rxbuf_end - rxbuf),
>> + bytes_to_read));
>> + }
>> + rxbuf += bytes_to_read;
>> + remaining -= bytes_to_read;
>> + bytes_to_read = cqspi_get_rd_sram_level(cqspi);
>> + }
>> +
>> + if (remaining > 0)
>> + reinit_completion(&cqspi->transfer_complete);
>> + }
>> +
>> + /* Check indirect done status */
>> + ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
>> + CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
>> + if (ret) {
>> + dev_err(dev, "Indirect read completion error (%i)\n", ret);
>> + goto failrd;
>> + }
>> +
>> + /* Disable interrupt */
>> + writel(0, reg_base + CQSPI_REG_IRQMASK);
>> +
>> + /* Clear indirect completion status */
>> + writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
>> +
>> + return 0;
>> +
>> +failrd:
>> + /* Disable interrupt */
>> + writel(0, reg_base + CQSPI_REG_IRQMASK);
>> +
>> + /* Cancel the indirect read */
>> + writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
>> + reg_base + CQSPI_REG_INDIRECTRD);
>> + return ret;
>> +}
>> +
>> +static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
>> + const struct spi_mem_op *op)
>> +{
>> + struct cqspi_st *cqspi = f_pdata->cqspi;
>> + void __iomem *reg_base = cqspi->iobase;
>> + const u8 *txbuf = &op->cmd.opcode;
>> + unsigned int reg;
>> +
>> + if (!cqspi->soc_selection) {
> cqspi->soc_selection sounds weird. Instead just have a driver level
> quirk. Something like, CQSPI_NEEDS_ADDR_SWAP in
> cqspi_driver_platdata->quirks.
sure, I will add driver level quirk.
>> + /* Set opcode. */
>> + reg = op->cmd.opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
>> + writel(reg, reg_base + CQSPI_REG_WR_INSTR);
>> + reg = cqspi_calc_rdreg(f_pdata);
>> + writel(reg, reg_base + CQSPI_REG_RD_INSTR);
>> + } else {
>> + reg = readl(reg_base + CQSPI_REG_CONFIG);
>> + reg &= ~(CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL);
>> + reg &= ~(CQSPI_REG_CONFIG_DMA_MASK);
>> + writel(reg, reg_base + CQSPI_REG_CONFIG);
>> +
> This is fustrating... :( Why do you need to clear these bits for every
> write? Isn't the code in cqspi_controller_init() enough?
> I have same set of comments on multiple versions of your patch.
Agreed!, will remove it.
>> + /* Set opcode. */
>> + reg = txbuf[0] << CQSPI_REG_WR_INSTR_OPCODE_LSB;
>> + reg |= BIT(CQSPI_REG_WR_CONFIG_WEL_DIS_FLD_POS);
> Same here..
>
>> + /* Configure the mode for address */
>> + reg |= (CQSPI_INST_TYPE_QUAD & CQSPI_REG_WR_INSTR_TYPE_ADDR_MASK) <<
>> + CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
>> +
> You keep ignoring my comments... This is wrong... DO NOT hardcode
> address mode to QUAD mode without looking at op->addr.nbits
>
oh my bad really sorry, Intel LGM SoC will work only QUAD mode so kept
it as it is, let me make it in a proper way.

Thanks a lot for the suggestion and valuable review comments.

Regards

Vadivel

>> + /* Configure the mode for data */
>> + reg |= (CQSPI_INST_TYPE_QUAD & CQSPI_REG_WR_INSTR_TYPE_DATA_MASK) <<
>> + CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
>> + writel(reg, reg_base + CQSPI_REG_WR_INSTR);
>> + /* Setup write address. */
>> + reg = cqspi_cmd2addr(op);
>> + writel(reg, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
>> + }
>> +
>> + reg = readl(reg_base + CQSPI_REG_SIZE);
>> + reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
>> + reg |= (op->addr.nbytes - 1);
>> + writel(reg, reg_base + CQSPI_REG_SIZE);
>> + return 0;
>> +}
>> +
>> +static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
>> + loff_t to_addr, const u8 *txbuf,
>> + const size_t n_tx)
>> +{
>> + struct cqspi_st *cqspi = f_pdata->cqspi;
>> + struct device *dev = &cqspi->pdev->dev;
>> + void __iomem *reg_base = cqspi->iobase;
>> + unsigned int remaining = n_tx;
>> + unsigned int write_bytes;
>> + int ret;
>> +
>> + writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
>> + writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
>> +
>> + /* Clear all interrupts. */
>> + writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
>> +
>> + writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
>> +
>> + reinit_completion(&cqspi->transfer_complete);
>> + writel(CQSPI_REG_INDIRECTWR_START_MASK,
>> + reg_base + CQSPI_REG_INDIRECTWR);
>> + /*
>> + * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
>> + * Controller programming sequence, couple of cycles of
>> + * QSPI_REF_CLK delay is required for the above bit to
>> + * be internally synchronized by the QSPI module. Provide 5
>> + * cycles of delay.
>> + */
>> + if (cqspi->wr_delay)
>> + ndelay(cqspi->wr_delay);
>> +
>> + while (remaining > 0) {
>> + size_t write_words, mod_bytes;
>> +
>> + write_bytes = remaining;
>> + write_words = write_bytes / 4;
>> + mod_bytes = write_bytes % 4;
>> + /* Write 4 bytes at a time then single bytes. */
>> + if (write_words) {
>> + iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
>> + txbuf += (write_words * 4);
>> + }
>> + if (mod_bytes) {
>> + unsigned int temp = 0xFFFFFFFF;
>> +
>> + memcpy(&temp, txbuf, mod_bytes);
>> + iowrite32(temp, cqspi->ahb_base);
>> + txbuf += mod_bytes;
>> + }
>> +
>> + if (!wait_for_completion_timeout(&cqspi->transfer_complete,
>> + msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
>> + dev_err(dev, "Indirect write timeout\n");
>> + ret = -ETIMEDOUT;
>> + goto failwr;
>> + }
>> +
>> + remaining -= write_bytes;
>> +
>> + if (remaining > 0)
>> + reinit_completion(&cqspi->transfer_complete);
>> + }
>> +
>> + /* Check indirect done status */
>> + ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
>> + CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
>> + if (ret) {
>> + dev_err(dev, "Indirect write completion error (%i)\n", ret);
>> + goto failwr;
>> + }
>> +
>> + /* Disable interrupt. */
>> + writel(0, reg_base + CQSPI_REG_IRQMASK);
>> +
>> + /* Clear indirect completion status */
>> + writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
>> +
>> + cqspi_wait_idle(cqspi);
>> +
>> + return 0;
>> +
>> +failwr:
>> + /* Disable interrupt. */
>> + writel(0, reg_base + CQSPI_REG_IRQMASK);
>> +
>> + /* Cancel the indirect write */
>> + writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
>> + reg_base + CQSPI_REG_INDIRECTWR);
>> + return ret;
>> +}
>> +
>> +static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
>> +{
>> + struct cqspi_st *cqspi = f_pdata->cqspi;
>> + void __iomem *reg_base = cqspi->iobase;
>> + unsigned int chip_select = f_pdata->cs;
>> + unsigned int reg;
>> +
>> + reg = readl(reg_base + CQSPI_REG_CONFIG);
>> + reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
>> +
>> + /* Convert CS if without decoder.
>> + * CS0 to 4b'1110
>> + * CS1 to 4b'1101
>> + * CS2 to 4b'1011
>> + * CS3 to 4b'0111
>> + */
>> + chip_select = 0xF & ~(1 << chip_select);
>> +
>> + reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
>> + << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
>> + reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
>> + << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
>> + writel(reg, reg_base + CQSPI_REG_CONFIG);
>> +}
>> +
>> +static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
>> + const unsigned int ns_val)
>> +{
>> + unsigned int ticks;
>> +
>> + ticks = ref_clk_hz / 1000; /* kHz */
>> + ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
>> +
>> + return ticks;
>> +}
>> +
>> +static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
>> +{
>> + struct cqspi_st *cqspi = f_pdata->cqspi;
>> + void __iomem *iobase = cqspi->iobase;
>> + const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
>> + unsigned int tshsl, tchsh, tslch, tsd2d;
>> + unsigned int reg;
>> + unsigned int tsclk;
>> +
>> + /* calculate the number of ref ticks for one sclk tick */
>> + tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
>> +
>> + tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
>> + /* this particular value must be at least one sclk */
>> + if (tshsl < tsclk)
>> + tshsl = tsclk;
>> +
>> + tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
>> + tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
>> + tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
>> +
>> + reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
>> + << CQSPI_REG_DELAY_TSHSL_LSB;
>> + reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
>> + << CQSPI_REG_DELAY_TCHSH_LSB;
>> + reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
>> + << CQSPI_REG_DELAY_TSLCH_LSB;
>> + reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
>> + << CQSPI_REG_DELAY_TSD2D_LSB;
>> + writel(reg, iobase + CQSPI_REG_DELAY);
>> +}
>> +
>> +static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
>> +{
>> + const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
>> + void __iomem *reg_base = cqspi->iobase;
>> + u32 reg, div;
>> +
>> + /* Recalculate the baudrate divisor based on QSPI specification. */
>> + div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
>> +
>> + reg = readl(reg_base + CQSPI_REG_CONFIG);
>> + reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
>> + reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
>> + writel(reg, reg_base + CQSPI_REG_CONFIG);
>> +}
>> +
>> +static void cqspi_readdata_capture(struct cqspi_st *cqspi,
>> + const bool bypass,
>> + const unsigned int delay)
>> +{
>> + void __iomem *reg_base = cqspi->iobase;
>> + unsigned int reg;
>> +
>> + reg = readl(reg_base + CQSPI_REG_READCAPTURE);
>> +
>> + if (bypass)
>> + reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
>> + else
>> + reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
>> +
>> + reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
>> + << CQSPI_REG_READCAPTURE_DELAY_LSB);
>> +
>> + reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
>> + << CQSPI_REG_READCAPTURE_DELAY_LSB;
>> +
>> + writel(reg, reg_base + CQSPI_REG_READCAPTURE);
>> +}
>> +
>> +static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
>> +{
>> + void __iomem *reg_base = cqspi->iobase;
>> + unsigned int reg;
>> +
>> + reg = readl(reg_base + CQSPI_REG_CONFIG);
>> +
>> + if (enable)
>> + reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
>> + else
>> + reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
>> +
>> + writel(reg, reg_base + CQSPI_REG_CONFIG);
>> +}
>> +
>> +static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
>> + unsigned long sclk)
>> +{
>> + struct cqspi_st *cqspi = f_pdata->cqspi;
>> + int switch_cs = (cqspi->current_cs != f_pdata->cs);
>> + int switch_ck = (cqspi->sclk != sclk);
>> +
>> + if (switch_cs || switch_ck)
>> + cqspi_controller_enable(cqspi, 0);
>> +
>> + /* Switch chip select. */
>> + if (switch_cs) {
>> + cqspi->current_cs = f_pdata->cs;
>> + cqspi_chipselect(f_pdata);
>> + }
>> +
>> + /* Setup baudrate divisor and delays */
>> + if (switch_ck) {
>> + cqspi->sclk = sclk;
>> + cqspi_config_baudrate_div(cqspi);
>> + cqspi_delay(f_pdata);
>> + cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
>> + f_pdata->read_delay);
>> + }
>> +
>> + if (switch_cs || switch_ck)
>> + cqspi_controller_enable(cqspi, 1);
>> +}
>> +
>> +static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
>> + const struct spi_mem_op *op)
>> +{
>> + f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
>> + f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
>> + f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
>> +
>> + if (op->data.dir == SPI_MEM_DATA_IN) {
>> + switch (op->data.buswidth) {
>> + case 1:
>> + f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
>> + break;
>> + case 2:
>> + f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
>> + break;
>> + case 4:
>> + f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
>> + break;
>> + case 8:
>> + f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
>> + break;
>> + default:
>> + return -EINVAL;
>> + }
>> + }
>> +
>> + return 0;
>> +}
>> +
>> +static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
>> + const struct spi_mem_op *op)
>> +{
>> + struct cqspi_st *cqspi = f_pdata->cqspi;
>> + loff_t to = op->addr.val;
>> + size_t len = op->data.nbytes;
>> + const u_char *buf = op->data.buf.out;
>> + int ret;
>> +
>> + ret = cqspi_set_protocol(f_pdata, op);
>> + if (ret)
>> + return ret;
>> +
>> + ret = cqspi_write_setup(f_pdata, op);
>> + if (ret)
>> + return ret;
>> +
>> + if (cqspi->use_dac_mode && ((to + len) <= cqspi->ahb_size)) {
>> + memcpy_toio(cqspi->ahb_base + to, buf, len);
>> + return cqspi_wait_idle(cqspi);
>> + }
>> +
>> + return cqspi_indirect_write_execute(f_pdata, to, buf, len);
>> +}
>> +
>> +static void cqspi_rx_dma_callback(void *param)
>> +{
>> + struct cqspi_st *cqspi = param;
>> +
>> + complete(&cqspi->rx_dma_complete);
>> +}
>> +
>> +static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
>> + u_char *buf, loff_t from, size_t len)
>> +{
>> + struct cqspi_st *cqspi = f_pdata->cqspi;
>> + struct device *ddev = cqspi->rx_chan->device->dev;
>> + enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
>> + dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
>> + int ret = 0;
>> + struct dma_async_tx_descriptor *tx;
>> + dma_cookie_t cookie;
>> + dma_addr_t dma_dst;
>> +
>> + if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
>> + memcpy_fromio(buf, cqspi->ahb_base + from, len);
>> + return 0;
>> + }
>> +
>> + dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
>> + if (dma_mapping_error(ddev, dma_dst)) {
>> + dev_err(ddev, "dma mapping failed\n");
>> + return -ENOMEM;
>> + }
>> + tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
>> + len, flags);
>> + if (!tx) {
>> + dev_err(ddev, "device_prep_dma_memcpy error\n");
>> + ret = -EIO;
>> + goto err_unmap;
>> + }
>> +
>> + tx->callback = cqspi_rx_dma_callback;
>> + tx->callback_param = cqspi;
>> + cookie = tx->tx_submit(tx);
>> + reinit_completion(&cqspi->rx_dma_complete);
>> +
>> + ret = dma_submit_error(cookie);
>> + if (ret) {
>> + dev_err(ddev, "dma_submit_error %d\n", cookie);
>> + ret = -EIO;
>> + goto err_unmap;
>> + }
>> +
>> + dma_async_issue_pending(cqspi->rx_chan);
>> + if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
>> + msecs_to_jiffies(len))) {
>> + dmaengine_terminate_sync(cqspi->rx_chan);
>> + dev_err(ddev, "DMA wait_for_completion_timeout\n");
>> + ret = -ETIMEDOUT;
>> + goto err_unmap;
>> + }
>> +
>> +err_unmap:
>> + dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
>> +
>> + return ret;
>> +}
>> +
>> +static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
>> + const struct spi_mem_op *op)
>> +{
>> + struct cqspi_st *cqspi = f_pdata->cqspi;
>> + loff_t from = op->addr.val;
>> + size_t len = op->data.nbytes;
>> + u_char *buf = op->data.buf.in;
>> + int ret;
>> +
>> + ret = cqspi_set_protocol(f_pdata, op);
>> + if (ret)
>> + return ret;
>> +
>> + ret = cqspi_read_setup(f_pdata, op);
>> + if (ret)
>> + return ret;
>> +
>> + if (cqspi->use_dac_mode && ((from + len) <= cqspi->ahb_size))
>> + return cqspi_direct_read_execute(f_pdata, buf, from, len);
>> +
>> + return cqspi_indirect_read_execute(f_pdata, buf, from, len);
>> +}
>> +
>> +static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
>> +{
>> + struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
>> + struct cqspi_flash_pdata *f_pdata;
>> +
>> + f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
>> + cqspi_configure(f_pdata, mem->spi->max_speed_hz);
>> +
>> + if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
>> + if (!op->addr.nbytes)
>> + return cqspi_command_read(f_pdata, op);
>> +
>> + return cqspi_read(f_pdata, op);
>> + }
>> +
>> + if (!op->addr.nbytes || !op->data.buf.out)
>> + return cqspi_command_write(f_pdata, op);
>> +
>> + return cqspi_write(f_pdata, op);
>> +}
>> +
>> +static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
>> +{
>> + int ret;
>> +
>> + ret = cqspi_mem_process(mem, op);
>> + if (ret)
>> + dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
>> +
>> + return ret;
>> +}
>> +
>> +static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
>> + struct cqspi_flash_pdata *f_pdata,
>> + struct device_node *np)
>> +{
>> + if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
>> + dev_err(&pdev->dev, "couldn't determine read-delay\n");
>> + return -ENXIO;
>> + }
>> +
>> + if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
>> + dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
>> + return -ENXIO;
>> + }
>> +
>> + if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
>> + dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
>> + return -ENXIO;
>> + }
>> +
>> + if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
>> + dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
>> + return -ENXIO;
>> + }
>> +
>> + if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
>> + dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
>> + return -ENXIO;
>> + }
>> +
>> + if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
>> + dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
>> + return -ENXIO;
>> + }
>> +
>> + return 0;
>> +}
>> +
>> +static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
>> +{
>> + struct device *dev = &cqspi->pdev->dev;
>> + struct device_node *np = dev->of_node;
>> +
>> + if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
>> + dev_err(dev, "couldn't determine fifo-depth\n");
>> + return -ENXIO;
>> + }
>> +
>> + if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
>> + dev_err(dev, "couldn't determine fifo-width\n");
>> + return -ENXIO;
>> + }
>> +
>> + if (of_property_read_u32(np, "cdns,trigger-address",
>> + &cqspi->trigger_address)) {
>> + dev_err(dev, "couldn't determine trigger-address\n");
>> + return -ENXIO;
>> + }
>> +
>> + if (!cqspi->soc_selection)
>> + cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
>> +
>> + return 0;
>> +}
>> +
>> +static void cqspi_controller_init(struct cqspi_st *cqspi)
>> +{
>> + cqspi_controller_enable(cqspi, 0);
>> +
>> + /* Configure the remap address register, no remap */
>> + writel(0, cqspi->iobase + CQSPI_REG_REMAP);
>> +
>> + /* Disable all interrupts. */
>> + writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
>> +
>> + /* Configure the SRAM split to 1:1 . */
>> + writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
>> +
>> + /* Load indirect trigger address. */
>> + writel(cqspi->trigger_address,
>> + cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
>> +
>> + /* Program read watermark -- 1/2 of the FIFO. */
>> + writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
>> + cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
>> + /* Program write watermark -- 1/8 of the FIFO. */
>> + writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
>> + cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
>> +
>> + if (!cqspi->use_dac_mode) {
>> + u32 reg;
>> +
>> + reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
>> + reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
>> + writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
>> +
>> + reg = readl(cqspi->iobase + CQSPI_REG_WR_COMPLETION_CTRL);
>> + reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
>> + writel(reg, cqspi->iobase + CQSPI_REG_WR_COMPLETION_CTRL);
>> + }
>> +
>> + cqspi_controller_enable(cqspi, 1);
>> +}
>> +
>> +static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
>> +{
>> + dma_cap_mask_t mask;
>> +
>> + dma_cap_zero(mask);
>> + dma_cap_set(DMA_MEMCPY, mask);
>> +
>> + cqspi->rx_chan = dma_request_chan_by_mask(&mask);
>> + if (IS_ERR(cqspi->rx_chan)) {
>> + int ret = PTR_ERR(cqspi->rx_chan);
>> +
>> + if (ret != -EPROBE_DEFER)
>> + dev_err(&cqspi->pdev->dev, "No Rx DMA available\n");
>> + cqspi->rx_chan = NULL;
>> +
>> + return ret;
>> + }
>> + init_completion(&cqspi->rx_dma_complete);
>> +
>> + return 0;
>> +}
>> +
>> +static const struct spi_controller_mem_ops cqspi_mem_ops = {
>> + .exec_op = cqspi_exec_mem_op,
>> +};
>> +
>> +static int cqspi_setup_flash(struct cqspi_st *cqspi)
>> +{
>> + struct platform_device *pdev = cqspi->pdev;
>> + struct device *dev = &pdev->dev;
>> + struct device_node *np = dev->of_node;
>> + struct cqspi_flash_pdata *f_pdata;
>> + unsigned int cs;
>> + int ret;
>> +
>> + /* Get flash device data */
>> + for_each_available_child_of_node(dev->of_node, np) {
>> + ret = of_property_read_u32(np, "reg", &cs);
>> + if (ret) {
>> + dev_err(dev, "Couldn't determine chip select.\n");
>> + return -EINVAL;
>> + }
>> +
>> + if (cs >= CQSPI_MAX_CHIPSELECT) {
>> + dev_err(dev, "Chip select %d out of range.\n", cs);
>> + return -EINVAL;
>> + }
>> +
>> + f_pdata = &cqspi->f_pdata[cs];
>> + f_pdata->cqspi = cqspi;
>> + f_pdata->cs = cs;
>> +
>> + return cqspi_of_get_flash_pdata(pdev, f_pdata, np);
>> + }
>> +
>> + return 0;
>> +}
>> +
>> +static int cqspi_probe(struct platform_device *pdev)
>> +{
>> + const struct cqspi_driver_platdata *ddata;
>> + struct reset_control *rstc, *rstc_ocp;
>> + struct device *dev = &pdev->dev;
>> + struct spi_master *master;
>> + struct resource *res_ahb;
>> + struct cqspi_st *cqspi;
>> + struct resource *res;
>> + int ret;
>> + int irq;
>> +
>> + master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
>> + if (!master) {
>> + dev_err(&pdev->dev, "spi_alloc_master failed\n");
>> + return -ENOMEM;
>> + }
>> + master->mode_bits = SPI_RX_QUAD | SPI_TX_DUAL | SPI_RX_DUAL;
>> + master->mem_ops = &cqspi_mem_ops;
>> + master->dev.of_node = pdev->dev.of_node;
>> +
>> + cqspi = spi_master_get_devdata(master);
>> +
>> + cqspi->pdev = pdev;
>> +
>> + ddata = of_device_get_match_data(dev);
>> + if (ddata->quirks & CQSPI_DISABLE_DAC_MODE)
>> + cqspi->soc_selection = true;
>> +
>> + /* Obtain configuration from OF. */
>> + ret = cqspi_of_get_pdata(cqspi);
>> + if (ret) {
>> + dev_err(dev, "Cannot get mandatory OF data.\n");
>> + return -ENODEV;
>> + }
>> +
>> + /* Obtain QSPI clock. */
>> + cqspi->clk = devm_clk_get(dev, NULL);
>> + if (IS_ERR(cqspi->clk)) {
>> + dev_err(dev, "Cannot claim QSPI clock.\n");
>> + return PTR_ERR(cqspi->clk);
>> + }
>> +
>> + /* Obtain and remap controller address. */
>> + res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
>> + cqspi->iobase = devm_ioremap_resource(dev, res);
>> + if (IS_ERR(cqspi->iobase)) {
>> + dev_err(dev, "Cannot remap controller address.\n");
>> + return PTR_ERR(cqspi->iobase);
>> + }
>> +
>> + /* Obtain and remap AHB address. */
>> + res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
>> + cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
>> + if (IS_ERR(cqspi->ahb_base)) {
>> + dev_err(dev, "Cannot remap AHB address.\n");
>> + return PTR_ERR(cqspi->ahb_base);
>> + }
>> + cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
>> + cqspi->ahb_size = resource_size(res_ahb);
>> +
>> + init_completion(&cqspi->transfer_complete);
>> +
>> + /* Obtain IRQ line. */
>> + irq = platform_get_irq(pdev, 0);
>> + if (irq < 0)
>> + return -ENXIO;
>> +
>> + pm_runtime_enable(dev);
>> + ret = pm_runtime_get_sync(dev);
>> + if (ret < 0) {
>> + pm_runtime_put_noidle(dev);
>> + return ret;
>> + }
>> +
>> + ret = clk_prepare_enable(cqspi->clk);
>> + if (ret) {
>> + dev_err(dev, "Cannot enable QSPI clock.\n");
>> + goto probe_clk_failed;
>> + }
>> +
>> + /* Obtain QSPI reset control */
>> + rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
>> + if (IS_ERR(rstc)) {
>> + dev_err(dev, "Cannot get QSPI reset.\n");
>> + goto probe_reset_failed;
>> + }
>> +
>> + rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
>> + if (IS_ERR(rstc_ocp)) {
>> + dev_err(dev, "Cannot get QSPI OCP reset.\n");
>> + goto probe_reset_failed;
>> + }
>> +
>> + reset_control_assert(rstc);
>> + reset_control_deassert(rstc);
>> +
>> + reset_control_assert(rstc_ocp);
>> + reset_control_deassert(rstc_ocp);
>> +
>> + cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
>> + ddata = of_device_get_match_data(dev);
>> + if (ddata) {
>> + if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
>> + cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC,
>> + cqspi->master_ref_clk_hz);
>> + if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
>> + master->mode_bits |= SPI_RX_OCTAL;
>> + if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
>> + cqspi->use_dac_mode = true;
>> + }
>> +
>> + ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
>> + pdev->name, cqspi);
>> + if (ret) {
>> + dev_err(dev, "Cannot request IRQ.\n");
>> + goto probe_reset_failed;
>> + }
>> +
>> + cqspi_wait_idle(cqspi);
>> + cqspi_controller_init(cqspi);
>> + cqspi->current_cs = -1;
>> + cqspi->sclk = 0;
>> +
>> + ret = cqspi_setup_flash(cqspi);
>> + if (ret) {
>> + dev_err(dev, "failed to setup flash parameters %d\n", ret);
>> + goto probe_setup_failed;
>> + }
>> +
>> + if (cqspi->use_dac_mode) {
>> + ret = cqspi_request_mmap_dma(cqspi);
>> + if (ret == -EPROBE_DEFER)
>> + goto probe_setup_failed;
>> + }
>> +
>> + ret = devm_spi_register_master(dev, master);
>> + if (ret) {
>> + dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
>> + goto probe_setup_failed;
>> + }
>> +
>> + return 0;
>> +probe_setup_failed:
>> + cqspi_controller_enable(cqspi, 0);
>> +probe_reset_failed:
>> + clk_disable_unprepare(cqspi->clk);
>> +probe_clk_failed:
>> + pm_runtime_put_sync(dev);
>> + pm_runtime_disable(dev);
>> + return ret;
>> +}
>> +
>> +static int cqspi_remove(struct platform_device *pdev)
>> +{
>> + struct cqspi_st *cqspi = platform_get_drvdata(pdev);
>> +
>> + cqspi_controller_enable(cqspi, 0);
>> +
>> + if (cqspi->rx_chan)
>> + dma_release_channel(cqspi->rx_chan);
>> +
>> + clk_disable_unprepare(cqspi->clk);
>> +
>> + pm_runtime_put_sync(&pdev->dev);
>> + pm_runtime_disable(&pdev->dev);
>> +
>> + return 0;
>> +}
>> +
>> +#ifdef CONFIG_PM_SLEEP
>> +static int cqspi_suspend(struct device *dev)
>> +{
>> + struct cqspi_st *cqspi = dev_get_drvdata(dev);
>> +
>> + cqspi_controller_enable(cqspi, 0);
>> + return 0;
>> +}
>> +
>> +static int cqspi_resume(struct device *dev)
>> +{
>> + struct cqspi_st *cqspi = dev_get_drvdata(dev);
>> +
>> + cqspi_controller_enable(cqspi, 1);
>> + return 0;
>> +}
>> +
>> +static const struct dev_pm_ops cqspi__dev_pm_ops = {
>> + .suspend = cqspi_suspend,
>> + .resume = cqspi_resume,
>> +};
>> +
>> +#define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
>> +#else
>> +#define CQSPI_DEV_PM_OPS NULL
>> +#endif
>> +
>> +static const struct cqspi_driver_platdata cdns_qspi = {
>> + .quirks = CQSPI_DISABLE_DAC_MODE,
>> +};
>> +
>> +static const struct cqspi_driver_platdata k2g_qspi = {
>> + .quirks = CQSPI_NEEDS_WR_DELAY,
>> +};
>> +
>> +static const struct cqspi_driver_platdata am654_ospi = {
>> + .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
>> + .quirks = CQSPI_NEEDS_WR_DELAY,
>> +};
>> +
>> +static const struct cqspi_driver_platdata intel_lgm_qspi = {
>> + .quirks = CQSPI_DISABLE_DAC_MODE,
>> +};
>> +
>> +static const struct of_device_id cqspi_dt_ids[] = {
>> + {
>> + .compatible = "cdns,qspi-nor",
>> + .data = &cdns_qspi,
>> + },
>> + {
>> + .compatible = "ti,k2g-qspi",
>> + .data = &k2g_qspi,
>> + },
>> + {
>> + .compatible = "ti,am654-ospi",
>> + .data = &am654_ospi,
>> + },
>> + {
>> + .compatible = "intel,lgm-qspi",
>> + .data = &intel_lgm_qspi,
>> + },
>> + { /* end of table */ }
>> +};
>> +
>> +MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
>> +
>> +static struct platform_driver cqspi_platform_driver = {
>> + .probe = cqspi_probe,
>> + .remove = cqspi_remove,
>> + .driver = {
>> + .name = CQSPI_NAME,
>> + .pm = CQSPI_DEV_PM_OPS,
>> + .of_match_table = cqspi_dt_ids,
>> + },
>> +};
>> +
>> +module_platform_driver(cqspi_platform_driver);
>> +
>> +MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
>> +MODULE_LICENSE("GPL v2");
>> +MODULE_ALIAS("platform:" CQSPI_NAME);
>> +MODULE_AUTHOR("Ley Foon Tan <[email protected]>");
>> +MODULE_AUTHOR("Graham Moore <[email protected]>");
>> +MODULE_AUTHOR("Vadivel Murugan R <[email protected]>");
>> +MODULE_AUTHOR("Vignesh Raghavendra <[email protected]>");
>>