Rust support
This is the patch series (v8) to add support for Rust as a second
language to the Linux kernel.
If you are interested in following this effort, please join us in
the mailing list at:
[email protected]
and take a look at the project itself at:
https://github.com/Rust-for-Linux
As usual, special thanks go to ISRG (Internet Security Research
Group) and Google for their financial support on this endeavor.
Cheers,
Miguel
--
# Rust support
This cover letter explains the major changes and updates done since
the previous ones. For those, please see:
RFC: https://lore.kernel.org/lkml/[email protected]/
v1: https://lore.kernel.org/lkml/[email protected]/
v2: https://lore.kernel.org/lkml/[email protected]/
v3: https://lore.kernel.org/lkml/[email protected]/
v4: https://lore.kernel.org/lkml/[email protected]/
v5: https://lore.kernel.org/lkml/[email protected]/
v6: https://lore.kernel.org/lkml/[email protected]/
v7: https://lore.kernel.org/lkml/[email protected]/
## Infrastructure updates
There have been several improvements to the overall Rust support:
- Upgraded toolchain and `alloc` to Rust 1.62.0 from 1.60.0.
Rust 1.61.0 stabilized `feature(const_fn_trait_bound)` that
we are using.
- Moved bindings into their own crate, `bindings`. This greatly
improves build time when only the `kernel` crate changes (which
previously contained the bindings).
- Disabled unused `bindgen`'s layout test generation, which makes
rust-analyzer significantly faster to run.
- `bindgen` can now be detected via the `__BINDGEN__` macro, which
we currently use to workaround an issue with the `btf_type_tag`
attribute.
- Reimplemented `concat_idents!` (an unstable standard library
macro) as a proc macro, which means we no longer rely on
`feature(concat_idents)`. Furthermore, the proc macro allows
to refer to local variables.
- Reimplemented `static_assert!` in a more idiomatic way, now that
`core::assert!()` is supported in const contexts.
- Made `build_error!`' work under `RUST_BUILD_ASSERT_{WARN,ALLOW}`
for modules.
- Removed `__mulodi4` panicking stub.
- Added `kernel/configs/rust.config`.
- Added a (temporary) self-test module for "pure" Rust tests.
- Changed `.i` macro expanded files to the `.rsi` extension and
clarified that they are not intended to be compilable.
- Dropped support for compiling the Rust side with a different
optimization level than the C side.
- The Linux/Tux SVG logo (recently upstreamed) is used for
the generated Rust documentation, instead of the GIF one.
The `COPYING-logo` file is bundled too.
- Other cleanups, fixes and improvements.
## Abstractions and driver updates
Some of the improvements to the abstractions and example drivers are:
- Filesystem support (`fs` module), including:
+ `INode` type (which wraps `struct inode`).
+ `DEntry` type (which wraps `struct dentry`).
+ `Filename` type (which wraps `struct filename`).
+ `Registration` type.
+ `Type` and `Context` traits.
+ `SuperBlock` type (which wraps `struct super_block` and takes
advantage of typestates for its initialization).
+ File system parameters support (with a `Value` enum; `Spec*`
and `Constant*` types, `define_fs_params!` macro...).
+ File system flags.
+ `module_fs!` macro to simplify registering kernel modules that
only implement a single file system.
+ A file system sample.
- Workqueues support (`workqueue` module), including a `Work` type
(which wraps `struct work_struct`), a `Queue` type (which wraps
`struct workqueue_struct`), access to different system queues as
well as macros to simplify usage, e.g.:
spawn_work_item!(workqueue::system(), || pr_info!("Hi!\n"))?;
- More asynchronous support (`kasync` module), including:
+ Executor support (including `Task` and `Executor` traits, a
`AutoStopHandle` type that automatically stops the executor on
drop, a `spawn_task!` macro that automatically defines a new
lockdep lock class...).
+ A workqueue-based executor, which allows to run tasks on
dedicated or shared thread pools that are managed by existing
C kernel infrastructure, e.g.:
let mut handle = Executor::try_new(workqueue::system())?;
spawn_task!(handle.executor(), async {
pr_info!("First workqueue task\n");
})?;
spawn_task!(handle.executor(), async {
pr_info!("Second workqueue task\n");
})?;
handle.detach();
+ A `yield_now()` function that yields execution of the current
task so that other ones may execute (but keeps it runnable so
that it will run again as soon as the executor is available
again), e.g.:
async fn example() {
pr_info!("Before yield\n");
yield_now().await;
pr_info!("After yield\n");
}
+ `AsyncRevocable` type (in the `revocable` module), which
allows access to objects to be revoked without having to wait
for existing users to complete. This is useful to drop futures
in tasks when executors are being torn down.
+ An asynchronous TCP echo server sample.
- Introduced support for handling interrupts: `[Threaded]Handler`
traits, `[Threaded]Registration` types, a `Return` enum (as the
return value from handlers) and flags:
struct Example;
impl irq::Handler for Example {
type Data = Box<u32>;
fn handle_irq(_data: &u32) -> irq::Return {
irq::Return::None
}
}
fn request_irq(irq: u32, data: Box<u32>)
-> Result<irq::Registration<Example>> {
irq::Registration::try_new(
irq, data, irq::flags::SHARED,
fmt!("example_{irq}")
)
}
- Introduced the `#[vtable]` proc macro attribute to simplify how
function pointer tables like `struct file_operations` are used
by Rust kernel modules.
Previously, users had to call a `declare_*_operations!` macro
which required passing the defined operations:
impl file::Operations for SomeFile {
...
declare_file_operations!(read, write, ioctl, ...);
...
}
Instead, now it is only required that they annotate the `impl`
block with the attribute:
#[vtable]
impl file::Operations for SomeFile {
...
}
The proc macro will generate a boolean `HAS_*` associated constant
for each method in the trait, indicating if the implementer has
overridden a method.
- Added `unsafe_list::List`, an intrusive circular doubly-linked
list, meant to be used as the basis for other linked lists.
It is also used in the workqueue-based executor to keep track of
all tasks since it is cheaper than other options.
- Initial RCU support: a `Guard` type that represents evidence that
the RCU read side lock is held on the current thread/CPU.
In addition, `Revocable` now uses this new abstraction so that
users can provide evidence of the RCU read side lock being held
when accessing the protected object, e.g.:
fn add_pair(value: &Revocable<(u32, u32)>) -> Option<u32> {
let guard = rcu::read_lock();
let pair = value.try_access_with_guard(&guard)?;
Some(pair.0 + pair.1)
}
- Added `StaticRef` which allows the creation of "reference-counted"
globals; i.e. allows to define static variables that can be used
when `Ref<T>` or `RefBorrow<'_, T>` are expected.
This, in turn, allows to have functions that return shared
resources (e.g. a global workqueue) without allocations (the
shared object is statically allocated).
- Added `Task::spawn()` function to create and automatically run
kernel threads easily, e.g.:
for i in 0..10 {
Task::spawn(fmt!("test{i}"), threadfn).unwrap();
}
- Added `Task::wake_up()` method.
- Converted `Task` to use `ARef` to unify the usage of all
ref-counted C structures.
- Initial support for delays/sleeps (`delay` module) with a basic
`coarse_sleep()` function that wraps the C side `msleep()` and
takes advantage of the `Duration` standard library type:
coarse_sleep(Duration::from_millis(20));
- Added file flags (to further reduce `bindings::*` usage), e.g.:
let blocking = (file.flags() & file::flags::O_NONBLOCK) == 0;
- Added `gpio_chip_register!` and `gpio_irq_chip_register!` macros
which automatically define the required lock classes.
- Removal of `bindings::lock_class_key` from drivers. This gets us
closer to eventually make bindings private to the `kernel` crate.
- Moved usage of `ManuallyDrop` to `MaybeUninit` in `Revocable`,
which was unsound.
- Other cleanups, fixes and improvements.
## Patch series updates
The patch series has been reorganized a bit since last time:
- The `include/linux/` changes for the C helpers have been moved
into their own small patches, which can be taken independently
as prerequisite patches if needed.
- Now that the bindings are in their own `bindings` crate,
they also get their own patch.
- There is a new patch that adds the `kernel/configs/rust.config`.
- One of the `kallsyms` patches has been split into three smaller
ones.
- Cleaned up some "exceeds 100 columns" `checkpatch.pl` warnings.
With this final cleanup, the remaining warnings (of all kinds)
are either false positives, or cannot be changed without diverging
with upstream `alloc` or would make things look worse.
## Patch series status
The Rust support is still to be considered experimental. However,
support is good enough that kernel developers can start working on the
Rust abstractions for subsystems and write drivers and other modules.
The current series will appear in the next `linux-next`, as usual.
Similarly, the preview docs for this series can be seen at:
https://rust-for-linux.github.io/docs/kernel/
As usual, please see the following link for the live list of unstable
Rust features we are using:
https://github.com/Rust-for-Linux/linux/issues/2
## Conferences, meetings and liaisons
Join us in LPC 2022 (Linux Plumbers Conference) for the Rust MC
(microconference)! The schedule is available at:
https://lpc.events/event/16/sessions/150/
We will be talking about GCC Rust (the Rust frontend for GCC),
`rustc_codegen_gcc` (the GCC backend for `rustc`), Rust for Linux,
the Rust NVMe driver, the integration of Rust with the Kernel Testing
Service and Rust in the Kernel (via eBPF).
In addition, I would like to personally thank Google and ISRG
(Internet Security Research Group) for sponsoring Kangrejos,
the Rust for Linux workshop:
https://kangrejos.com
Furthermore, we would like to thank the venues we were invited to:
- Linux Foundation Live Mentorship Series
- Open Source Summit North America
- Huawei Global Software Technology Summit
## Related news
The GCC Steering Committee accepted the contribution of the Rust
frontend (GCC Rust). Its first released version (experimental,
disabled by default) should appear in GCC 13. The first round of
patches has been posted to the gcc-patches mailing list.
`rustc_codegen_gcc` (the GCC backend for `rustc`) has seen enough
progress on SIMD support to compile `stdarch`. In addition, more
prerequisite patches are making their way into GCC.
## Acknowledgements
The signatures in the main commits correspond to the people that
wrote code that has ended up in them at the present time. For details
on contributions to code and discussions, please see our repository:
https://github.com/Rust-for-Linux/linux
However, we would like to give credit to everyone that has contributed
in one way or another to the Rust for Linux project. Since the
previous cover letter:
- Nick Desaulniers, Joe Perches, Masahiro Yamada and Jarkko Sakkinen
for their reviews of some of the v7 patches.
- Daniel Latypov, Brendan Higgins and Shuah Khan for picking up
the KUnit prerequisite patch.
- As usual, Björn Roy Baron (bjorn3) and Gary Guo for all the input
on Rust compiler details, reviews and suggestions.
- Andreas Hindborg for working on the NVMe driver, as well as
adding atomic allocations for `Box` and allowing to use GFP flags
for `KernelAllocator`.
- Li Hongyu for working on a virtio abstraction.
- Boqun Feng for working on adding an alloc alignment test.
- Andreas Reindl for working on adding missing `SAFETY` comments.
- Anhad Singh for working on adding the `new_with_flags` method
to `Pages`.
- Finn Behrens for working on making it possible to compile
the kernel on macOS with Rust enabled.
- Roel Kluin for working on code refactorings.
- Wei Liu for taking the time to answer questions from newcomers
in Zulip.
- Philip Li, Yujie Liu et al. for continuing their work on adding
Rust support to the Intel 0DAY/LKP kernel test robot.
- Philip Herron and Arthur Cohen (and his supporters Open Source
Security and Embecosm) et al. for their ongoing work on GCC Rust.
- Antoni Boucher (and his supporters) et al. for their ongoing
work on `rustc_codegen_gcc`.
- Emilio Cobos Álvarez et. al. for their work on `bindgen`,
including on issues that affect the kernel.
- Mats Larsen, Marc Poulhiès et al. for their ongoing work on
improving Rust support in Compiler Explorer.
- Many folks that have reported issues, tested the project,
helped spread the word, joined discussions and contributed in
other ways!
Please see also the acknowledgements on the previous cover letters.
Boqun Feng (2):
kallsyms: use `sizeof` instead of hardcoded size
kallsyms: avoid hardcoding buffer size
Gary Guo (2):
rust: add `build_error` crate
vsprintf: add new `%pA` format specifier
Miguel Ojeda (19):
kallsyms: add static relationship between `KSYM_NAME_LEN{,_BUFFER}`
kallsyms: support "big" kernel symbols
kallsyms: increase maximum kernel symbol length to 512
rust: add C helpers
rust: add `compiler_builtins` crate
rust: import upstream `alloc` crate
rust: adapt `alloc` crate to the kernel
rust: add `macros` crate
rust: add `bindings` crate
rust: export generated symbols
scripts: checkpatch: diagnose uses of `%pA` in the C side as errors
scripts: checkpatch: enable language-independent checks for Rust
scripts: add `rustdoc_test_{builder,gen}.py` scripts
scripts: add `generate_rust_analyzer.py` scripts
scripts: decode_stacktrace: demangle Rust symbols
docs: add Rust documentation
Kbuild: add Rust support
samples: add Rust examples
MAINTAINERS: Rust
Wedson Almeida Filho (8):
workqueue: introduce `__INIT_WORK_WITH_KEY`
locking/spinlock: introduce `__spin_lock_init`
locking/spinlock: introduce `_raw_spin_lock_init`
rust: add `kernel` crate's `sync` module
rust: add `kernel` crate
configs: add `rust` config
[RFC] drivers: gpio: PrimeCell PL061 in Rust
[RFC] drivers: android: Binder IPC in Rust
.gitignore | 6 +
.rustfmt.toml | 12 +
Documentation/core-api/printk-formats.rst | 10 +
Documentation/doc-guide/kernel-doc.rst | 3 +
Documentation/index.rst | 1 +
Documentation/kbuild/kbuild.rst | 17 +
Documentation/kbuild/makefiles.rst | 50 +-
Documentation/process/changes.rst | 41 +
Documentation/rust/arch-support.rst | 23 +
Documentation/rust/coding-guidelines.rst | 216 ++
Documentation/rust/general-information.rst | 79 +
Documentation/rust/index.rst | 22 +
Documentation/rust/quick-start.rst | 232 ++
MAINTAINERS | 15 +
Makefile | 172 +-
arch/Kconfig | 6 +
arch/arm/Kconfig | 1 +
arch/arm64/Kconfig | 1 +
arch/powerpc/Kconfig | 1 +
arch/riscv/Kconfig | 1 +
arch/riscv/Makefile | 5 +
arch/um/Kconfig | 1 +
arch/x86/Kconfig | 1 +
arch/x86/Makefile | 10 +
drivers/android/Kconfig | 6 +
drivers/android/Makefile | 2 +
drivers/android/allocation.rs | 266 ++
drivers/android/context.rs | 80 +
drivers/android/defs.rs | 99 +
drivers/android/node.rs | 476 +++
drivers/android/process.rs | 961 +++++
drivers/android/range_alloc.rs | 189 +
drivers/android/rust_binder.rs | 106 +
drivers/android/thread.rs | 871 +++++
drivers/android/transaction.rs | 326 ++
drivers/gpio/Kconfig | 8 +
drivers/gpio/Makefile | 1 +
drivers/gpio/gpio_pl061_rust.rs | 367 ++
include/linux/compiler_types.h | 6 +-
include/linux/kallsyms.h | 2 +-
include/linux/spinlock.h | 17 +-
include/linux/workqueue.h | 21 +-
include/uapi/linux/android/binder.h | 30 +-
init/Kconfig | 46 +-
kernel/configs/rust.config | 1 +
kernel/kallsyms.c | 26 +-
kernel/livepatch/core.c | 4 +-
lib/Kconfig.debug | 82 +
lib/vsprintf.c | 13 +
rust/.gitignore | 10 +
rust/Makefile | 415 +++
rust/alloc/README.md | 33 +
rust/alloc/alloc.rs | 440 +++
rust/alloc/borrow.rs | 498 +++
rust/alloc/boxed.rs | 2026 +++++++++++
rust/alloc/boxed/thin.rs | 219 ++
rust/alloc/collections/mod.rs | 156 +
rust/alloc/ffi/c_str.rs | 1203 ++++++
rust/alloc/ffi/mod.rs | 93 +
rust/alloc/fmt.rs | 614 ++++
rust/alloc/lib.rs | 239 ++
rust/alloc/macros.rs | 128 +
rust/alloc/raw_vec.rs | 567 +++
rust/alloc/slice.rs | 1295 +++++++
rust/alloc/str.rs | 641 ++++
rust/alloc/string.rs | 2944 +++++++++++++++
rust/alloc/vec/drain.rs | 186 +
rust/alloc/vec/drain_filter.rs | 145 +
rust/alloc/vec/into_iter.rs | 365 ++
rust/alloc/vec/is_zero.rs | 120 +
rust/alloc/vec/mod.rs | 3420 ++++++++++++++++++
rust/alloc/vec/partial_eq.rs | 49 +
rust/alloc/vec/set_len_on_drop.rs | 30 +
rust/alloc/vec/spec_extend.rs | 174 +
rust/bindgen_parameters | 21 +
rust/bindings/bindings_helper.h | 49 +
rust/bindings/lib.rs | 57 +
rust/build_error.rs | 29 +
rust/compiler_builtins.rs | 79 +
rust/exports.c | 21 +
rust/helpers.c | 679 ++++
rust/kernel/allocator.rs | 64 +
rust/kernel/amba.rs | 261 ++
rust/kernel/build_assert.rs | 83 +
rust/kernel/chrdev.rs | 206 ++
rust/kernel/clk.rs | 79 +
rust/kernel/cred.rs | 46 +
rust/kernel/delay.rs | 104 +
rust/kernel/device.rs | 527 +++
rust/kernel/driver.rs | 442 +++
rust/kernel/error.rs | 564 +++
rust/kernel/file.rs | 887 +++++
rust/kernel/fs.rs | 846 +++++
rust/kernel/fs/param.rs | 553 +++
rust/kernel/gpio.rs | 505 +++
rust/kernel/hwrng.rs | 210 ++
rust/kernel/io_buffer.rs | 153 +
rust/kernel/io_mem.rs | 278 ++
rust/kernel/iov_iter.rs | 81 +
rust/kernel/irq.rs | 681 ++++
rust/kernel/kasync.rs | 50 +
rust/kernel/kasync/executor.rs | 154 +
rust/kernel/kasync/executor/workqueue.rs | 291 ++
rust/kernel/kasync/net.rs | 322 ++
rust/kernel/kunit.rs | 91 +
rust/kernel/lib.rs | 267 ++
rust/kernel/linked_list.rs | 247 ++
rust/kernel/miscdev.rs | 290 ++
rust/kernel/mm.rs | 149 +
rust/kernel/module_param.rs | 499 +++
rust/kernel/net.rs | 392 ++
rust/kernel/net/filter.rs | 447 +++
rust/kernel/of.rs | 63 +
rust/kernel/pages.rs | 144 +
rust/kernel/platform.rs | 223 ++
rust/kernel/power.rs | 118 +
rust/kernel/prelude.rs | 36 +
rust/kernel/print.rs | 406 +++
rust/kernel/random.rs | 42 +
rust/kernel/raw_list.rs | 361 ++
rust/kernel/rbtree.rs | 563 +++
rust/kernel/revocable.rs | 425 +++
rust/kernel/security.rs | 38 +
rust/kernel/static_assert.rs | 34 +
rust/kernel/std_vendor.rs | 161 +
rust/kernel/str.rs | 597 +++
rust/kernel/sync.rs | 169 +
rust/kernel/sync/arc.rs | 582 +++
rust/kernel/sync/condvar.rs | 140 +
rust/kernel/sync/guard.rs | 159 +
rust/kernel/sync/locked_by.rs | 111 +
rust/kernel/sync/mutex.rs | 149 +
rust/kernel/sync/nowait.rs | 188 +
rust/kernel/sync/rcu.rs | 52 +
rust/kernel/sync/revocable.rs | 246 ++
rust/kernel/sync/rwsem.rs | 196 +
rust/kernel/sync/seqlock.rs | 201 +
rust/kernel/sync/smutex.rs | 290 ++
rust/kernel/sync/spinlock.rs | 357 ++
rust/kernel/sysctl.rs | 199 +
rust/kernel/task.rs | 239 ++
rust/kernel/types.rs | 705 ++++
rust/kernel/unsafe_list.rs | 680 ++++
rust/kernel/user_ptr.rs | 175 +
rust/kernel/workqueue.rs | 512 +++
rust/macros/concat_idents.rs | 23 +
rust/macros/helpers.rs | 79 +
rust/macros/lib.rs | 191 +
rust/macros/module.rs | 655 ++++
rust/macros/vtable.rs | 95 +
samples/Kconfig | 2 +
samples/Makefile | 1 +
samples/rust/Kconfig | 165 +
samples/rust/Makefile | 19 +
samples/rust/hostprogs/.gitignore | 3 +
samples/rust/hostprogs/Makefile | 5 +
samples/rust/hostprogs/a.rs | 7 +
samples/rust/hostprogs/b.rs | 5 +
samples/rust/hostprogs/single.rs | 12 +
samples/rust/rust_chrdev.rs | 49 +
samples/rust/rust_echo_server.rs | 60 +
samples/rust/rust_fs.rs | 59 +
samples/rust/rust_minimal.rs | 35 +
samples/rust/rust_miscdev.rs | 142 +
samples/rust/rust_module_parameters.rs | 69 +
samples/rust/rust_netfilter.rs | 54 +
samples/rust/rust_platform.rs | 22 +
samples/rust/rust_print.rs | 54 +
samples/rust/rust_random.rs | 60 +
samples/rust/rust_selftests.rs | 99 +
samples/rust/rust_semaphore.rs | 170 +
samples/rust/rust_semaphore_c.c | 212 ++
samples/rust/rust_stack_probing.rs | 36 +
samples/rust/rust_sync.rs | 93 +
scripts/.gitignore | 1 +
scripts/Kconfig.include | 6 +-
scripts/Makefile | 3 +
scripts/Makefile.build | 60 +
scripts/Makefile.debug | 10 +
scripts/Makefile.host | 34 +-
scripts/Makefile.lib | 12 +
scripts/Makefile.modfinal | 8 +-
scripts/cc-version.sh | 12 +-
scripts/checkpatch.pl | 12 +-
scripts/decode_stacktrace.sh | 14 +
scripts/generate_rust_analyzer.py | 141 +
scripts/generate_rust_target.rs | 232 ++
scripts/is_rust_module.sh | 16 +
scripts/kallsyms.c | 47 +-
scripts/kconfig/confdata.c | 75 +
scripts/min-tool-version.sh | 6 +
scripts/rust-is-available-bindgen-libclang.h | 2 +
scripts/rust-is-available.sh | 160 +
scripts/rustdoc_test_builder.py | 59 +
scripts/rustdoc_test_gen.py | 164 +
tools/include/linux/kallsyms.h | 2 +-
tools/lib/perf/include/perf/event.h | 2 +-
tools/lib/symbol/kallsyms.h | 2 +-
198 files changed, 43688 insertions(+), 75 deletions(-)
create mode 100644 .rustfmt.toml
create mode 100644 Documentation/rust/arch-support.rst
create mode 100644 Documentation/rust/coding-guidelines.rst
create mode 100644 Documentation/rust/general-information.rst
create mode 100644 Documentation/rust/index.rst
create mode 100644 Documentation/rust/quick-start.rst
create mode 100644 drivers/android/allocation.rs
create mode 100644 drivers/android/context.rs
create mode 100644 drivers/android/defs.rs
create mode 100644 drivers/android/node.rs
create mode 100644 drivers/android/process.rs
create mode 100644 drivers/android/range_alloc.rs
create mode 100644 drivers/android/rust_binder.rs
create mode 100644 drivers/android/thread.rs
create mode 100644 drivers/android/transaction.rs
create mode 100644 drivers/gpio/gpio_pl061_rust.rs
create mode 100644 kernel/configs/rust.config
create mode 100644 rust/.gitignore
create mode 100644 rust/Makefile
create mode 100644 rust/alloc/README.md
create mode 100644 rust/alloc/alloc.rs
create mode 100644 rust/alloc/borrow.rs
create mode 100644 rust/alloc/boxed.rs
create mode 100644 rust/alloc/boxed/thin.rs
create mode 100644 rust/alloc/collections/mod.rs
create mode 100644 rust/alloc/ffi/c_str.rs
create mode 100644 rust/alloc/ffi/mod.rs
create mode 100644 rust/alloc/fmt.rs
create mode 100644 rust/alloc/lib.rs
create mode 100644 rust/alloc/macros.rs
create mode 100644 rust/alloc/raw_vec.rs
create mode 100644 rust/alloc/slice.rs
create mode 100644 rust/alloc/str.rs
create mode 100644 rust/alloc/string.rs
create mode 100644 rust/alloc/vec/drain.rs
create mode 100644 rust/alloc/vec/drain_filter.rs
create mode 100644 rust/alloc/vec/into_iter.rs
create mode 100644 rust/alloc/vec/is_zero.rs
create mode 100644 rust/alloc/vec/mod.rs
create mode 100644 rust/alloc/vec/partial_eq.rs
create mode 100644 rust/alloc/vec/set_len_on_drop.rs
create mode 100644 rust/alloc/vec/spec_extend.rs
create mode 100644 rust/bindgen_parameters
create mode 100644 rust/bindings/bindings_helper.h
create mode 100644 rust/bindings/lib.rs
create mode 100644 rust/build_error.rs
create mode 100644 rust/compiler_builtins.rs
create mode 100644 rust/exports.c
create mode 100644 rust/helpers.c
create mode 100644 rust/kernel/allocator.rs
create mode 100644 rust/kernel/amba.rs
create mode 100644 rust/kernel/build_assert.rs
create mode 100644 rust/kernel/chrdev.rs
create mode 100644 rust/kernel/clk.rs
create mode 100644 rust/kernel/cred.rs
create mode 100644 rust/kernel/delay.rs
create mode 100644 rust/kernel/device.rs
create mode 100644 rust/kernel/driver.rs
create mode 100644 rust/kernel/error.rs
create mode 100644 rust/kernel/file.rs
create mode 100644 rust/kernel/fs.rs
create mode 100644 rust/kernel/fs/param.rs
create mode 100644 rust/kernel/gpio.rs
create mode 100644 rust/kernel/hwrng.rs
create mode 100644 rust/kernel/io_buffer.rs
create mode 100644 rust/kernel/io_mem.rs
create mode 100644 rust/kernel/iov_iter.rs
create mode 100644 rust/kernel/irq.rs
create mode 100644 rust/kernel/kasync.rs
create mode 100644 rust/kernel/kasync/executor.rs
create mode 100644 rust/kernel/kasync/executor/workqueue.rs
create mode 100644 rust/kernel/kasync/net.rs
create mode 100644 rust/kernel/kunit.rs
create mode 100644 rust/kernel/lib.rs
create mode 100644 rust/kernel/linked_list.rs
create mode 100644 rust/kernel/miscdev.rs
create mode 100644 rust/kernel/mm.rs
create mode 100644 rust/kernel/module_param.rs
create mode 100644 rust/kernel/net.rs
create mode 100644 rust/kernel/net/filter.rs
create mode 100644 rust/kernel/of.rs
create mode 100644 rust/kernel/pages.rs
create mode 100644 rust/kernel/platform.rs
create mode 100644 rust/kernel/power.rs
create mode 100644 rust/kernel/prelude.rs
create mode 100644 rust/kernel/print.rs
create mode 100644 rust/kernel/random.rs
create mode 100644 rust/kernel/raw_list.rs
create mode 100644 rust/kernel/rbtree.rs
create mode 100644 rust/kernel/revocable.rs
create mode 100644 rust/kernel/security.rs
create mode 100644 rust/kernel/static_assert.rs
create mode 100644 rust/kernel/std_vendor.rs
create mode 100644 rust/kernel/str.rs
create mode 100644 rust/kernel/sync.rs
create mode 100644 rust/kernel/sync/arc.rs
create mode 100644 rust/kernel/sync/condvar.rs
create mode 100644 rust/kernel/sync/guard.rs
create mode 100644 rust/kernel/sync/locked_by.rs
create mode 100644 rust/kernel/sync/mutex.rs
create mode 100644 rust/kernel/sync/nowait.rs
create mode 100644 rust/kernel/sync/rcu.rs
create mode 100644 rust/kernel/sync/revocable.rs
create mode 100644 rust/kernel/sync/rwsem.rs
create mode 100644 rust/kernel/sync/seqlock.rs
create mode 100644 rust/kernel/sync/smutex.rs
create mode 100644 rust/kernel/sync/spinlock.rs
create mode 100644 rust/kernel/sysctl.rs
create mode 100644 rust/kernel/task.rs
create mode 100644 rust/kernel/types.rs
create mode 100644 rust/kernel/unsafe_list.rs
create mode 100644 rust/kernel/user_ptr.rs
create mode 100644 rust/kernel/workqueue.rs
create mode 100644 rust/macros/concat_idents.rs
create mode 100644 rust/macros/helpers.rs
create mode 100644 rust/macros/lib.rs
create mode 100644 rust/macros/module.rs
create mode 100644 rust/macros/vtable.rs
create mode 100644 samples/rust/Kconfig
create mode 100644 samples/rust/Makefile
create mode 100644 samples/rust/hostprogs/.gitignore
create mode 100644 samples/rust/hostprogs/Makefile
create mode 100644 samples/rust/hostprogs/a.rs
create mode 100644 samples/rust/hostprogs/b.rs
create mode 100644 samples/rust/hostprogs/single.rs
create mode 100644 samples/rust/rust_chrdev.rs
create mode 100644 samples/rust/rust_echo_server.rs
create mode 100644 samples/rust/rust_fs.rs
create mode 100644 samples/rust/rust_minimal.rs
create mode 100644 samples/rust/rust_miscdev.rs
create mode 100644 samples/rust/rust_module_parameters.rs
create mode 100644 samples/rust/rust_netfilter.rs
create mode 100644 samples/rust/rust_platform.rs
create mode 100644 samples/rust/rust_print.rs
create mode 100644 samples/rust/rust_random.rs
create mode 100644 samples/rust/rust_selftests.rs
create mode 100644 samples/rust/rust_semaphore.rs
create mode 100644 samples/rust/rust_semaphore_c.c
create mode 100644 samples/rust/rust_stack_probing.rs
create mode 100644 samples/rust/rust_sync.rs
create mode 100755 scripts/generate_rust_analyzer.py
create mode 100644 scripts/generate_rust_target.rs
create mode 100755 scripts/is_rust_module.sh
create mode 100644 scripts/rust-is-available-bindgen-libclang.h
create mode 100755 scripts/rust-is-available.sh
create mode 100755 scripts/rustdoc_test_builder.py
create mode 100755 scripts/rustdoc_test_gen.py
base-commit: 3d7cb6b04c3f3115719235cc6866b10326de34cd
--
2.37.1
From: Boqun Feng <[email protected]>
This introduces `KSYM_NAME_LEN_BUFFER` in place of the previously
hardcoded size of the input buffer.
It will also make it easier to update the size in a single place
in a later patch.
Signed-off-by: Boqun Feng <[email protected]>
Co-developed-by: Miguel Ojeda <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
scripts/kallsyms.c | 10 ++++++++--
1 file changed, 8 insertions(+), 2 deletions(-)
diff --git a/scripts/kallsyms.c b/scripts/kallsyms.c
index 52f5488c61bc..f3c5a2623f71 100644
--- a/scripts/kallsyms.c
+++ b/scripts/kallsyms.c
@@ -27,8 +27,14 @@
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0]))
+#define _stringify_1(x) #x
+#define _stringify(x) _stringify_1(x)
+
#define KSYM_NAME_LEN 128
+/* A substantially bigger size than the current maximum. */
+#define KSYM_NAME_LEN_BUFFER 499
+
struct sym_entry {
unsigned long long addr;
unsigned int len;
@@ -198,13 +204,13 @@ static void check_symbol_range(const char *sym, unsigned long long addr,
static struct sym_entry *read_symbol(FILE *in)
{
- char name[500], type;
+ char name[KSYM_NAME_LEN_BUFFER+1], type;
unsigned long long addr;
unsigned int len;
struct sym_entry *sym;
int rc;
- rc = fscanf(in, "%llx %c %499s\n", &addr, &type, name);
+ rc = fscanf(in, "%llx %c %" _stringify(KSYM_NAME_LEN_BUFFER) "s\n", &addr, &type, name);
if (rc != 3) {
if (rc != EOF && fgets(name, sizeof(name), in) == NULL)
fprintf(stderr, "Read error or end of file.\n");
--
2.37.1
This adds a static assert to ensure `KSYM_NAME_LEN_BUFFER`
gets updated when `KSYM_NAME_LEN` changes.
The relationship used is one that keeps the new size (512+1)
close to the original buffer size (500).
Co-developed-by: Boqun Feng <[email protected]>
Signed-off-by: Boqun Feng <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
scripts/kallsyms.c | 6 +++++-
1 file changed, 5 insertions(+), 1 deletion(-)
diff --git a/scripts/kallsyms.c b/scripts/kallsyms.c
index f3c5a2623f71..f543b1c4f99f 100644
--- a/scripts/kallsyms.c
+++ b/scripts/kallsyms.c
@@ -33,7 +33,11 @@
#define KSYM_NAME_LEN 128
/* A substantially bigger size than the current maximum. */
-#define KSYM_NAME_LEN_BUFFER 499
+#define KSYM_NAME_LEN_BUFFER 512
+_Static_assert(
+ KSYM_NAME_LEN_BUFFER == KSYM_NAME_LEN * 4,
+ "Please keep KSYM_NAME_LEN_BUFFER in sync with KSYM_NAME_LEN"
+);
struct sym_entry {
unsigned long long addr;
--
2.37.1
Rust symbols can become quite long due to namespacing introduced
by modules, types, traits, generics, etc.
Increasing to 255 is not enough in some cases, therefore
introduce longer lengths to the symbol table.
In order to avoid increasing all lengths to 2 bytes (since most
of them are small, including many Rust ones), use ULEB128 to
keep smaller symbols in 1 byte, with the rest in 2 bytes.
Reviewed-by: Kees Cook <[email protected]>
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Co-developed-by: Gary Guo <[email protected]>
Signed-off-by: Gary Guo <[email protected]>
Co-developed-by: Boqun Feng <[email protected]>
Signed-off-by: Boqun Feng <[email protected]>
Co-developed-by: Matthew Wilcox <[email protected]>
Signed-off-by: Matthew Wilcox <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
kernel/kallsyms.c | 26 ++++++++++++++++++++++----
scripts/kallsyms.c | 29 ++++++++++++++++++++++++++---
2 files changed, 48 insertions(+), 7 deletions(-)
diff --git a/kernel/kallsyms.c b/kernel/kallsyms.c
index fbdf8d3279ac..87e2b1638115 100644
--- a/kernel/kallsyms.c
+++ b/kernel/kallsyms.c
@@ -70,12 +70,20 @@ static unsigned int kallsyms_expand_symbol(unsigned int off,
data = &kallsyms_names[off];
len = *data;
data++;
+ off++;
+
+ /* If MSB is 1, it is a "big" symbol, so needs an additional byte. */
+ if ((len & 0x80) != 0) {
+ len = (len & 0x7F) | (*data << 7);
+ data++;
+ off++;
+ }
/*
* Update the offset to return the offset for the next symbol on
* the compressed stream.
*/
- off += len + 1;
+ off += len;
/*
* For every byte on the compressed symbol data, copy the table
@@ -128,7 +136,7 @@ static char kallsyms_get_symbol_type(unsigned int off)
static unsigned int get_symbol_offset(unsigned long pos)
{
const u8 *name;
- int i;
+ int i, len;
/*
* Use the closest marker we have. We have markers every 256 positions,
@@ -142,8 +150,18 @@ static unsigned int get_symbol_offset(unsigned long pos)
* so we just need to add the len to the current pointer for every
* symbol we wish to skip.
*/
- for (i = 0; i < (pos & 0xFF); i++)
- name = name + (*name) + 1;
+ for (i = 0; i < (pos & 0xFF); i++) {
+ len = *name;
+
+ /*
+ * If MSB is 1, it is a "big" symbol, so we need to look into
+ * the next byte (and skip it, too).
+ */
+ if ((len & 0x80) != 0)
+ len = ((len & 0x7F) | (name[1] << 7)) + 1;
+
+ name = name + len + 1;
+ }
return name - kallsyms_names;
}
diff --git a/scripts/kallsyms.c b/scripts/kallsyms.c
index f543b1c4f99f..9da3b7767e9d 100644
--- a/scripts/kallsyms.c
+++ b/scripts/kallsyms.c
@@ -481,12 +481,35 @@ static void write_src(void)
if ((i & 0xFF) == 0)
markers[i >> 8] = off;
- printf("\t.byte 0x%02x", table[i]->len);
+ /* There cannot be any symbol of length zero. */
+ if (table[i]->len == 0) {
+ fprintf(stderr, "kallsyms failure: "
+ "unexpected zero symbol length\n");
+ exit(EXIT_FAILURE);
+ }
+
+ /* Only lengths that fit in up-to-two-byte ULEB128 are supported. */
+ if (table[i]->len > 0x3FFF) {
+ fprintf(stderr, "kallsyms failure: "
+ "unexpected huge symbol length\n");
+ exit(EXIT_FAILURE);
+ }
+
+ /* Encode length with ULEB128. */
+ if (table[i]->len <= 0x7F) {
+ /* Most symbols use a single byte for the length. */
+ printf("\t.byte 0x%02x", table[i]->len);
+ off += table[i]->len + 1;
+ } else {
+ /* "Big" symbols use two bytes. */
+ printf("\t.byte 0x%02x, 0x%02x",
+ (table[i]->len & 0x7F) | 0x80,
+ (table[i]->len >> 7) & 0x7F);
+ off += table[i]->len + 2;
+ }
for (k = 0; k < table[i]->len; k++)
printf(", 0x%02x", table[i]->sym[k]);
printf("\n");
-
- off += table[i]->len + 1;
}
printf("\n");
--
2.37.1
From: Wedson Almeida Filho <[email protected]>
A Rust helper (introduced in a later patch) needs to call
`__INIT_WORK` with a passed key, rather than define one in place.
In order to do that, this moves the initialization code from
the `__INIT_WORK` macro into a new `__INIT_WORK_WITH_KEY` macro
which takes the key as an extra parameter.
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Co-developed-by: Miguel Ojeda <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
include/linux/workqueue.h | 21 ++++++++++++++-------
1 file changed, 14 insertions(+), 7 deletions(-)
diff --git a/include/linux/workqueue.h b/include/linux/workqueue.h
index 62e75dd40d9a..06c24805e666 100644
--- a/include/linux/workqueue.h
+++ b/include/linux/workqueue.h
@@ -221,24 +221,31 @@ static inline unsigned int work_static(struct work_struct *work) { return 0; }
* to generate better code.
*/
#ifdef CONFIG_LOCKDEP
+#define __INIT_WORK_WITH_KEY(_work, _func, _onstack, _key) \
+ do { \
+ __init_work((_work), _onstack); \
+ (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \
+ lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, _key, 0); \
+ INIT_LIST_HEAD(&(_work)->entry); \
+ (_work)->func = (_func); \
+ } while (0)
+
#define __INIT_WORK(_work, _func, _onstack) \
do { \
static struct lock_class_key __key; \
- \
- __init_work((_work), _onstack); \
- (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \
- lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, &__key, 0); \
- INIT_LIST_HEAD(&(_work)->entry); \
- (_work)->func = (_func); \
+ __INIT_WORK_WITH_KEY(_work, _func, _onstack, &__key); \
} while (0)
#else
-#define __INIT_WORK(_work, _func, _onstack) \
+#define __INIT_WORK_WITH_KEY(_work, _func, _onstack, _key) \
do { \
__init_work((_work), _onstack); \
(_work)->data = (atomic_long_t) WORK_DATA_INIT(); \
INIT_LIST_HEAD(&(_work)->entry); \
(_work)->func = (_func); \
} while (0)
+
+#define __INIT_WORK(_work, _func, _onstack) \
+ __INIT_WORK_WITH_KEY(_work, _func, _onstack, NULL)
#endif
#define INIT_WORK(_work, _func) \
--
2.37.1
From: Wedson Almeida Filho <[email protected]>
A Rust helper (introduced in a later patch) needs to call
`raw_spin_lock_init` with a passed key, rather than define
one in place.
In order to do that, this changes the `raw_spin_lock_init` macro
to call a new `_raw_spin_lock_init` function which takes the key
as an extra parameter.
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Co-developed-by: Miguel Ojeda <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
include/linux/spinlock.h | 8 +++++++-
1 file changed, 7 insertions(+), 1 deletion(-)
diff --git a/include/linux/spinlock.h b/include/linux/spinlock.h
index ad1c91884ed8..27df5380c1e4 100644
--- a/include/linux/spinlock.h
+++ b/include/linux/spinlock.h
@@ -99,11 +99,17 @@
extern void __raw_spin_lock_init(raw_spinlock_t *lock, const char *name,
struct lock_class_key *key, short inner);
+static inline void _raw_spin_lock_init(raw_spinlock_t *lock, const char *name,
+ struct lock_class_key *key)
+{
+ __raw_spin_lock_init(lock, name, key, LD_WAIT_SPIN);
+}
+
# define raw_spin_lock_init(lock) \
do { \
static struct lock_class_key __key; \
\
- __raw_spin_lock_init((lock), #lock, &__key, LD_WAIT_SPIN); \
+ _raw_spin_lock_init((lock), #lock, &__key); \
} while (0)
#else
--
2.37.1
Rust documentation tests are typically examples of usage of any
item (e.g. function, struct, module...). They are very convenient
because they are just written alongside the documentation, e.g.:
/// Sums two numbers.
///
/// # Examples
///
/// ```
/// assert_eq!(mymod::f(10, 20), 30);
/// ```
pub fn f(a: i32, b: i32) -> i32 {
a + b
}
These scripts are used to transform Rust documentation tests into
KUnit tests, so that they can be run in-kernel. In turn, this allows
us to run tests that use kernel APIs.
In particular, the test builder receives `rustdoc`-generated tests,
parses them and stores the result. Then, the test generator takes
the saved results and generates a KUnit suite where each original
documentation test is a test case.
For the moment, this is only done for the `kernel` crate, but
the plan is to generalize it for other crates and modules.
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
scripts/rustdoc_test_builder.py | 59 ++++++++++++
scripts/rustdoc_test_gen.py | 164 ++++++++++++++++++++++++++++++++
2 files changed, 223 insertions(+)
create mode 100755 scripts/rustdoc_test_builder.py
create mode 100755 scripts/rustdoc_test_gen.py
diff --git a/scripts/rustdoc_test_builder.py b/scripts/rustdoc_test_builder.py
new file mode 100755
index 000000000000..d9b47a5c54fc
--- /dev/null
+++ b/scripts/rustdoc_test_builder.py
@@ -0,0 +1,59 @@
+#!/usr/bin/env python3
+# SPDX-License-Identifier: GPL-2.0
+"""rustdoc_test_builder - Test builder for `rustdoc`-generated tests.
+"""
+
+import json
+import pathlib
+import re
+import sys
+
+RUST_DIR = pathlib.Path("rust")
+TESTS_DIR = RUST_DIR / "test" / "doctests" / "kernel"
+
+# `[^\s]*` removes the prefix (e.g. `_doctest_main_`) plus any
+# leading path (for `O=` builds).
+MAIN_RE = re.compile(
+ r"^"
+ r"fn main\(\) { "
+ r"#\[allow\(non_snake_case\)\] "
+ r"fn ([^\s]*rust_kernel_([a-zA-Z0-9_]+))\(\) {"
+ r"$"
+)
+
+def main():
+ found_main = False
+ test_header = ""
+ test_body = ""
+ for line in sys.stdin.readlines():
+ main_match = MAIN_RE.match(line)
+ if main_match:
+ if found_main:
+ raise Exception("More than one `main` line found.")
+ found_main = True
+ function_name = main_match.group(1)
+ test_name = f"rust_kernel_doctest_{main_match.group(2)}"
+ continue
+
+ if found_main:
+ test_body += line
+ else:
+ test_header += line
+
+ if not found_main:
+ raise Exception("No `main` line found.")
+
+ call_line = f"}} {function_name}() }}"
+ if not test_body.endswith(call_line):
+ raise Exception("Unexpected end of test body.")
+ test_body = test_body[:-len(call_line)]
+
+ with open(TESTS_DIR / f"{test_name}.json", "w") as fd:
+ json.dump({
+ "name": test_name,
+ "header": test_header,
+ "body": test_body,
+ }, fd, sort_keys=True, indent=4)
+
+if __name__ == "__main__":
+ main()
diff --git a/scripts/rustdoc_test_gen.py b/scripts/rustdoc_test_gen.py
new file mode 100755
index 000000000000..ad9a94293ab5
--- /dev/null
+++ b/scripts/rustdoc_test_gen.py
@@ -0,0 +1,164 @@
+#!/usr/bin/env python3
+# SPDX-License-Identifier: GPL-2.0
+"""rustdoc_test_gen - Generates KUnit tests from saved `rustdoc`-generated tests.
+"""
+
+import json
+import os
+import pathlib
+
+RUST_DIR = pathlib.Path("rust")
+TESTS_DIR = RUST_DIR / "test" / "doctests" / "kernel"
+
+RUST_FILE = RUST_DIR / "doctests_kernel_generated.rs"
+C_FILE = RUST_DIR / "doctests_kernel_generated_kunit.c"
+
+RUST_TEMPLATE_TEST = """
+/// Generated `{test_name}` KUnit test case from a Rust documentation test.
+#[no_mangle]
+pub fn {test_name}(__kunit_test: *mut kernel::bindings::kunit) {{
+ /// Provides mutual exclusion (see `# Implementation` notes).
+ static __KUNIT_TEST_MUTEX: kernel::sync::smutex::Mutex<()> =
+ kernel::sync::smutex::Mutex::new(());
+
+ /// Saved argument (see `# Implementation` notes).
+ static __KUNIT_TEST: core::sync::atomic::AtomicPtr<kernel::bindings::kunit> =
+ core::sync::atomic::AtomicPtr::new(core::ptr::null_mut());
+
+ let __kunit_test_mutex_guard = __KUNIT_TEST_MUTEX.lock();
+ __KUNIT_TEST.store(__kunit_test, core::sync::atomic::Ordering::SeqCst);
+
+ /// Overrides the usual [`assert!`] macro with one that calls KUnit instead.
+ macro_rules! assert {{
+ ($cond:expr $(,)?) => {{{{
+ kernel::kunit_assert!(
+ __KUNIT_TEST.load(core::sync::atomic::Ordering::SeqCst),
+ $cond
+ );
+ }}}}
+ }}
+
+ /// Overrides the usual [`assert_eq!`] macro with one that calls KUnit instead.
+ macro_rules! assert_eq {{
+ ($left:expr, $right:expr $(,)?) => {{{{
+ kernel::kunit_assert_eq!(
+ __KUNIT_TEST.load(core::sync::atomic::Ordering::SeqCst),
+ $left,
+ $right
+ );
+ }}}}
+ }}
+
+ // Many tests need the prelude, so provide it by default.
+ use kernel::prelude::*;
+
+ {test_body}
+}}
+"""
+RUST_TEMPLATE = """// SPDX-License-Identifier: GPL-2.0
+
+//! `kernel` crate documentation tests.
+
+// # Implementation
+//
+// KUnit gives us a context in the form of the `kunit_test` parameter that one
+// needs to pass back to other KUnit functions and macros.
+//
+// However, we want to keep this as an implementation detail because:
+//
+// - Test code should not care about the implementation.
+//
+// - Documentation looks worse if it needs to carry extra details unrelated
+// to the piece being described.
+//
+// - Test code should be able to define functions and call them, without
+// having to carry the context (since functions cannot capture dynamic
+// environment).
+//
+// - Later on, we may want to be able to test non-kernel code (e.g. `core`,
+// `alloc` or external crates) which likely use the standard library
+// `assert*!` macros.
+//
+// For this reason, `static`s are used in the generated code to save the
+// argument which then gets read by the asserting macros. These macros then
+// call back into KUnit, instead of panicking.
+//
+// To avoid depending on whether KUnit allows to run tests concurrently and/or
+// reentrantly, we ensure mutual exclusion on our end. To ensure a single test
+// being killed does not trigger failure of every other test (timing out),
+// we provide different `static`s per test (which also allow for concurrent
+// execution, though KUnit runs them sequentially).
+//
+// Furthermore, since test code may create threads and assert from them, we use
+// an `AtomicPtr` to hold the context (though each test only writes once before
+// threads may be created).
+
+{rust_header}
+
+const __LOG_PREFIX: &[u8] = b"rust_kernel_doctests\\0";
+
+{rust_tests}
+"""
+
+C_TEMPLATE_TEST_DECLARATION = "void {test_name}(struct kunit *);\n"
+C_TEMPLATE_TEST_CASE = " KUNIT_CASE({test_name}),\n"
+C_TEMPLATE = """// SPDX-License-Identifier: GPL-2.0
+/*
+ * `kernel` crate documentation tests.
+ */
+
+#include <kunit/test.h>
+
+{c_test_declarations}
+
+static struct kunit_case test_cases[] = {{
+ {c_test_cases}
+ {{ }}
+}};
+
+static struct kunit_suite test_suite = {{
+ .name = "rust_kernel_doctests",
+ .test_cases = test_cases,
+}};
+
+kunit_test_suite(test_suite);
+
+MODULE_LICENSE("GPL");
+"""
+
+def main():
+ rust_header = set()
+ rust_tests = ""
+ c_test_declarations = ""
+ c_test_cases = ""
+ for filename in sorted(os.listdir(TESTS_DIR)):
+ with open(TESTS_DIR / filename, "r") as fd:
+ test = json.load(fd)
+ for line in test["header"].strip().split("\n"):
+ rust_header.add(line)
+ rust_tests += RUST_TEMPLATE_TEST.format(
+ test_name = test["name"],
+ test_body = test["body"]
+ )
+ c_test_declarations += C_TEMPLATE_TEST_DECLARATION.format(
+ test_name = test["name"]
+ )
+ c_test_cases += C_TEMPLATE_TEST_CASE.format(
+ test_name = test["name"]
+ )
+ rust_header = sorted(rust_header)
+
+ with open(RUST_FILE, "w") as fd:
+ fd.write(RUST_TEMPLATE.format(
+ rust_header = "\n".join(rust_header).strip(),
+ rust_tests = rust_tests.strip(),
+ ))
+
+ with open(C_FILE, "w") as fd:
+ fd.write(C_TEMPLATE.format(
+ c_test_declarations=c_test_declarations.strip(),
+ c_test_cases=c_test_cases.strip(),
+ ))
+
+if __name__ == "__main__":
+ main()
--
2.37.1
From: Wedson Almeida Filho <[email protected]>
A Rust helper (introduced in a later patch) needs to call
`spin_lock_init` with a passed key, rather than define
one in place.
In order to do that, this changes the `spin_lock_init` macro
to call a new `__spin_lock_init` function which takes the key
as an extra parameter.
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Co-developed-by: Miguel Ojeda <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
include/linux/spinlock.h | 9 +++++++--
1 file changed, 7 insertions(+), 2 deletions(-)
diff --git a/include/linux/spinlock.h b/include/linux/spinlock.h
index 5c0c5174155d..ad1c91884ed8 100644
--- a/include/linux/spinlock.h
+++ b/include/linux/spinlock.h
@@ -326,12 +326,17 @@ static __always_inline raw_spinlock_t *spinlock_check(spinlock_t *lock)
#ifdef CONFIG_DEBUG_SPINLOCK
+static inline void __spin_lock_init(spinlock_t *lock, const char *name,
+ struct lock_class_key *key)
+{
+ __raw_spin_lock_init(spinlock_check(lock), name, key, LD_WAIT_CONFIG);
+}
+
# define spin_lock_init(lock) \
do { \
static struct lock_class_key __key; \
\
- __raw_spin_lock_init(spinlock_check(lock), \
- #lock, &__key, LD_WAIT_CONFIG); \
+ __spin_lock_init(lock, #lock, &__key); \
} while (0)
#else
--
2.37.1
This source file contains forwarders to C macros and inlined
functions.
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Geoffrey Thomas <[email protected]>
Signed-off-by: Geoffrey Thomas <[email protected]>
Co-developed-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Co-developed-by: Sven Van Asbroeck <[email protected]>
Signed-off-by: Sven Van Asbroeck <[email protected]>
Co-developed-by: Gary Guo <[email protected]>
Signed-off-by: Gary Guo <[email protected]>
Co-developed-by: Boqun Feng <[email protected]>
Signed-off-by: Boqun Feng <[email protected]>
Co-developed-by: Maciej Falkowski <[email protected]>
Signed-off-by: Maciej Falkowski <[email protected]>
Co-developed-by: Wei Liu <[email protected]>
Signed-off-by: Wei Liu <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
rust/helpers.c | 679 +++++++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 679 insertions(+)
create mode 100644 rust/helpers.c
diff --git a/rust/helpers.c b/rust/helpers.c
new file mode 100644
index 000000000000..bf790f46c763
--- /dev/null
+++ b/rust/helpers.c
@@ -0,0 +1,679 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Non-trivial C macros cannot be used in Rust. Similarly, inlined C functions
+ * cannot be called either. This file explicitly creates functions ("helpers")
+ * that wrap those so that they can be called from Rust.
+ *
+ * Even though Rust kernel modules should never use directly the bindings, some
+ * of these helpers need to be exported because Rust generics and inlined
+ * functions may not get their code generated in the crate where they are
+ * defined. Other helpers, called from non-inline functions, may not be
+ * exported, in principle. However, in general, the Rust compiler does not
+ * guarantee codegen will be performed for a non-inline function either.
+ * Therefore, this file exports all the helpers. In the future, this may be
+ * revisited to reduce the number of exports after the compiler is informed
+ * about the places codegen is required.
+ *
+ * All symbols are exported as GPL-only to guarantee no GPL-only feature is
+ * accidentally exposed.
+ */
+
+#include <linux/amba/bus.h>
+#include <linux/bug.h>
+#include <linux/build_bug.h>
+#include <linux/clk.h>
+#include <linux/errname.h>
+#include <linux/fs_parser.h>
+#include <linux/gfp.h>
+#include <linux/highmem.h>
+#include <linux/io.h>
+#include <linux/irqchip/chained_irq.h>
+#include <linux/irqdomain.h>
+#include <linux/irq.h>
+#include <linux/mutex.h>
+#include <linux/netdevice.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/sched/signal.h>
+#include <linux/security.h>
+#include <linux/skbuff.h>
+#include <linux/uaccess.h>
+#include <linux/uio.h>
+
+__noreturn void rust_helper_BUG(void)
+{
+ BUG();
+}
+EXPORT_SYMBOL_GPL(rust_helper_BUG);
+
+void rust_helper_clk_disable_unprepare(struct clk *clk)
+{
+ return clk_disable_unprepare(clk);
+}
+EXPORT_SYMBOL_GPL(rust_helper_clk_disable_unprepare);
+
+int rust_helper_clk_prepare_enable(struct clk *clk)
+{
+ return clk_prepare_enable(clk);
+}
+EXPORT_SYMBOL_GPL(rust_helper_clk_prepare_enable);
+
+unsigned long rust_helper_copy_from_user(void *to, const void __user *from, unsigned long n)
+{
+ return copy_from_user(to, from, n);
+}
+EXPORT_SYMBOL_GPL(rust_helper_copy_from_user);
+
+unsigned long rust_helper_copy_to_user(void __user *to, const void *from, unsigned long n)
+{
+ return copy_to_user(to, from, n);
+}
+EXPORT_SYMBOL_GPL(rust_helper_copy_to_user);
+
+unsigned long rust_helper_clear_user(void __user *to, unsigned long n)
+{
+ return clear_user(to, n);
+}
+EXPORT_SYMBOL_GPL(rust_helper_clear_user);
+
+void __iomem *rust_helper_ioremap(resource_size_t offset, unsigned long size)
+{
+ return ioremap(offset, size);
+}
+EXPORT_SYMBOL_GPL(rust_helper_ioremap);
+
+u8 rust_helper_readb(const volatile void __iomem *addr)
+{
+ return readb(addr);
+}
+EXPORT_SYMBOL_GPL(rust_helper_readb);
+
+u16 rust_helper_readw(const volatile void __iomem *addr)
+{
+ return readw(addr);
+}
+EXPORT_SYMBOL_GPL(rust_helper_readw);
+
+u32 rust_helper_readl(const volatile void __iomem *addr)
+{
+ return readl(addr);
+}
+EXPORT_SYMBOL_GPL(rust_helper_readl);
+
+#ifdef CONFIG_64BIT
+u64 rust_helper_readq(const volatile void __iomem *addr)
+{
+ return readq(addr);
+}
+EXPORT_SYMBOL_GPL(rust_helper_readq);
+#endif
+
+void rust_helper_writeb(u8 value, volatile void __iomem *addr)
+{
+ writeb(value, addr);
+}
+EXPORT_SYMBOL_GPL(rust_helper_writeb);
+
+void rust_helper_writew(u16 value, volatile void __iomem *addr)
+{
+ writew(value, addr);
+}
+EXPORT_SYMBOL_GPL(rust_helper_writew);
+
+void rust_helper_writel(u32 value, volatile void __iomem *addr)
+{
+ writel(value, addr);
+}
+EXPORT_SYMBOL_GPL(rust_helper_writel);
+
+#ifdef CONFIG_64BIT
+void rust_helper_writeq(u64 value, volatile void __iomem *addr)
+{
+ writeq(value, addr);
+}
+EXPORT_SYMBOL_GPL(rust_helper_writeq);
+#endif
+
+u8 rust_helper_readb_relaxed(const volatile void __iomem *addr)
+{
+ return readb_relaxed(addr);
+}
+EXPORT_SYMBOL_GPL(rust_helper_readb_relaxed);
+
+u16 rust_helper_readw_relaxed(const volatile void __iomem *addr)
+{
+ return readw_relaxed(addr);
+}
+EXPORT_SYMBOL_GPL(rust_helper_readw_relaxed);
+
+u32 rust_helper_readl_relaxed(const volatile void __iomem *addr)
+{
+ return readl_relaxed(addr);
+}
+EXPORT_SYMBOL_GPL(rust_helper_readl_relaxed);
+
+#ifdef CONFIG_64BIT
+u64 rust_helper_readq_relaxed(const volatile void __iomem *addr)
+{
+ return readq_relaxed(addr);
+}
+EXPORT_SYMBOL_GPL(rust_helper_readq_relaxed);
+#endif
+
+void rust_helper_writeb_relaxed(u8 value, volatile void __iomem *addr)
+{
+ writeb_relaxed(value, addr);
+}
+EXPORT_SYMBOL_GPL(rust_helper_writeb_relaxed);
+
+void rust_helper_writew_relaxed(u16 value, volatile void __iomem *addr)
+{
+ writew_relaxed(value, addr);
+}
+EXPORT_SYMBOL_GPL(rust_helper_writew_relaxed);
+
+void rust_helper_writel_relaxed(u32 value, volatile void __iomem *addr)
+{
+ writel_relaxed(value, addr);
+}
+EXPORT_SYMBOL_GPL(rust_helper_writel_relaxed);
+
+#ifdef CONFIG_64BIT
+void rust_helper_writeq_relaxed(u64 value, volatile void __iomem *addr)
+{
+ writeq_relaxed(value, addr);
+}
+EXPORT_SYMBOL_GPL(rust_helper_writeq_relaxed);
+#endif
+
+void rust_helper_memcpy_fromio(void *to, const volatile void __iomem *from, long count)
+{
+ memcpy_fromio(to, from, count);
+}
+EXPORT_SYMBOL_GPL(rust_helper_memcpy_fromio);
+
+void rust_helper___spin_lock_init(spinlock_t *lock, const char *name,
+ struct lock_class_key *key)
+{
+#ifdef CONFIG_DEBUG_SPINLOCK
+ __spin_lock_init(lock, name, key);
+#else
+ spin_lock_init(lock);
+#endif
+}
+EXPORT_SYMBOL_GPL(rust_helper___spin_lock_init);
+
+void rust_helper_spin_lock(spinlock_t *lock)
+{
+ spin_lock(lock);
+}
+EXPORT_SYMBOL_GPL(rust_helper_spin_lock);
+
+void rust_helper_spin_unlock(spinlock_t *lock)
+{
+ spin_unlock(lock);
+}
+EXPORT_SYMBOL_GPL(rust_helper_spin_unlock);
+
+unsigned long rust_helper_spin_lock_irqsave(spinlock_t *lock)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(lock, flags);
+
+ return flags;
+}
+EXPORT_SYMBOL_GPL(rust_helper_spin_lock_irqsave);
+
+void rust_helper_spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags)
+{
+ spin_unlock_irqrestore(lock, flags);
+}
+EXPORT_SYMBOL_GPL(rust_helper_spin_unlock_irqrestore);
+
+void rust_helper__raw_spin_lock_init(raw_spinlock_t *lock, const char *name,
+ struct lock_class_key *key)
+{
+#ifdef CONFIG_DEBUG_SPINLOCK
+ _raw_spin_lock_init(lock, name, key);
+#else
+ raw_spin_lock_init(lock);
+#endif
+}
+EXPORT_SYMBOL_GPL(rust_helper__raw_spin_lock_init);
+
+void rust_helper_raw_spin_lock(raw_spinlock_t *lock)
+{
+ raw_spin_lock(lock);
+}
+EXPORT_SYMBOL_GPL(rust_helper_raw_spin_lock);
+
+void rust_helper_raw_spin_unlock(raw_spinlock_t *lock)
+{
+ raw_spin_unlock(lock);
+}
+EXPORT_SYMBOL_GPL(rust_helper_raw_spin_unlock);
+
+unsigned long rust_helper_raw_spin_lock_irqsave(raw_spinlock_t *lock)
+{
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(lock, flags);
+
+ return flags;
+}
+EXPORT_SYMBOL_GPL(rust_helper_raw_spin_lock_irqsave);
+
+void rust_helper_raw_spin_unlock_irqrestore(raw_spinlock_t *lock,
+ unsigned long flags)
+{
+ raw_spin_unlock_irqrestore(lock, flags);
+}
+EXPORT_SYMBOL_GPL(rust_helper_raw_spin_unlock_irqrestore);
+
+void rust_helper_init_wait(struct wait_queue_entry *wq_entry)
+{
+ init_wait(wq_entry);
+}
+EXPORT_SYMBOL_GPL(rust_helper_init_wait);
+
+void rust_helper_init_waitqueue_func_entry(struct wait_queue_entry *wq_entry,
+ wait_queue_func_t func)
+{
+ init_waitqueue_func_entry(wq_entry, func);
+}
+EXPORT_SYMBOL_GPL(rust_helper_init_waitqueue_func_entry);
+
+int rust_helper_signal_pending(struct task_struct *t)
+{
+ return signal_pending(t);
+}
+EXPORT_SYMBOL_GPL(rust_helper_signal_pending);
+
+struct page *rust_helper_alloc_pages(gfp_t gfp_mask, unsigned int order)
+{
+ return alloc_pages(gfp_mask, order);
+}
+EXPORT_SYMBOL_GPL(rust_helper_alloc_pages);
+
+void *rust_helper_kmap(struct page *page)
+{
+ return kmap(page);
+}
+EXPORT_SYMBOL_GPL(rust_helper_kmap);
+
+void rust_helper_kunmap(struct page *page)
+{
+ return kunmap(page);
+}
+EXPORT_SYMBOL_GPL(rust_helper_kunmap);
+
+int rust_helper_cond_resched(void)
+{
+ return cond_resched();
+}
+EXPORT_SYMBOL_GPL(rust_helper_cond_resched);
+
+size_t rust_helper_copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
+{
+ return copy_from_iter(addr, bytes, i);
+}
+EXPORT_SYMBOL_GPL(rust_helper_copy_from_iter);
+
+size_t rust_helper_copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
+{
+ return copy_to_iter(addr, bytes, i);
+}
+EXPORT_SYMBOL_GPL(rust_helper_copy_to_iter);
+
+bool rust_helper_IS_ERR(__force const void *ptr)
+{
+ return IS_ERR(ptr);
+}
+EXPORT_SYMBOL_GPL(rust_helper_IS_ERR);
+
+long rust_helper_PTR_ERR(__force const void *ptr)
+{
+ return PTR_ERR(ptr);
+}
+EXPORT_SYMBOL_GPL(rust_helper_PTR_ERR);
+
+const char *rust_helper_errname(int err)
+{
+ return errname(err);
+}
+EXPORT_SYMBOL_GPL(rust_helper_errname);
+
+void rust_helper_mutex_lock(struct mutex *lock)
+{
+ mutex_lock(lock);
+}
+EXPORT_SYMBOL_GPL(rust_helper_mutex_lock);
+
+void rust_helper_amba_set_drvdata(struct amba_device *dev, void *data)
+{
+ amba_set_drvdata(dev, data);
+}
+EXPORT_SYMBOL_GPL(rust_helper_amba_set_drvdata);
+
+void *rust_helper_amba_get_drvdata(struct amba_device *dev)
+{
+ return amba_get_drvdata(dev);
+}
+EXPORT_SYMBOL_GPL(rust_helper_amba_get_drvdata);
+
+void *
+rust_helper_platform_get_drvdata(const struct platform_device *pdev)
+{
+ return platform_get_drvdata(pdev);
+}
+EXPORT_SYMBOL_GPL(rust_helper_platform_get_drvdata);
+
+void
+rust_helper_platform_set_drvdata(struct platform_device *pdev,
+ void *data)
+{
+ return platform_set_drvdata(pdev, data);
+}
+EXPORT_SYMBOL_GPL(rust_helper_platform_set_drvdata);
+
+refcount_t rust_helper_REFCOUNT_INIT(int n)
+{
+ return (refcount_t)REFCOUNT_INIT(n);
+}
+EXPORT_SYMBOL_GPL(rust_helper_REFCOUNT_INIT);
+
+void rust_helper_refcount_inc(refcount_t *r)
+{
+ refcount_inc(r);
+}
+EXPORT_SYMBOL_GPL(rust_helper_refcount_inc);
+
+bool rust_helper_refcount_dec_and_test(refcount_t *r)
+{
+ return refcount_dec_and_test(r);
+}
+EXPORT_SYMBOL_GPL(rust_helper_refcount_dec_and_test);
+
+void rust_helper_rb_link_node(struct rb_node *node, struct rb_node *parent,
+ struct rb_node **rb_link)
+{
+ rb_link_node(node, parent, rb_link);
+}
+EXPORT_SYMBOL_GPL(rust_helper_rb_link_node);
+
+struct task_struct *rust_helper_get_current(void)
+{
+ return current;
+}
+EXPORT_SYMBOL_GPL(rust_helper_get_current);
+
+void rust_helper_get_task_struct(struct task_struct *t)
+{
+ get_task_struct(t);
+}
+EXPORT_SYMBOL_GPL(rust_helper_get_task_struct);
+
+void rust_helper_put_task_struct(struct task_struct *t)
+{
+ put_task_struct(t);
+}
+EXPORT_SYMBOL_GPL(rust_helper_put_task_struct);
+
+int rust_helper_security_binder_set_context_mgr(const struct cred *mgr)
+{
+ return security_binder_set_context_mgr(mgr);
+}
+EXPORT_SYMBOL_GPL(rust_helper_security_binder_set_context_mgr);
+
+int rust_helper_security_binder_transaction(const struct cred *from,
+ const struct cred *to)
+{
+ return security_binder_transaction(from, to);
+}
+EXPORT_SYMBOL_GPL(rust_helper_security_binder_transaction);
+
+int rust_helper_security_binder_transfer_binder(const struct cred *from,
+ const struct cred *to)
+{
+ return security_binder_transfer_binder(from, to);
+}
+EXPORT_SYMBOL_GPL(rust_helper_security_binder_transfer_binder);
+
+int rust_helper_security_binder_transfer_file(const struct cred *from,
+ const struct cred *to,
+ struct file *file)
+{
+ return security_binder_transfer_file(from, to, file);
+}
+EXPORT_SYMBOL_GPL(rust_helper_security_binder_transfer_file);
+
+struct file *rust_helper_get_file(struct file *f)
+{
+ return get_file(f);
+}
+EXPORT_SYMBOL_GPL(rust_helper_get_file);
+
+void rust_helper_rcu_read_lock(void)
+{
+ rcu_read_lock();
+}
+EXPORT_SYMBOL_GPL(rust_helper_rcu_read_lock);
+
+void rust_helper_rcu_read_unlock(void)
+{
+ rcu_read_unlock();
+}
+EXPORT_SYMBOL_GPL(rust_helper_rcu_read_unlock);
+
+void rust_helper_synchronize_rcu(void)
+{
+ synchronize_rcu();
+}
+EXPORT_SYMBOL_GPL(rust_helper_synchronize_rcu);
+
+void *rust_helper_dev_get_drvdata(struct device *dev)
+{
+ return dev_get_drvdata(dev);
+}
+EXPORT_SYMBOL_GPL(rust_helper_dev_get_drvdata);
+
+const char *rust_helper_dev_name(const struct device *dev)
+{
+ return dev_name(dev);
+}
+EXPORT_SYMBOL_GPL(rust_helper_dev_name);
+
+void rust_helper___seqcount_init(seqcount_t *s, const char *name,
+ struct lock_class_key *key)
+{
+ __seqcount_init(s, name, key);
+}
+EXPORT_SYMBOL_GPL(rust_helper___seqcount_init);
+
+unsigned rust_helper_read_seqcount_begin(seqcount_t *s)
+{
+ return read_seqcount_begin(s);
+}
+EXPORT_SYMBOL_GPL(rust_helper_read_seqcount_begin);
+
+int rust_helper_read_seqcount_retry(seqcount_t *s, unsigned start)
+{
+ return read_seqcount_retry(s, start);
+}
+EXPORT_SYMBOL_GPL(rust_helper_read_seqcount_retry);
+
+void rust_helper_write_seqcount_begin(seqcount_t *s)
+{
+ do_write_seqcount_begin(s);
+}
+EXPORT_SYMBOL_GPL(rust_helper_write_seqcount_begin);
+
+void rust_helper_write_seqcount_end(seqcount_t *s)
+{
+ do_write_seqcount_end(s);
+}
+EXPORT_SYMBOL_GPL(rust_helper_write_seqcount_end);
+
+void rust_helper_irq_set_handler_locked(struct irq_data *data,
+ irq_flow_handler_t handler)
+{
+ irq_set_handler_locked(data, handler);
+}
+EXPORT_SYMBOL_GPL(rust_helper_irq_set_handler_locked);
+
+void *rust_helper_irq_data_get_irq_chip_data(struct irq_data *d)
+{
+ return irq_data_get_irq_chip_data(d);
+}
+EXPORT_SYMBOL_GPL(rust_helper_irq_data_get_irq_chip_data);
+
+struct irq_chip *rust_helper_irq_desc_get_chip(struct irq_desc *desc)
+{
+ return irq_desc_get_chip(desc);
+}
+EXPORT_SYMBOL_GPL(rust_helper_irq_desc_get_chip);
+
+void *rust_helper_irq_desc_get_handler_data(struct irq_desc *desc)
+{
+ return irq_desc_get_handler_data(desc);
+}
+EXPORT_SYMBOL_GPL(rust_helper_irq_desc_get_handler_data);
+
+void rust_helper_chained_irq_enter(struct irq_chip *chip,
+ struct irq_desc *desc)
+{
+ chained_irq_enter(chip, desc);
+}
+EXPORT_SYMBOL_GPL(rust_helper_chained_irq_enter);
+
+void rust_helper_chained_irq_exit(struct irq_chip *chip,
+ struct irq_desc *desc)
+{
+ chained_irq_exit(chip, desc);
+}
+EXPORT_SYMBOL_GPL(rust_helper_chained_irq_exit);
+
+const struct cred *rust_helper_get_cred(const struct cred *cred)
+{
+ return get_cred(cred);
+}
+EXPORT_SYMBOL_GPL(rust_helper_get_cred);
+
+void rust_helper_put_cred(const struct cred *cred)
+{
+ put_cred(cred);
+}
+EXPORT_SYMBOL_GPL(rust_helper_put_cred);
+
+const struct of_device_id *rust_helper_of_match_device(
+ const struct of_device_id *matches, const struct device *dev)
+{
+ return of_match_device(matches, dev);
+}
+EXPORT_SYMBOL_GPL(rust_helper_of_match_device);
+
+void rust_helper_init_completion(struct completion *c)
+{
+ init_completion(c);
+}
+EXPORT_SYMBOL_GPL(rust_helper_init_completion);
+
+struct sk_buff *rust_helper_skb_get(struct sk_buff *skb)
+{
+ return skb_get(skb);
+}
+EXPORT_SYMBOL_GPL(rust_helper_skb_get);
+
+unsigned int rust_helper_skb_headlen(const struct sk_buff *skb)
+{
+ return skb_headlen(skb);
+}
+EXPORT_SYMBOL_GPL(rust_helper_skb_headlen);
+
+void rust_helper_dev_hold(struct net_device *dev)
+{
+ return dev_hold(dev);
+}
+EXPORT_SYMBOL_GPL(rust_helper_dev_hold);
+
+void rust_helper_dev_put(struct net_device *dev)
+{
+ return dev_put(dev);
+}
+EXPORT_SYMBOL_GPL(rust_helper_dev_put);
+
+struct net *rust_helper_get_net(struct net *net)
+{
+ return get_net(net);
+}
+EXPORT_SYMBOL_GPL(rust_helper_get_net);
+
+void rust_helper_put_net(struct net *net)
+{
+ return put_net(net);
+}
+EXPORT_SYMBOL_GPL(rust_helper_put_net);
+
+unsigned int rust_helper_NF_QUEUE_NR(unsigned int n)
+{
+ return NF_QUEUE_NR(n);
+}
+EXPORT_SYMBOL_GPL(rust_helper_NF_QUEUE_NR);
+
+void rust_helper___INIT_WORK_WITH_KEY(struct work_struct *work,
+ work_func_t func, bool on_stack, struct lock_class_key *key)
+{
+ __INIT_WORK_WITH_KEY(work, func, on_stack, key);
+}
+EXPORT_SYMBOL_GPL(rust_helper___INIT_WORK_WITH_KEY);
+
+struct dentry *rust_helper_dget(struct dentry *dentry)
+{
+ return dget(dentry);
+}
+EXPORT_SYMBOL_GPL(rust_helper_dget);
+
+void rust_helper_lockdep_register_key(struct lock_class_key *key)
+{
+ lockdep_register_key(key);
+}
+EXPORT_SYMBOL_GPL(rust_helper_lockdep_register_key);
+
+void rust_helper_lockdep_unregister_key(struct lock_class_key *key)
+{
+ lockdep_unregister_key(key);
+}
+EXPORT_SYMBOL_GPL(rust_helper_lockdep_unregister_key);
+
+int rust_helper_fs_parse(struct fs_context *fc,
+ const struct fs_parameter_spec *desc,
+ struct fs_parameter *param,
+ struct fs_parse_result *result)
+{
+ return fs_parse(fc, desc, param, result);
+}
+EXPORT_SYMBOL_GPL(rust_helper_fs_parse);
+
+/*
+ * We use `bindgen`'s `--size_t-is-usize` option to bind the C `size_t` type
+ * as the Rust `usize` type, so we can use it in contexts where Rust
+ * expects a `usize` like slice (array) indices. `usize` is defined to be
+ * the same as C's `uintptr_t` type (can hold any pointer) but not
+ * necessarily the same as `size_t` (can hold the size of any single
+ * object). Most modern platforms use the same concrete integer type for
+ * both of them, but in case we find ourselves on a platform where
+ * that's not true, fail early instead of risking ABI or
+ * integer-overflow issues.
+ *
+ * If your platform fails this assertion, it means that you are in
+ * danger of integer-overflow bugs (even if you attempt to remove
+ * `--size_t-is-usize`). It may be easiest to change the kernel ABI on
+ * your platform such that `size_t` matches `uintptr_t` (i.e., to increase
+ * `size_t`, because `uintptr_t` has to be at least as big as `size_t`).
+ */
+static_assert(
+ sizeof(size_t) == sizeof(uintptr_t) &&
+ __alignof__(size_t) == __alignof__(uintptr_t),
+ "Rust code expects C `size_t` to match Rust `usize`"
+);
--
2.37.1
From: Wedson Almeida Filho <[email protected]>
A port to Rust of the PrimeCell PL061 GPIO driver.
This module is a work in progress and will be sent for review later
on, as well as separately from the Rust support.
However, it is included to show how an actual working module
written in Rust may look like.
Co-developed-by: Gary Guo <[email protected]>
Signed-off-by: Gary Guo <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Co-developed-by: Miguel Ojeda <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
drivers/gpio/Kconfig | 8 +
drivers/gpio/Makefile | 1 +
drivers/gpio/gpio_pl061_rust.rs | 367 ++++++++++++++++++++++++++++++++
3 files changed, 376 insertions(+)
create mode 100644 drivers/gpio/gpio_pl061_rust.rs
diff --git a/drivers/gpio/Kconfig b/drivers/gpio/Kconfig
index b01961999ced..bf942f8e9a60 100644
--- a/drivers/gpio/Kconfig
+++ b/drivers/gpio/Kconfig
@@ -482,6 +482,14 @@ config GPIO_PL061
help
Say yes here to support the PrimeCell PL061 GPIO device.
+config GPIO_PL061_RUST
+ tristate "PrimeCell PL061 GPIO support written in Rust"
+ depends on ARM_AMBA && RUST
+ select IRQ_DOMAIN
+ select GPIOLIB_IRQCHIP
+ help
+ Say yes here to support the PrimeCell PL061 GPIO device
+
config GPIO_PMIC_EIC_SPRD
tristate "Spreadtrum PMIC EIC support"
depends on MFD_SC27XX_PMIC || COMPILE_TEST
diff --git a/drivers/gpio/Makefile b/drivers/gpio/Makefile
index 14352f6dfe8e..30141fec12be 100644
--- a/drivers/gpio/Makefile
+++ b/drivers/gpio/Makefile
@@ -118,6 +118,7 @@ obj-$(CONFIG_GPIO_PCIE_IDIO_24) += gpio-pcie-idio-24.o
obj-$(CONFIG_GPIO_PCI_IDIO_16) += gpio-pci-idio-16.o
obj-$(CONFIG_GPIO_PISOSR) += gpio-pisosr.o
obj-$(CONFIG_GPIO_PL061) += gpio-pl061.o
+obj-$(CONFIG_GPIO_PL061_RUST) += gpio_pl061_rust.o
obj-$(CONFIG_GPIO_PMIC_EIC_SPRD) += gpio-pmic-eic-sprd.o
obj-$(CONFIG_GPIO_PXA) += gpio-pxa.o
obj-$(CONFIG_GPIO_RASPBERRYPI_EXP) += gpio-raspberrypi-exp.o
diff --git a/drivers/gpio/gpio_pl061_rust.rs b/drivers/gpio/gpio_pl061_rust.rs
new file mode 100644
index 000000000000..d417fa3b0abc
--- /dev/null
+++ b/drivers/gpio/gpio_pl061_rust.rs
@@ -0,0 +1,367 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Driver for the ARM PrimeCell(tm) General Purpose Input/Output (PL061).
+//!
+//! Based on the C driver written by Baruch Siach <[email protected]>.
+
+use kernel::{
+ amba, bit, bits_iter, define_amba_id_table, device, gpio,
+ io_mem::IoMem,
+ irq::{self, ExtraResult, IrqData, LockedIrqData},
+ power,
+ prelude::*,
+ sync::{RawSpinLock, Ref, RefBorrow},
+};
+
+const GPIODIR: usize = 0x400;
+const GPIOIS: usize = 0x404;
+const GPIOIBE: usize = 0x408;
+const GPIOIEV: usize = 0x40C;
+const GPIOIE: usize = 0x410;
+const GPIOMIS: usize = 0x418;
+const GPIOIC: usize = 0x41C;
+const GPIO_SIZE: usize = 0x1000;
+
+const PL061_GPIO_NR: u16 = 8;
+
+#[derive(Default)]
+struct ContextSaveRegs {
+ gpio_data: u8,
+ gpio_dir: u8,
+ gpio_is: u8,
+ gpio_ibe: u8,
+ gpio_iev: u8,
+ gpio_ie: u8,
+}
+
+#[derive(Default)]
+struct PL061DataInner {
+ csave_regs: ContextSaveRegs,
+}
+
+struct PL061Data {
+ dev: device::Device,
+ inner: RawSpinLock<PL061DataInner>,
+}
+
+struct PL061Resources {
+ base: IoMem<GPIO_SIZE>,
+ parent_irq: u32,
+}
+
+type PL061Registrations = gpio::RegistrationWithIrqChip<PL061Device>;
+
+type DeviceData = device::Data<PL061Registrations, PL061Resources, PL061Data>;
+
+struct PL061Device;
+
+#[vtable]
+impl gpio::Chip for PL061Device {
+ type Data = Ref<DeviceData>;
+
+ fn get_direction(data: RefBorrow<'_, DeviceData>, offset: u32) -> Result<gpio::LineDirection> {
+ let pl061 = data.resources().ok_or(ENXIO)?;
+ Ok(if pl061.base.readb(GPIODIR) & bit(offset) != 0 {
+ gpio::LineDirection::Out
+ } else {
+ gpio::LineDirection::In
+ })
+ }
+
+ fn direction_input(data: RefBorrow<'_, DeviceData>, offset: u32) -> Result {
+ let _guard = data.inner.lock_irqdisable();
+ let pl061 = data.resources().ok_or(ENXIO)?;
+ let mut gpiodir = pl061.base.readb(GPIODIR);
+ gpiodir &= !bit(offset);
+ pl061.base.writeb(gpiodir, GPIODIR);
+ Ok(())
+ }
+
+ fn direction_output(data: RefBorrow<'_, DeviceData>, offset: u32, value: bool) -> Result {
+ let woffset = bit(offset + 2).into();
+ let _guard = data.inner.lock_irqdisable();
+ let pl061 = data.resources().ok_or(ENXIO)?;
+ pl061.base.try_writeb((value as u8) << offset, woffset)?;
+ let mut gpiodir = pl061.base.readb(GPIODIR);
+ gpiodir |= bit(offset);
+ pl061.base.writeb(gpiodir, GPIODIR);
+
+ // gpio value is set again, because pl061 doesn't allow to set value of a gpio pin before
+ // configuring it in OUT mode.
+ pl061.base.try_writeb((value as u8) << offset, woffset)?;
+ Ok(())
+ }
+
+ fn get(data: RefBorrow<'_, DeviceData>, offset: u32) -> Result<bool> {
+ let pl061 = data.resources().ok_or(ENXIO)?;
+ Ok(pl061.base.try_readb(bit(offset + 2).into())? != 0)
+ }
+
+ fn set(data: RefBorrow<'_, DeviceData>, offset: u32, value: bool) {
+ if let Some(pl061) = data.resources() {
+ let woffset = bit(offset + 2).into();
+ let _ = pl061.base.try_writeb((value as u8) << offset, woffset);
+ }
+ }
+}
+
+impl gpio::ChipWithIrqChip for PL061Device {
+ fn handle_irq_flow(
+ data: RefBorrow<'_, DeviceData>,
+ desc: &irq::Descriptor,
+ domain: &irq::Domain,
+ ) {
+ let chained = desc.enter_chained();
+
+ if let Some(pl061) = data.resources() {
+ let pending = pl061.base.readb(GPIOMIS);
+ for offset in bits_iter(pending) {
+ domain.generic_handle_chained(offset, &chained);
+ }
+ }
+ }
+}
+
+#[vtable]
+impl irq::Chip for PL061Device {
+ type Data = Ref<DeviceData>;
+
+ fn set_type(
+ data: RefBorrow<'_, DeviceData>,
+ irq_data: &mut LockedIrqData,
+ trigger: u32,
+ ) -> Result<ExtraResult> {
+ let offset = irq_data.hwirq();
+ let bit = bit(offset);
+
+ if offset >= PL061_GPIO_NR.into() {
+ return Err(EINVAL);
+ }
+
+ if trigger & (irq::Type::LEVEL_HIGH | irq::Type::LEVEL_LOW) != 0
+ && trigger & (irq::Type::EDGE_RISING | irq::Type::EDGE_FALLING) != 0
+ {
+ dev_err!(
+ data.dev,
+ "trying to configure line {} for both level and edge detection, choose one!\n",
+ offset
+ );
+ return Err(EINVAL);
+ }
+
+ let _guard = data.inner.lock_irqdisable();
+ let pl061 = data.resources().ok_or(ENXIO)?;
+
+ let mut gpioiev = pl061.base.readb(GPIOIEV);
+ let mut gpiois = pl061.base.readb(GPIOIS);
+ let mut gpioibe = pl061.base.readb(GPIOIBE);
+
+ if trigger & (irq::Type::LEVEL_HIGH | irq::Type::LEVEL_LOW) != 0 {
+ let polarity = trigger & irq::Type::LEVEL_HIGH != 0;
+
+ // Disable edge detection.
+ gpioibe &= !bit;
+ // Enable level detection.
+ gpiois |= bit;
+ // Select polarity.
+ if polarity {
+ gpioiev |= bit;
+ } else {
+ gpioiev &= !bit;
+ }
+ irq_data.set_level_handler();
+ dev_dbg!(
+ data.dev,
+ "line {}: IRQ on {} level\n",
+ offset,
+ if polarity { "HIGH" } else { "LOW" }
+ );
+ } else if (trigger & irq::Type::EDGE_BOTH) == irq::Type::EDGE_BOTH {
+ // Disable level detection.
+ gpiois &= !bit;
+ // Select both edges, settings this makes GPIOEV be ignored.
+ gpioibe |= bit;
+ irq_data.set_edge_handler();
+ dev_dbg!(data.dev, "line {}: IRQ on both edges\n", offset);
+ } else if trigger & (irq::Type::EDGE_RISING | irq::Type::EDGE_FALLING) != 0 {
+ let rising = trigger & irq::Type::EDGE_RISING != 0;
+
+ // Disable level detection.
+ gpiois &= !bit;
+ // Clear detection on both edges.
+ gpioibe &= !bit;
+ // Select edge.
+ if rising {
+ gpioiev |= bit;
+ } else {
+ gpioiev &= !bit;
+ }
+ irq_data.set_edge_handler();
+ dev_dbg!(
+ data.dev,
+ "line {}: IRQ on {} edge\n",
+ offset,
+ if rising { "RISING" } else { "FALLING}" }
+ );
+ } else {
+ // No trigger: disable everything.
+ gpiois &= !bit;
+ gpioibe &= !bit;
+ gpioiev &= !bit;
+ irq_data.set_bad_handler();
+ dev_warn!(data.dev, "no trigger selected for line {}\n", offset);
+ }
+
+ pl061.base.writeb(gpiois, GPIOIS);
+ pl061.base.writeb(gpioibe, GPIOIBE);
+ pl061.base.writeb(gpioiev, GPIOIEV);
+
+ Ok(ExtraResult::None)
+ }
+
+ fn mask(data: RefBorrow<'_, DeviceData>, irq_data: &IrqData) {
+ let mask = bit(irq_data.hwirq() % irq::HwNumber::from(PL061_GPIO_NR));
+ let _guard = data.inner.lock();
+ if let Some(pl061) = data.resources() {
+ let gpioie = pl061.base.readb(GPIOIE) & !mask;
+ pl061.base.writeb(gpioie, GPIOIE);
+ }
+ }
+
+ fn unmask(data: RefBorrow<'_, DeviceData>, irq_data: &IrqData) {
+ let mask = bit(irq_data.hwirq() % irq::HwNumber::from(PL061_GPIO_NR));
+ let _guard = data.inner.lock();
+ if let Some(pl061) = data.resources() {
+ let gpioie = pl061.base.readb(GPIOIE) | mask;
+ pl061.base.writeb(gpioie, GPIOIE);
+ }
+ }
+
+ // This gets called from the edge IRQ handler to ACK the edge IRQ in the GPIOIC
+ // (interrupt-clear) register. For level IRQs this is not needed: these go away when the level
+ // signal goes away.
+ fn ack(data: RefBorrow<'_, DeviceData>, irq_data: &IrqData) {
+ let mask = bit(irq_data.hwirq() % irq::HwNumber::from(PL061_GPIO_NR));
+ let _guard = data.inner.lock();
+ if let Some(pl061) = data.resources() {
+ pl061.base.writeb(mask.into(), GPIOIC);
+ }
+ }
+
+ fn set_wake(data: RefBorrow<'_, DeviceData>, _irq_data: &IrqData, on: bool) -> Result {
+ let pl061 = data.resources().ok_or(ENXIO)?;
+ irq::set_wake(pl061.parent_irq, on)
+ }
+}
+
+impl amba::Driver for PL061Device {
+ type Data = Ref<DeviceData>;
+ type PowerOps = Self;
+
+ define_amba_id_table! {(), [
+ ({id: 0x00041061, mask: 0x000fffff}, None),
+ ]}
+
+ fn probe(dev: &mut amba::Device, _data: Option<&Self::IdInfo>) -> Result<Ref<DeviceData>> {
+ let res = dev.take_resource().ok_or(ENXIO)?;
+ let irq = dev.irq(0).ok_or(ENXIO)?;
+
+ let mut data = kernel::new_device_data!(
+ gpio::RegistrationWithIrqChip::new(),
+ PL061Resources {
+ // SAFETY: This device doesn't support DMA.
+ base: unsafe { IoMem::try_new(res)? },
+ parent_irq: irq,
+ },
+ PL061Data {
+ dev: device::Device::from_dev(dev),
+ // SAFETY: We call `rawspinlock_init` below.
+ inner: unsafe { RawSpinLock::new(PL061DataInner::default()) },
+ },
+ "PL061::Registrations"
+ )?;
+
+ // SAFETY: General part of the data is pinned when `data` is.
+ let gen_inner = unsafe { data.as_mut().map_unchecked_mut(|d| &mut (**d).inner) };
+ kernel::rawspinlock_init!(gen_inner, "PL061Data::inner");
+
+ let data = Ref::<DeviceData>::from(data);
+
+ data.resources().ok_or(ENXIO)?.base.writeb(0, GPIOIE); // disable irqs
+
+ kernel::gpio_irq_chip_register!(
+ data.registrations().ok_or(ENXIO)?.as_pinned_mut(),
+ Self,
+ PL061_GPIO_NR,
+ None,
+ dev,
+ data.clone(),
+ irq
+ )?;
+
+ dev_info!(data.dev, "PL061 GPIO chip registered\n");
+
+ Ok(data)
+ }
+}
+
+impl power::Operations for PL061Device {
+ type Data = Ref<DeviceData>;
+
+ fn suspend(data: RefBorrow<'_, DeviceData>) -> Result {
+ let mut inner = data.inner.lock();
+ let pl061 = data.resources().ok_or(ENXIO)?;
+ inner.csave_regs.gpio_data = 0;
+ inner.csave_regs.gpio_dir = pl061.base.readb(GPIODIR);
+ inner.csave_regs.gpio_is = pl061.base.readb(GPIOIS);
+ inner.csave_regs.gpio_ibe = pl061.base.readb(GPIOIBE);
+ inner.csave_regs.gpio_iev = pl061.base.readb(GPIOIEV);
+ inner.csave_regs.gpio_ie = pl061.base.readb(GPIOIE);
+
+ for offset in 0..PL061_GPIO_NR {
+ if inner.csave_regs.gpio_dir & bit(offset) != 0 {
+ if let Ok(v) = <Self as gpio::Chip>::get(data, offset.into()) {
+ inner.csave_regs.gpio_data |= (v as u8) << offset;
+ }
+ }
+ }
+
+ Ok(())
+ }
+
+ fn resume(data: RefBorrow<'_, DeviceData>) -> Result {
+ let inner = data.inner.lock();
+ let pl061 = data.resources().ok_or(ENXIO)?;
+
+ for offset in 0..PL061_GPIO_NR {
+ if inner.csave_regs.gpio_dir & bit(offset) != 0 {
+ let value = inner.csave_regs.gpio_data & bit(offset) != 0;
+ let _ = <Self as gpio::Chip>::direction_output(data, offset.into(), value);
+ } else {
+ let _ = <Self as gpio::Chip>::direction_input(data, offset.into());
+ }
+ }
+
+ pl061.base.writeb(inner.csave_regs.gpio_is, GPIOIS);
+ pl061.base.writeb(inner.csave_regs.gpio_ibe, GPIOIBE);
+ pl061.base.writeb(inner.csave_regs.gpio_iev, GPIOIEV);
+ pl061.base.writeb(inner.csave_regs.gpio_ie, GPIOIE);
+
+ Ok(())
+ }
+
+ fn freeze(data: RefBorrow<'_, DeviceData>) -> Result {
+ Self::suspend(data)
+ }
+
+ fn restore(data: RefBorrow<'_, DeviceData>) -> Result {
+ Self::resume(data)
+ }
+}
+
+module_amba_driver! {
+ type: PL061Device,
+ name: b"pl061_gpio",
+ author: b"Wedson Almeida Filho",
+ license: b"GPL",
+}
--
2.37.1
Recent versions of both Binutils (`c++filt`) and LLVM (`llvm-cxxfilt`)
provide Rust v0 mangling support.
Reviewed-by: Kees Cook <[email protected]>
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
scripts/decode_stacktrace.sh | 14 ++++++++++++++
1 file changed, 14 insertions(+)
diff --git a/scripts/decode_stacktrace.sh b/scripts/decode_stacktrace.sh
index 7075e26ab2c4..564c5632e1a2 100755
--- a/scripts/decode_stacktrace.sh
+++ b/scripts/decode_stacktrace.sh
@@ -8,6 +8,14 @@ usage() {
echo " $0 -r <release> | <vmlinux> [<base path>|auto] [<modules path>]"
}
+# Try to find a Rust demangler
+if type llvm-cxxfilt >/dev/null 2>&1 ; then
+ cppfilt=llvm-cxxfilt
+elif type c++filt >/dev/null 2>&1 ; then
+ cppfilt=c++filt
+ cppfilt_opts=-i
+fi
+
if [[ $1 == "-r" ]] ; then
vmlinux=""
basepath="auto"
@@ -180,6 +188,12 @@ parse_symbol() {
# In the case of inlines, move everything to same line
code=${code//$'\n'/' '}
+ # Demangle if the name looks like a Rust symbol and if
+ # we got a Rust demangler
+ if [[ $name =~ ^_R && $cppfilt != "" ]] ; then
+ name=$("$cppfilt" "$cppfilt_opts" "$name")
+ fi
+
# Replace old address with pretty line numbers
symbol="$segment$name ($code)"
}
--
2.37.1
From: Gary Guo <[email protected]>
This patch adds a format specifier `%pA` to `vsprintf` which formats
a pointer as `core::fmt::Arguments`. Doing so allows us to directly
format to the internal buffer of `printf`, so we do not have to use
a temporary buffer on the stack to pre-assemble the message on
the Rust side.
This specifier is intended only to be used from Rust and not for C, so
`checkpatch.pl` is intentionally unchanged to catch any misuse.
Reviewed-by: Kees Cook <[email protected]>
Acked-by: Petr Mladek <[email protected]>
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Gary Guo <[email protected]>
Co-developed-by: Miguel Ojeda <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
Documentation/core-api/printk-formats.rst | 10 ++++++++++
lib/vsprintf.c | 13 +++++++++++++
2 files changed, 23 insertions(+)
diff --git a/Documentation/core-api/printk-formats.rst b/Documentation/core-api/printk-formats.rst
index 5e89497ba314..dbe1aacc79d0 100644
--- a/Documentation/core-api/printk-formats.rst
+++ b/Documentation/core-api/printk-formats.rst
@@ -625,6 +625,16 @@ Examples::
%p4cc Y10 little-endian (0x20303159)
%p4cc NV12 big-endian (0xb231564e)
+Rust
+----
+
+::
+
+ %pA
+
+Only intended to be used from Rust code to format ``core::fmt::Arguments``.
+Do *not* use it from C.
+
Thanks
======
diff --git a/lib/vsprintf.c b/lib/vsprintf.c
index 3c1853a9d1c0..c414a8d9f1ea 100644
--- a/lib/vsprintf.c
+++ b/lib/vsprintf.c
@@ -2246,6 +2246,9 @@ int __init no_hash_pointers_enable(char *str)
}
early_param("no_hash_pointers", no_hash_pointers_enable);
+/* Used for Rust formatting ('%pA'). */
+char *rust_fmt_argument(char *buf, char *end, void *ptr);
+
/*
* Show a '%p' thing. A kernel extension is that the '%p' is followed
* by an extra set of alphanumeric characters that are extended format
@@ -2372,6 +2375,10 @@ early_param("no_hash_pointers", no_hash_pointers_enable);
*
* Note: The default behaviour (unadorned %p) is to hash the address,
* rendering it useful as a unique identifier.
+ *
+ * There is also a '%pA' format specifier, but it is only intended to be used
+ * from Rust code to format core::fmt::Arguments. Do *not* use it from C.
+ * See rust/kernel/print.rs for details.
*/
static noinline_for_stack
char *pointer(const char *fmt, char *buf, char *end, void *ptr,
@@ -2444,6 +2451,12 @@ char *pointer(const char *fmt, char *buf, char *end, void *ptr,
return device_node_string(buf, end, ptr, spec, fmt + 1);
case 'f':
return fwnode_string(buf, end, ptr, spec, fmt + 1);
+ case 'A':
+ if (!IS_ENABLED(CONFIG_RUST)) {
+ WARN_ONCE(1, "Please remove %%pA from non-Rust code\n");
+ return error_string(buf, end, "(%pA?)", spec);
+ }
+ return rust_fmt_argument(buf, end, ptr);
case 'x':
return pointer_string(buf, end, ptr, spec);
case 'e':
--
2.37.1
This crate contains all the procedural macros ("proc macros")
shared by all the kernel.
Procedural macros allow to create syntax extensions. They run at
compile-time and can consume as well as produce Rust syntax.
For instance, the `module!` macro that is used by Rust modules
is implemented here. It allows to easily declare the equivalent
information to the `MODULE_*` macros in C modules, e.g.:
module! {
type: RustMinimal,
name: b"rust_minimal",
author: b"Rust for Linux Contributors",
description: b"Rust minimal sample",
license: b"GPL",
}
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Finn Behrens <[email protected]>
Signed-off-by: Finn Behrens <[email protected]>
Co-developed-by: Adam Bratschi-Kaye <[email protected]>
Signed-off-by: Adam Bratschi-Kaye <[email protected]>
Co-developed-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Co-developed-by: Sumera Priyadarsini <[email protected]>
Signed-off-by: Sumera Priyadarsini <[email protected]>
Co-developed-by: Gary Guo <[email protected]>
Signed-off-by: Gary Guo <[email protected]>
Co-developed-by: Matthew Bakhtiari <[email protected]>
Signed-off-by: Matthew Bakhtiari <[email protected]>
Co-developed-by: Björn Roy Baron <[email protected]>
Signed-off-by: Björn Roy Baron <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
rust/macros/concat_idents.rs | 23 ++
rust/macros/helpers.rs | 79 +++++
rust/macros/lib.rs | 191 ++++++++++
rust/macros/module.rs | 655 +++++++++++++++++++++++++++++++++++
rust/macros/vtable.rs | 95 +++++
5 files changed, 1043 insertions(+)
create mode 100644 rust/macros/concat_idents.rs
create mode 100644 rust/macros/helpers.rs
create mode 100644 rust/macros/lib.rs
create mode 100644 rust/macros/module.rs
create mode 100644 rust/macros/vtable.rs
diff --git a/rust/macros/concat_idents.rs b/rust/macros/concat_idents.rs
new file mode 100644
index 000000000000..3b5a9dd70e8a
--- /dev/null
+++ b/rust/macros/concat_idents.rs
@@ -0,0 +1,23 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use proc_macro::{token_stream, Ident, TokenStream, TokenTree};
+
+use crate::helpers::expect_punct;
+
+fn expect_ident(it: &mut token_stream::IntoIter) -> Ident {
+ if let Some(TokenTree::Ident(ident)) = it.next() {
+ ident
+ } else {
+ panic!("Expected Ident")
+ }
+}
+
+pub(crate) fn concat_idents(ts: TokenStream) -> TokenStream {
+ let mut it = ts.into_iter();
+ let a = expect_ident(&mut it);
+ assert_eq!(expect_punct(&mut it), ',');
+ let b = expect_ident(&mut it);
+ assert!(it.next().is_none(), "only two idents can be concatenated");
+ let res = Ident::new(&(a.to_string() + &b.to_string()), b.span());
+ TokenStream::from_iter([TokenTree::Ident(res)])
+}
diff --git a/rust/macros/helpers.rs b/rust/macros/helpers.rs
new file mode 100644
index 000000000000..ad210563e5a6
--- /dev/null
+++ b/rust/macros/helpers.rs
@@ -0,0 +1,79 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use proc_macro::{token_stream, Group, TokenTree};
+
+pub(crate) fn try_ident(it: &mut token_stream::IntoIter) -> Option<String> {
+ if let Some(TokenTree::Ident(ident)) = it.next() {
+ Some(ident.to_string())
+ } else {
+ None
+ }
+}
+
+pub(crate) fn try_literal(it: &mut token_stream::IntoIter) -> Option<String> {
+ if let Some(TokenTree::Literal(literal)) = it.next() {
+ Some(literal.to_string())
+ } else {
+ None
+ }
+}
+
+pub(crate) fn try_byte_string(it: &mut token_stream::IntoIter) -> Option<String> {
+ try_literal(it).and_then(|byte_string| {
+ if byte_string.starts_with("b\"") && byte_string.ends_with('\"') {
+ Some(byte_string[2..byte_string.len() - 1].to_string())
+ } else {
+ None
+ }
+ })
+}
+
+pub(crate) fn expect_ident(it: &mut token_stream::IntoIter) -> String {
+ try_ident(it).expect("Expected Ident")
+}
+
+pub(crate) fn expect_punct(it: &mut token_stream::IntoIter) -> char {
+ if let TokenTree::Punct(punct) = it.next().expect("Reached end of token stream for Punct") {
+ punct.as_char()
+ } else {
+ panic!("Expected Punct");
+ }
+}
+
+pub(crate) fn expect_literal(it: &mut token_stream::IntoIter) -> String {
+ try_literal(it).expect("Expected Literal")
+}
+
+pub(crate) fn expect_group(it: &mut token_stream::IntoIter) -> Group {
+ if let TokenTree::Group(group) = it.next().expect("Reached end of token stream for Group") {
+ group
+ } else {
+ panic!("Expected Group");
+ }
+}
+
+pub(crate) fn expect_byte_string(it: &mut token_stream::IntoIter) -> String {
+ try_byte_string(it).expect("Expected byte string")
+}
+
+pub(crate) fn expect_end(it: &mut token_stream::IntoIter) {
+ if it.next().is_some() {
+ panic!("Expected end");
+ }
+}
+
+pub(crate) fn get_literal(it: &mut token_stream::IntoIter, expected_name: &str) -> String {
+ assert_eq!(expect_ident(it), expected_name);
+ assert_eq!(expect_punct(it), ':');
+ let literal = expect_literal(it);
+ assert_eq!(expect_punct(it), ',');
+ literal
+}
+
+pub(crate) fn get_byte_string(it: &mut token_stream::IntoIter, expected_name: &str) -> String {
+ assert_eq!(expect_ident(it), expected_name);
+ assert_eq!(expect_punct(it), ':');
+ let byte_string = expect_byte_string(it);
+ assert_eq!(expect_punct(it), ',');
+ byte_string
+}
diff --git a/rust/macros/lib.rs b/rust/macros/lib.rs
new file mode 100644
index 000000000000..dfb9b3c6f0dc
--- /dev/null
+++ b/rust/macros/lib.rs
@@ -0,0 +1,191 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Crate for all kernel procedural macros.
+
+mod concat_idents;
+mod helpers;
+mod module;
+mod vtable;
+
+use proc_macro::TokenStream;
+
+/// Declares a kernel module.
+///
+/// The `type` argument should be a type which implements the [`Module`]
+/// trait. Also accepts various forms of kernel metadata.
+///
+/// C header: [`include/linux/moduleparam.h`](../../../include/linux/moduleparam.h)
+///
+/// [`Module`]: ../kernel/trait.Module.html
+///
+/// # Examples
+///
+/// ```ignore
+/// use kernel::prelude::*;
+///
+/// module!{
+/// type: MyModule,
+/// name: b"my_kernel_module",
+/// author: b"Rust for Linux Contributors",
+/// description: b"My very own kernel module!",
+/// license: b"GPL",
+/// params: {
+/// my_i32: i32 {
+/// default: 42,
+/// permissions: 0o000,
+/// description: b"Example of i32",
+/// },
+/// writeable_i32: i32 {
+/// default: 42,
+/// permissions: 0o644,
+/// description: b"Example of i32",
+/// },
+/// },
+/// }
+///
+/// struct MyModule;
+///
+/// impl kernel::Module for MyModule {
+/// fn init() -> Result<Self> {
+/// // If the parameter is writeable, then the kparam lock must be
+/// // taken to read the parameter:
+/// {
+/// let lock = THIS_MODULE.kernel_param_lock();
+/// pr_info!("i32 param is: {}\n", writeable_i32.read(&lock));
+/// }
+/// // If the parameter is read only, it can be read without locking
+/// // the kernel parameters:
+/// pr_info!("i32 param is: {}\n", my_i32.read());
+/// Ok(Self)
+/// }
+/// }
+/// ```
+///
+/// # Supported argument types
+/// - `type`: type which implements the [`Module`] trait (required).
+/// - `name`: byte array of the name of the kernel module (required).
+/// - `author`: byte array of the author of the kernel module.
+/// - `description`: byte array of the description of the kernel module.
+/// - `license`: byte array of the license of the kernel module (required).
+/// - `alias`: byte array of alias name of the kernel module.
+/// - `alias_rtnl_link`: byte array of the `rtnl_link_alias` of the kernel module
+/// (mutually exclusive with `alias`).
+/// - `params`: parameters for the kernel module, as described below.
+///
+/// # Supported parameter types
+///
+/// - `bool`: Corresponds to C `bool` param type.
+/// - `i8`: No equivalent C param type.
+/// - `u8`: Corresponds to C `char` param type.
+/// - `i16`: Corresponds to C `short` param type.
+/// - `u16`: Corresponds to C `ushort` param type.
+/// - `i32`: Corresponds to C `int` param type.
+/// - `u32`: Corresponds to C `uint` param type.
+/// - `i64`: No equivalent C param type.
+/// - `u64`: Corresponds to C `ullong` param type.
+/// - `isize`: No equivalent C param type.
+/// - `usize`: No equivalent C param type.
+/// - `str`: Corresponds to C `charp` param type. Reading returns a byte slice.
+/// - `ArrayParam<T,N>`: Corresponds to C parameters created using `module_param_array`.
+/// An array of `T`'s of length at **most** `N`.
+///
+/// `invbool` is unsupported: it was only ever used in a few modules.
+/// Consider using a `bool` and inverting the logic instead.
+#[proc_macro]
+pub fn module(ts: TokenStream) -> TokenStream {
+ module::module(ts)
+}
+
+/// Declares or implements a vtable trait.
+///
+/// Linux's use of pure vtables is very close to Rust traits, but they differ
+/// in how unimplemented functions are represented. In Rust, traits can provide
+/// default implementation for all non-required methods (and the default
+/// implementation could just return `Error::EINVAL`); Linux typically use C
+/// `NULL` pointers to represent these functions.
+///
+/// This attribute is intended to close the gap. Traits can be declared and
+/// implemented with the `#[vtable]` attribute, and a `HAS_*` associated constant
+/// will be generated for each method in the trait, indicating if the implementor
+/// has overridden a method.
+///
+/// This attribute is not needed if all methods are required.
+///
+/// # Examples
+///
+/// ```ignore
+/// use kernel::prelude::*;
+///
+/// // Declares a `#[vtable]` trait
+/// #[vtable]
+/// pub trait Operations: Send + Sync + Sized {
+/// fn foo(&self) -> Result<()> {
+/// Err(EINVAL)
+/// }
+///
+/// fn bar(&self) -> Result<()> {
+/// Err(EINVAL)
+/// }
+/// }
+///
+/// struct Foo;
+///
+/// // Implements the `#[vtable]` trait
+/// #[vtable]
+/// impl Operations for Foo {
+/// fn foo(&self) -> Result<()> {
+/// # Err(EINVAL)
+/// // ...
+/// }
+/// }
+///
+/// assert_eq!(<Foo as Operations>::HAS_FOO, true);
+/// assert_eq!(<Foo as Operations>::HAS_BAR, false);
+/// ```
+#[proc_macro_attribute]
+pub fn vtable(attr: TokenStream, ts: TokenStream) -> TokenStream {
+ vtable::vtable(attr, ts)
+}
+
+/// Concatenate two identifiers.
+///
+/// This is useful in macros that need to declare or reference items with names
+/// starting with a fixed prefix and ending in a user specified name. The resulting
+/// identifier has the span of the second argument.
+///
+/// # Examples
+///
+/// ```ignore
+/// use kernel::macro::concat_idents;
+///
+/// macro_rules! pub_no_prefix {
+/// ($prefix:ident, $($newname:ident),+) => {
+/// $(pub(crate) const $newname: u32 = kernel::macros::concat_idents!($prefix, $newname);)+
+/// };
+/// }
+///
+/// pub_no_prefix!(
+/// binder_driver_return_protocol_,
+/// BR_OK,
+/// BR_ERROR,
+/// BR_TRANSACTION,
+/// BR_REPLY,
+/// BR_DEAD_REPLY,
+/// BR_TRANSACTION_COMPLETE,
+/// BR_INCREFS,
+/// BR_ACQUIRE,
+/// BR_RELEASE,
+/// BR_DECREFS,
+/// BR_NOOP,
+/// BR_SPAWN_LOOPER,
+/// BR_DEAD_BINDER,
+/// BR_CLEAR_DEATH_NOTIFICATION_DONE,
+/// BR_FAILED_REPLY
+/// );
+///
+/// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK);
+/// ```
+#[proc_macro]
+pub fn concat_idents(ts: TokenStream) -> TokenStream {
+ concat_idents::concat_idents(ts)
+}
diff --git a/rust/macros/module.rs b/rust/macros/module.rs
new file mode 100644
index 000000000000..4e68cf63a2cc
--- /dev/null
+++ b/rust/macros/module.rs
@@ -0,0 +1,655 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use proc_macro::{token_stream, Delimiter, Group, Literal, TokenStream, TokenTree};
+use std::fmt::Write;
+
+use crate::helpers::*;
+
+#[derive(Clone, PartialEq)]
+enum ParamType {
+ Ident(String),
+ Array { vals: String, max_length: usize },
+}
+
+fn expect_array_fields(it: &mut token_stream::IntoIter) -> ParamType {
+ assert_eq!(expect_punct(it), '<');
+ let vals = expect_ident(it);
+ assert_eq!(expect_punct(it), ',');
+ let max_length_str = expect_literal(it);
+ let max_length = max_length_str
+ .parse::<usize>()
+ .expect("Expected usize length");
+ assert_eq!(expect_punct(it), '>');
+ ParamType::Array { vals, max_length }
+}
+
+fn expect_type(it: &mut token_stream::IntoIter) -> ParamType {
+ if let TokenTree::Ident(ident) = it
+ .next()
+ .expect("Reached end of token stream for param type")
+ {
+ match ident.to_string().as_ref() {
+ "ArrayParam" => expect_array_fields(it),
+ _ => ParamType::Ident(ident.to_string()),
+ }
+ } else {
+ panic!("Expected Param Type")
+ }
+}
+
+struct ModInfoBuilder<'a> {
+ module: &'a str,
+ counter: usize,
+ buffer: String,
+}
+
+impl<'a> ModInfoBuilder<'a> {
+ fn new(module: &'a str) -> Self {
+ ModInfoBuilder {
+ module,
+ counter: 0,
+ buffer: String::new(),
+ }
+ }
+
+ fn emit_base(&mut self, field: &str, content: &str, builtin: bool) {
+ let string = if builtin {
+ // Built-in modules prefix their modinfo strings by `module.`.
+ format!(
+ "{module}.{field}={content}\0",
+ module = self.module,
+ field = field,
+ content = content
+ )
+ } else {
+ // Loadable modules' modinfo strings go as-is.
+ format!("{field}={content}\0", field = field, content = content)
+ };
+
+ write!(
+ &mut self.buffer,
+ "
+ {cfg}
+ #[doc(hidden)]
+ #[link_section = \".modinfo\"]
+ #[used]
+ pub static __{module}_{counter}: [u8; {length}] = *{string};
+ ",
+ cfg = if builtin {
+ "#[cfg(not(MODULE))]"
+ } else {
+ "#[cfg(MODULE)]"
+ },
+ module = self.module.to_uppercase(),
+ counter = self.counter,
+ length = string.len(),
+ string = Literal::byte_string(string.as_bytes()),
+ )
+ .unwrap();
+
+ self.counter += 1;
+ }
+
+ fn emit_only_builtin(&mut self, field: &str, content: &str) {
+ self.emit_base(field, content, true)
+ }
+
+ fn emit_only_loadable(&mut self, field: &str, content: &str) {
+ self.emit_base(field, content, false)
+ }
+
+ fn emit(&mut self, field: &str, content: &str) {
+ self.emit_only_builtin(field, content);
+ self.emit_only_loadable(field, content);
+ }
+
+ fn emit_param(&mut self, field: &str, param: &str, content: &str) {
+ let content = format!("{param}:{content}", param = param, content = content);
+ self.emit(field, &content);
+ }
+}
+
+fn permissions_are_readonly(perms: &str) -> bool {
+ let (radix, digits) = if let Some(n) = perms.strip_prefix("0x") {
+ (16, n)
+ } else if let Some(n) = perms.strip_prefix("0o") {
+ (8, n)
+ } else if let Some(n) = perms.strip_prefix("0b") {
+ (2, n)
+ } else {
+ (10, perms)
+ };
+ match u32::from_str_radix(digits, radix) {
+ Ok(perms) => perms & 0o222 == 0,
+ Err(_) => false,
+ }
+}
+
+fn param_ops_path(param_type: &str) -> &'static str {
+ match param_type {
+ "bool" => "kernel::module_param::PARAM_OPS_BOOL",
+ "i8" => "kernel::module_param::PARAM_OPS_I8",
+ "u8" => "kernel::module_param::PARAM_OPS_U8",
+ "i16" => "kernel::module_param::PARAM_OPS_I16",
+ "u16" => "kernel::module_param::PARAM_OPS_U16",
+ "i32" => "kernel::module_param::PARAM_OPS_I32",
+ "u32" => "kernel::module_param::PARAM_OPS_U32",
+ "i64" => "kernel::module_param::PARAM_OPS_I64",
+ "u64" => "kernel::module_param::PARAM_OPS_U64",
+ "isize" => "kernel::module_param::PARAM_OPS_ISIZE",
+ "usize" => "kernel::module_param::PARAM_OPS_USIZE",
+ "str" => "kernel::module_param::PARAM_OPS_STR",
+ t => panic!("Unrecognized type {}", t),
+ }
+}
+
+fn try_simple_param_val(
+ param_type: &str,
+) -> Box<dyn Fn(&mut token_stream::IntoIter) -> Option<String>> {
+ match param_type {
+ "bool" => Box::new(try_ident),
+ "str" => Box::new(|param_it| {
+ try_byte_string(param_it)
+ .map(|s| format!("kernel::module_param::StringParam::Ref(b\"{}\")", s))
+ }),
+ _ => Box::new(try_literal),
+ }
+}
+
+fn get_default(param_type: &ParamType, param_it: &mut token_stream::IntoIter) -> String {
+ let try_param_val = match param_type {
+ ParamType::Ident(ref param_type)
+ | ParamType::Array {
+ vals: ref param_type,
+ max_length: _,
+ } => try_simple_param_val(param_type),
+ };
+ assert_eq!(expect_ident(param_it), "default");
+ assert_eq!(expect_punct(param_it), ':');
+ let default = match param_type {
+ ParamType::Ident(_) => try_param_val(param_it).expect("Expected default param value"),
+ ParamType::Array {
+ vals: _,
+ max_length: _,
+ } => {
+ let group = expect_group(param_it);
+ assert_eq!(group.delimiter(), Delimiter::Bracket);
+ let mut default_vals = Vec::new();
+ let mut it = group.stream().into_iter();
+
+ while let Some(default_val) = try_param_val(&mut it) {
+ default_vals.push(default_val);
+ match it.next() {
+ Some(TokenTree::Punct(punct)) => assert_eq!(punct.as_char(), ','),
+ None => break,
+ _ => panic!("Expected ',' or end of array default values"),
+ }
+ }
+
+ let mut default_array = "kernel::module_param::ArrayParam::create(&[".to_string();
+ default_array.push_str(
+ &default_vals
+ .iter()
+ .map(|val| val.to_string())
+ .collect::<Vec<String>>()
+ .join(","),
+ );
+ default_array.push_str("])");
+ default_array
+ }
+ };
+ assert_eq!(expect_punct(param_it), ',');
+ default
+}
+
+fn generated_array_ops_name(vals: &str, max_length: usize) -> String {
+ format!(
+ "__generated_array_ops_{vals}_{max_length}",
+ vals = vals,
+ max_length = max_length
+ )
+}
+
+#[derive(Debug, Default)]
+struct ModuleInfo {
+ type_: String,
+ license: String,
+ name: String,
+ author: Option<String>,
+ description: Option<String>,
+ alias: Option<String>,
+ params: Option<Group>,
+}
+
+impl ModuleInfo {
+ fn parse(it: &mut token_stream::IntoIter) -> Self {
+ let mut info = ModuleInfo::default();
+
+ const EXPECTED_KEYS: &[&str] = &[
+ "type",
+ "name",
+ "author",
+ "description",
+ "license",
+ "alias",
+ "alias_rtnl_link",
+ "params",
+ ];
+ const REQUIRED_KEYS: &[&str] = &["type", "name", "license"];
+ let mut seen_keys = Vec::new();
+
+ loop {
+ let key = match it.next() {
+ Some(TokenTree::Ident(ident)) => ident.to_string(),
+ Some(_) => panic!("Expected Ident or end"),
+ None => break,
+ };
+
+ if seen_keys.contains(&key) {
+ panic!(
+ "Duplicated key \"{}\". Keys can only be specified once.",
+ key
+ );
+ }
+
+ assert_eq!(expect_punct(it), ':');
+
+ match key.as_str() {
+ "type" => info.type_ = expect_ident(it),
+ "name" => info.name = expect_byte_string(it),
+ "author" => info.author = Some(expect_byte_string(it)),
+ "description" => info.description = Some(expect_byte_string(it)),
+ "license" => info.license = expect_byte_string(it),
+ "alias" => info.alias = Some(expect_byte_string(it)),
+ "alias_rtnl_link" => {
+ info.alias = Some(format!("rtnl-link-{}", expect_byte_string(it)))
+ }
+ "params" => info.params = Some(expect_group(it)),
+ _ => panic!(
+ "Unknown key \"{}\". Valid keys are: {:?}.",
+ key, EXPECTED_KEYS
+ ),
+ }
+
+ assert_eq!(expect_punct(it), ',');
+
+ seen_keys.push(key);
+ }
+
+ expect_end(it);
+
+ for key in REQUIRED_KEYS {
+ if !seen_keys.iter().any(|e| e == key) {
+ panic!("Missing required key \"{}\".", key);
+ }
+ }
+
+ let mut ordered_keys: Vec<&str> = Vec::new();
+ for key in EXPECTED_KEYS {
+ if seen_keys.iter().any(|e| e == key) {
+ ordered_keys.push(key);
+ }
+ }
+
+ if seen_keys != ordered_keys {
+ panic!(
+ "Keys are not ordered as expected. Order them like: {:?}.",
+ ordered_keys
+ );
+ }
+
+ info
+ }
+}
+
+pub(crate) fn module(ts: TokenStream) -> TokenStream {
+ let mut it = ts.into_iter();
+
+ let info = ModuleInfo::parse(&mut it);
+
+ let mut modinfo = ModInfoBuilder::new(info.name.as_ref());
+ if let Some(author) = info.author {
+ modinfo.emit("author", &author);
+ }
+ if let Some(description) = info.description {
+ modinfo.emit("description", &description);
+ }
+ modinfo.emit("license", &info.license);
+ if let Some(alias) = info.alias {
+ modinfo.emit("alias", &alias);
+ }
+
+ // Built-in modules also export the `file` modinfo string.
+ let file =
+ std::env::var("RUST_MODFILE").expect("Unable to fetch RUST_MODFILE environmental variable");
+ modinfo.emit_only_builtin("file", &file);
+
+ let mut array_types_to_generate = Vec::new();
+ if let Some(params) = info.params {
+ assert_eq!(params.delimiter(), Delimiter::Brace);
+
+ let mut it = params.stream().into_iter();
+
+ loop {
+ let param_name = match it.next() {
+ Some(TokenTree::Ident(ident)) => ident.to_string(),
+ Some(_) => panic!("Expected Ident or end"),
+ None => break,
+ };
+
+ assert_eq!(expect_punct(&mut it), ':');
+ let param_type = expect_type(&mut it);
+ let group = expect_group(&mut it);
+ assert_eq!(expect_punct(&mut it), ',');
+
+ assert_eq!(group.delimiter(), Delimiter::Brace);
+
+ let mut param_it = group.stream().into_iter();
+ let param_default = get_default(¶m_type, &mut param_it);
+ let param_permissions = get_literal(&mut param_it, "permissions");
+ let param_description = get_byte_string(&mut param_it, "description");
+ expect_end(&mut param_it);
+
+ // TODO: More primitive types.
+ // TODO: Other kinds: unsafes, etc.
+ let (param_kernel_type, ops): (String, _) = match param_type {
+ ParamType::Ident(ref param_type) => (
+ param_type.to_string(),
+ param_ops_path(param_type).to_string(),
+ ),
+ ParamType::Array {
+ ref vals,
+ max_length,
+ } => {
+ array_types_to_generate.push((vals.clone(), max_length));
+ (
+ format!("__rust_array_param_{}_{}", vals, max_length),
+ generated_array_ops_name(vals, max_length),
+ )
+ }
+ };
+
+ modinfo.emit_param("parmtype", ¶m_name, ¶m_kernel_type);
+ modinfo.emit_param("parm", ¶m_name, ¶m_description);
+ let param_type_internal = match param_type {
+ ParamType::Ident(ref param_type) => match param_type.as_ref() {
+ "str" => "kernel::module_param::StringParam".to_string(),
+ other => other.to_string(),
+ },
+ ParamType::Array {
+ ref vals,
+ max_length,
+ } => format!(
+ "kernel::module_param::ArrayParam<{vals}, {max_length}>",
+ vals = vals,
+ max_length = max_length
+ ),
+ };
+ let read_func = if permissions_are_readonly(¶m_permissions) {
+ format!(
+ "
+ fn read(&self)
+ -> &<{param_type_internal} as kernel::module_param::ModuleParam>::Value {{
+ // SAFETY: Parameters do not need to be locked because they are
+ // read only or sysfs is not enabled.
+ unsafe {{
+ <{param_type_internal} as kernel::module_param::ModuleParam>::value(
+ &__{name}_{param_name}_value
+ )
+ }}
+ }}
+ ",
+ name = info.name,
+ param_name = param_name,
+ param_type_internal = param_type_internal,
+ )
+ } else {
+ format!(
+ "
+ fn read<'lck>(&self, lock: &'lck kernel::KParamGuard)
+ -> &'lck <{param_type_internal} as kernel::module_param::ModuleParam>::Value {{
+ // SAFETY: Parameters are locked by `KParamGuard`.
+ unsafe {{
+ <{param_type_internal} as kernel::module_param::ModuleParam>::value(
+ &__{name}_{param_name}_value
+ )
+ }}
+ }}
+ ",
+ name = info.name,
+ param_name = param_name,
+ param_type_internal = param_type_internal,
+ )
+ };
+ let kparam = format!(
+ "
+ kernel::bindings::kernel_param__bindgen_ty_1 {{
+ arg: unsafe {{ &__{name}_{param_name}_value }}
+ as *const _ as *mut core::ffi::c_void,
+ }},
+ ",
+ name = info.name,
+ param_name = param_name,
+ );
+ write!(
+ modinfo.buffer,
+ "
+ static mut __{name}_{param_name}_value: {param_type_internal} = {param_default};
+
+ struct __{name}_{param_name};
+
+ impl __{name}_{param_name} {{ {read_func} }}
+
+ const {param_name}: __{name}_{param_name} = __{name}_{param_name};
+
+ // Note: the C macro that generates the static structs for the `__param` section
+ // asks for them to be `aligned(sizeof(void *))`. However, that was put in place
+ // in 2003 in commit 38d5b085d2a0 (\"[PATCH] Fix over-alignment problem on x86-64\")
+ // to undo GCC over-alignment of static structs of >32 bytes. It seems that is
+ // not the case anymore, so we simplify to a transparent representation here
+ // in the expectation that it is not needed anymore.
+ // TODO: Revisit this to confirm the above comment and remove it if it happened.
+ #[repr(transparent)]
+ struct __{name}_{param_name}_RacyKernelParam(kernel::bindings::kernel_param);
+
+ unsafe impl Sync for __{name}_{param_name}_RacyKernelParam {{
+ }}
+
+ #[cfg(not(MODULE))]
+ const __{name}_{param_name}_name: *const core::ffi::c_char =
+ b\"{name}.{param_name}\\0\" as *const _ as *const core::ffi::c_char;
+
+ #[cfg(MODULE)]
+ const __{name}_{param_name}_name: *const core::ffi::c_char =
+ b\"{param_name}\\0\" as *const _ as *const core::ffi::c_char;
+
+ #[link_section = \"__param\"]
+ #[used]
+ static __{name}_{param_name}_struct: __{name}_{param_name}_RacyKernelParam =
+ __{name}_{param_name}_RacyKernelParam(kernel::bindings::kernel_param {{
+ name: __{name}_{param_name}_name,
+ // SAFETY: `__this_module` is constructed by the kernel at load time
+ // and will not be freed until the module is unloaded.
+ #[cfg(MODULE)]
+ mod_: unsafe {{ &kernel::bindings::__this_module as *const _ as *mut _ }},
+ #[cfg(not(MODULE))]
+ mod_: core::ptr::null_mut(),
+ ops: unsafe {{ &{ops} }} as *const kernel::bindings::kernel_param_ops,
+ perm: {permissions},
+ level: -1,
+ flags: 0,
+ __bindgen_anon_1: {kparam}
+ }});
+ ",
+ name = info.name,
+ param_type_internal = param_type_internal,
+ read_func = read_func,
+ param_default = param_default,
+ param_name = param_name,
+ ops = ops,
+ permissions = param_permissions,
+ kparam = kparam,
+ )
+ .unwrap();
+ }
+ }
+
+ let mut generated_array_types = String::new();
+
+ for (vals, max_length) in array_types_to_generate {
+ let ops_name = generated_array_ops_name(&vals, max_length);
+ write!(
+ generated_array_types,
+ "
+ kernel::make_param_ops!(
+ {ops_name},
+ kernel::module_param::ArrayParam<{vals}, {{ {max_length} }}>
+ );
+ ",
+ ops_name = ops_name,
+ vals = vals,
+ max_length = max_length,
+ )
+ .unwrap();
+ }
+
+ format!(
+ "
+ /// The module name.
+ ///
+ /// Used by the printing macros, e.g. [`info!`].
+ const __LOG_PREFIX: &[u8] = b\"{name}\\0\";
+
+ /// The \"Rust loadable module\" mark, for `scripts/is_rust_module.sh`.
+ //
+ // This may be best done another way later on, e.g. as a new modinfo
+ // key or a new section. For the moment, keep it simple.
+ #[cfg(MODULE)]
+ #[doc(hidden)]
+ #[used]
+ static __IS_RUST_MODULE: () = ();
+
+ static mut __MOD: Option<{type_}> = None;
+
+ // SAFETY: `__this_module` is constructed by the kernel at load time and will not be
+ // freed until the module is unloaded.
+ #[cfg(MODULE)]
+ static THIS_MODULE: kernel::ThisModule = unsafe {{
+ kernel::ThisModule::from_ptr(&kernel::bindings::__this_module as *const _ as *mut _)
+ }};
+ #[cfg(not(MODULE))]
+ static THIS_MODULE: kernel::ThisModule = unsafe {{
+ kernel::ThisModule::from_ptr(core::ptr::null_mut())
+ }};
+
+ // Loadable modules need to export the `{{init,cleanup}}_module` identifiers.
+ #[cfg(MODULE)]
+ #[doc(hidden)]
+ #[no_mangle]
+ pub extern \"C\" fn init_module() -> core::ffi::c_int {{
+ __init()
+ }}
+
+ #[cfg(MODULE)]
+ #[doc(hidden)]
+ #[no_mangle]
+ pub extern \"C\" fn cleanup_module() {{
+ __exit()
+ }}
+
+ // Built-in modules are initialized through an initcall pointer
+ // and the identifiers need to be unique.
+ #[cfg(not(MODULE))]
+ #[cfg(not(CONFIG_HAVE_ARCH_PREL32_RELOCATIONS))]
+ #[doc(hidden)]
+ #[link_section = \"{initcall_section}\"]
+ #[used]
+ pub static __{name}_initcall: extern \"C\" fn() -> core::ffi::c_int = __{name}_init;
+
+ #[cfg(not(MODULE))]
+ #[cfg(CONFIG_HAVE_ARCH_PREL32_RELOCATIONS)]
+ core::arch::global_asm!(
+ r#\".section \"{initcall_section}\", \"a\"
+ __{name}_initcall:
+ .long __{name}_init - .
+ .previous
+ \"#
+ );
+
+ #[cfg(not(MODULE))]
+ #[doc(hidden)]
+ #[no_mangle]
+ pub extern \"C\" fn __{name}_init() -> core::ffi::c_int {{
+ __init()
+ }}
+
+ #[cfg(not(MODULE))]
+ #[doc(hidden)]
+ #[no_mangle]
+ pub extern \"C\" fn __{name}_exit() {{
+ __exit()
+ }}
+
+ fn __init() -> core::ffi::c_int {{
+ match <{type_} as kernel::Module>::init(kernel::c_str!(\"{name}\"), &THIS_MODULE) {{
+ Ok(m) => {{
+ unsafe {{
+ __MOD = Some(m);
+ }}
+ return 0;
+ }}
+ Err(e) => {{
+ return e.to_kernel_errno();
+ }}
+ }}
+ }}
+
+ fn __exit() {{
+ unsafe {{
+ // Invokes `drop()` on `__MOD`, which should be used for cleanup.
+ __MOD = None;
+ }}
+ }}
+
+ {modinfo}
+
+ {generated_array_types}
+ ",
+ type_ = info.type_,
+ name = info.name,
+ modinfo = modinfo.buffer,
+ generated_array_types = generated_array_types,
+ initcall_section = ".initcall6.init"
+ )
+ .parse()
+ .expect("Error parsing formatted string into token stream.")
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ #[test]
+ fn test_permissions_are_readonly() {
+ assert!(permissions_are_readonly("0b000000000"));
+ assert!(permissions_are_readonly("0o000"));
+ assert!(permissions_are_readonly("000"));
+ assert!(permissions_are_readonly("0x000"));
+
+ assert!(!permissions_are_readonly("0b111111111"));
+ assert!(!permissions_are_readonly("0o777"));
+ assert!(!permissions_are_readonly("511"));
+ assert!(!permissions_are_readonly("0x1ff"));
+
+ assert!(permissions_are_readonly("0o014"));
+ assert!(permissions_are_readonly("0o015"));
+
+ assert!(!permissions_are_readonly("0o214"));
+ assert!(!permissions_are_readonly("0o024"));
+ assert!(!permissions_are_readonly("0o012"));
+
+ assert!(!permissions_are_readonly("0o315"));
+ assert!(!permissions_are_readonly("0o065"));
+ assert!(!permissions_are_readonly("0o017"));
+ }
+}
diff --git a/rust/macros/vtable.rs b/rust/macros/vtable.rs
new file mode 100644
index 000000000000..34d5e7fb5768
--- /dev/null
+++ b/rust/macros/vtable.rs
@@ -0,0 +1,95 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use proc_macro::{Delimiter, Group, TokenStream, TokenTree};
+use std::collections::HashSet;
+use std::fmt::Write;
+
+pub(crate) fn vtable(_attr: TokenStream, ts: TokenStream) -> TokenStream {
+ let mut tokens: Vec<_> = ts.into_iter().collect();
+
+ // Scan for the `trait` or `impl` keyword.
+ let is_trait = tokens
+ .iter()
+ .find_map(|token| match token {
+ TokenTree::Ident(ident) => match ident.to_string().as_str() {
+ "trait" => Some(true),
+ "impl" => Some(false),
+ _ => None,
+ },
+ _ => None,
+ })
+ .expect("#[vtable] attribute should only be applied to trait or impl block");
+
+ // Retrieve the main body. The main body should be the last token tree.
+ let body = match tokens.pop() {
+ Some(TokenTree::Group(group)) if group.delimiter() == Delimiter::Brace => group,
+ _ => panic!("cannot locate main body of trait or impl block"),
+ };
+
+ let mut body_it = body.stream().into_iter();
+ let mut functions = Vec::new();
+ let mut consts = HashSet::new();
+ while let Some(token) = body_it.next() {
+ match token {
+ TokenTree::Ident(ident) if ident.to_string() == "fn" => {
+ let fn_name = match body_it.next() {
+ Some(TokenTree::Ident(ident)) => ident.to_string(),
+ // Possibly we've encountered a fn pointer type instead.
+ _ => continue,
+ };
+ functions.push(fn_name);
+ }
+ TokenTree::Ident(ident) if ident.to_string() == "const" => {
+ let const_name = match body_it.next() {
+ Some(TokenTree::Ident(ident)) => ident.to_string(),
+ // Possibly we've encountered an inline const block instead.
+ _ => continue,
+ };
+ consts.insert(const_name);
+ }
+ _ => (),
+ }
+ }
+
+ let mut const_items;
+ if is_trait {
+ const_items = "
+ /// A marker to prevent implementors from forgetting to use [`#[vtable]`](vtable)
+ /// attribute when implementing this trait.
+ const USE_VTABLE_ATTR: ();
+ "
+ .to_owned();
+
+ for f in functions {
+ let gen_const_name = format!("HAS_{}", f.to_uppercase());
+ // Skip if it's declared already -- this allows user override.
+ if consts.contains(&gen_const_name) {
+ continue;
+ }
+ // We don't know on the implementation-site whether a method is required or provided
+ // so we have to generate a const for all methods.
+ write!(
+ const_items,
+ "/// Indicates if the `{f}` method is overridden by the implementor.
+ const {gen_const_name}: bool = false;",
+ )
+ .unwrap();
+ }
+ } else {
+ const_items = "const USE_VTABLE_ATTR: () = ();".to_owned();
+
+ for f in functions {
+ let gen_const_name = format!("HAS_{}", f.to_uppercase());
+ if consts.contains(&gen_const_name) {
+ continue;
+ }
+ write!(const_items, "const {gen_const_name}: bool = true;").unwrap();
+ }
+ }
+
+ let new_body = vec![const_items.parse().unwrap(), body.stream()]
+ .into_iter()
+ .collect();
+ tokens.push(TokenTree::Group(Group::new(Delimiter::Brace, new_body)));
+ tokens.into_iter().collect()
+}
--
2.37.1
From: Wedson Almeida Filho <[email protected]>
This allows us to enable Rust while creating a configuration file, for
example, we can run `make defconfig rust.config` from the command line
to create the default configuration plus enable Rust.
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Co-developed-by: Miguel Ojeda <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
kernel/configs/rust.config | 1 +
1 file changed, 1 insertion(+)
create mode 100644 kernel/configs/rust.config
diff --git a/kernel/configs/rust.config b/kernel/configs/rust.config
new file mode 100644
index 000000000000..38a7c5362c9c
--- /dev/null
+++ b/kernel/configs/rust.config
@@ -0,0 +1 @@
+CONFIG_RUST=y
--
2.37.1
Include Rust in the "source code files" category, so that
the language-independent tests are checked for Rust too,
and teach `checkpatch` about the comment style for Rust files.
This enables the malformed SPDX check, the misplaced SPDX license
tag check, the long line checks, the lines without a newline check
and the embedded filename check.
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
scripts/checkpatch.pl | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/scripts/checkpatch.pl b/scripts/checkpatch.pl
index 23799e8013b3..bd0025d77bcf 100755
--- a/scripts/checkpatch.pl
+++ b/scripts/checkpatch.pl
@@ -3615,7 +3615,7 @@ sub process {
my $comment = "";
if ($realfile =~ /\.(h|s|S)$/) {
$comment = '/*';
- } elsif ($realfile =~ /\.(c|dts|dtsi)$/) {
+ } elsif ($realfile =~ /\.(c|rs|dts|dtsi)$/) {
$comment = '//';
} elsif (($checklicenseline == 2) || $realfile =~ /\.(sh|pl|py|awk|tc|yaml)$/) {
$comment = '#';
@@ -3663,7 +3663,7 @@ sub process {
}
# check we are in a valid source file if not then ignore this hunk
- next if ($realfile !~ /\.(h|c|s|S|sh|dtsi|dts)$/);
+ next if ($realfile !~ /\.(h|c|rs|s|S|sh|dtsi|dts)$/);
# check for using SPDX-License-Identifier on the wrong line number
if ($realline != $checklicenseline &&
--
2.37.1
The `generate_rust_analyzer.py` script generates the configuration
file (`rust-project.json`) for rust-analyzer.
rust-analyzer is a modular compiler frontend for the Rust language.
It provides an LSP server which can be used in editors such as
VS Code, Emacs or Vim.
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Finn Behrens <[email protected]>
Signed-off-by: Finn Behrens <[email protected]>
Co-developed-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Co-developed-by: Gary Guo <[email protected]>
Signed-off-by: Gary Guo <[email protected]>
Co-developed-by: Boris-Chengbiao Zhou <[email protected]>
Signed-off-by: Boris-Chengbiao Zhou <[email protected]>
Co-developed-by: Björn Roy Baron <[email protected]>
Signed-off-by: Björn Roy Baron <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
scripts/generate_rust_analyzer.py | 141 ++++++++++++++++++++++++++++++
1 file changed, 141 insertions(+)
create mode 100755 scripts/generate_rust_analyzer.py
diff --git a/scripts/generate_rust_analyzer.py b/scripts/generate_rust_analyzer.py
new file mode 100755
index 000000000000..ecc7ea9a4dcf
--- /dev/null
+++ b/scripts/generate_rust_analyzer.py
@@ -0,0 +1,141 @@
+#!/usr/bin/env python3
+# SPDX-License-Identifier: GPL-2.0
+"""generate_rust_analyzer - Generates the `rust-project.json` file for `rust-analyzer`.
+"""
+
+import argparse
+import json
+import logging
+import pathlib
+import sys
+
+def generate_crates(srctree, objtree, sysroot_src):
+ # Generate the configuration list.
+ cfg = []
+ with open(objtree / "include" / "generated" / "rustc_cfg") as fd:
+ for line in fd:
+ line = line.replace("--cfg=", "")
+ line = line.replace("\n", "")
+ cfg.append(line)
+
+ # Now fill the crates list -- dependencies need to come first.
+ #
+ # Avoid O(n^2) iterations by keeping a map of indexes.
+ crates = []
+ crates_indexes = {}
+
+ def append_crate(display_name, root_module, deps, cfg=[], is_workspace_member=True, is_proc_macro=False):
+ crates_indexes[display_name] = len(crates)
+ crates.append({
+ "display_name": display_name,
+ "root_module": str(root_module),
+ "is_workspace_member": is_workspace_member,
+ "is_proc_macro": is_proc_macro,
+ "deps": [{"crate": crates_indexes[dep], "name": dep} for dep in deps],
+ "cfg": cfg,
+ "edition": "2021",
+ "env": {
+ "RUST_MODFILE": "This is only for rust-analyzer"
+ }
+ })
+
+ # First, the ones in `rust/` since they are a bit special.
+ append_crate(
+ "core",
+ sysroot_src / "core" / "src" / "lib.rs",
+ [],
+ is_workspace_member=False,
+ )
+
+ append_crate(
+ "compiler_builtins",
+ srctree / "rust" / "compiler_builtins.rs",
+ [],
+ )
+
+ append_crate(
+ "alloc",
+ srctree / "rust" / "alloc" / "lib.rs",
+ ["core", "compiler_builtins"],
+ )
+
+ append_crate(
+ "macros",
+ srctree / "rust" / "macros" / "lib.rs",
+ [],
+ is_proc_macro=True,
+ )
+ crates[-1]["proc_macro_dylib_path"] = "rust/libmacros.so"
+
+ append_crate(
+ "build_error",
+ srctree / "rust" / "build_error.rs",
+ ["core", "compiler_builtins"],
+ )
+
+ append_crate(
+ "bindings",
+ srctree / "rust"/ "bindings" / "lib.rs",
+ ["core"],
+ cfg=cfg,
+ )
+ crates[-1]["env"]["OBJTREE"] = str(objtree.resolve(True))
+
+ append_crate(
+ "kernel",
+ srctree / "rust" / "kernel" / "lib.rs",
+ ["core", "alloc", "macros", "build_error", "bindings"],
+ cfg=cfg,
+ )
+ crates[-1]["source"] = {
+ "include_dirs": [
+ str(srctree / "rust" / "kernel"),
+ str(objtree / "rust")
+ ],
+ "exclude_dirs": [],
+ }
+
+ # Then, the rest outside of `rust/`.
+ #
+ # We explicitly mention the top-level folders we want to cover.
+ for folder in ("samples", "drivers"):
+ for path in (srctree / folder).rglob("*.rs"):
+ logging.info("Checking %s", path)
+ name = path.name.replace(".rs", "")
+
+ # Skip those that are not crate roots.
+ if f"{name}.o" not in open(path.parent / "Makefile").read():
+ continue
+
+ logging.info("Adding %s", name)
+ append_crate(
+ name,
+ path,
+ ["core", "alloc", "kernel"],
+ cfg=cfg,
+ )
+
+ return crates
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--verbose', '-v', action='store_true')
+ parser.add_argument("srctree", type=pathlib.Path)
+ parser.add_argument("objtree", type=pathlib.Path)
+ parser.add_argument("sysroot_src", type=pathlib.Path)
+ args = parser.parse_args()
+
+ logging.basicConfig(
+ format="[%(asctime)s] [%(levelname)s] %(message)s",
+ level=logging.INFO if args.verbose else logging.WARNING
+ )
+
+ rust_project = {
+ "crates": generate_crates(args.srctree, args.objtree, args.sysroot_src),
+ "sysroot_src": str(args.sysroot_src),
+ }
+
+ json.dump(rust_project, sys.stdout, sort_keys=True, indent=4)
+
+if __name__ == "__main__":
+ main()
--
2.37.1
This customizes the subset of the Rust standard library `alloc` that
was just imported as-is, mainly by:
- Adding SPDX license identifiers.
- Skipping `rc` and `sync` modules via new `cfg`s.
- Skipping the `vec!` macro.
- Addding fallible (`try_*`) versions of existing infallible methods
(i.e. returning a `Result` instead of panicking).
Since the standard library requires stable/unstable attributes,
these additions are annotated with:
#[stable(feature = "kernel", since = "1.0.0")]
Using "kernel" as the feature allows to have the additions
clearly marked. The "1.0.0" version is just a placeholder.
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Co-developed-by: Gary Guo <[email protected]>
Signed-off-by: Gary Guo <[email protected]>
Co-developed-by: Matthew Bakhtiari <[email protected]>
Signed-off-by: Matthew Bakhtiari <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
rust/alloc/README.md | 33 ++++
rust/alloc/alloc.rs | 2 +
rust/alloc/borrow.rs | 2 +
rust/alloc/boxed.rs | 2 +
rust/alloc/boxed/thin.rs | 6 +-
rust/alloc/collections/mod.rs | 2 +
rust/alloc/ffi/c_str.rs | 2 +
rust/alloc/ffi/mod.rs | 2 +
rust/alloc/fmt.rs | 2 +
rust/alloc/lib.rs | 5 +-
rust/alloc/macros.rs | 2 +
rust/alloc/raw_vec.rs | 51 ++++-
rust/alloc/slice.rs | 95 ++++++++-
rust/alloc/str.rs | 20 ++
rust/alloc/string.rs | 6 +-
rust/alloc/vec/drain.rs | 2 +
rust/alloc/vec/drain_filter.rs | 2 +
rust/alloc/vec/into_iter.rs | 3 +
rust/alloc/vec/is_zero.rs | 2 +
rust/alloc/vec/mod.rs | 311 +++++++++++++++++++++++++++++-
rust/alloc/vec/partial_eq.rs | 2 +
rust/alloc/vec/set_len_on_drop.rs | 2 +
rust/alloc/vec/spec_extend.rs | 87 +++++++++
23 files changed, 634 insertions(+), 9 deletions(-)
create mode 100644 rust/alloc/README.md
diff --git a/rust/alloc/README.md b/rust/alloc/README.md
new file mode 100644
index 000000000000..c89c753720b5
--- /dev/null
+++ b/rust/alloc/README.md
@@ -0,0 +1,33 @@
+# `alloc`
+
+These source files come from the Rust standard library, hosted in
+the <https://github.com/rust-lang/rust> repository, licensed under
+"Apache-2.0 OR MIT" and adapted for kernel use. For copyright details,
+see <https://github.com/rust-lang/rust/blob/master/COPYRIGHT>.
+
+Please note that these files should be kept as close as possible to
+upstream. In general, only additions should be performed (e.g. new
+methods). Eventually, changes should make it into upstream so that,
+at some point, this fork can be dropped from the kernel tree.
+
+
+## Rationale
+
+On one hand, kernel folks wanted to keep `alloc` in-tree to have more
+freedom in both workflow and actual features if actually needed
+(e.g. receiver types if we ended up using them), which is reasonable.
+
+On the other hand, Rust folks wanted to keep `alloc` as close as
+upstream as possible and avoid as much divergence as possible, which
+is also reasonable.
+
+We agreed on a middle-ground: we would keep a subset of `alloc`
+in-tree that would be as small and as close as possible to upstream.
+Then, upstream can start adding the functions that we add to `alloc`
+etc., until we reach a point where the kernel already knows exactly
+what it needs in `alloc` and all the new methods are merged into
+upstream, so that we can drop `alloc` from the kernel tree and go back
+to using the upstream one.
+
+By doing this, the kernel can go a bit faster now, and Rust can
+slowly incorporate and discuss the changes as needed.
diff --git a/rust/alloc/alloc.rs b/rust/alloc/alloc.rs
index 6162b5c6d4c9..ca224a541770 100644
--- a/rust/alloc/alloc.rs
+++ b/rust/alloc/alloc.rs
@@ -1,3 +1,5 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
//! Memory allocation APIs
#![stable(feature = "alloc_module", since = "1.28.0")]
diff --git a/rust/alloc/borrow.rs b/rust/alloc/borrow.rs
index cb4e438f8bea..ca8e3dfa7004 100644
--- a/rust/alloc/borrow.rs
+++ b/rust/alloc/borrow.rs
@@ -1,3 +1,5 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
//! A module for working with borrowed data.
#![stable(feature = "rust1", since = "1.0.0")]
diff --git a/rust/alloc/boxed.rs b/rust/alloc/boxed.rs
index c07536f0d0ce..8fd296421dec 100644
--- a/rust/alloc/boxed.rs
+++ b/rust/alloc/boxed.rs
@@ -1,3 +1,5 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
//! A pointer type for heap allocation.
//!
//! [`Box<T>`], casually referred to as a 'box', provides the simplest form of
diff --git a/rust/alloc/boxed/thin.rs b/rust/alloc/boxed/thin.rs
index 390030fa2b21..9135203114fc 100644
--- a/rust/alloc/boxed/thin.rs
+++ b/rust/alloc/boxed/thin.rs
@@ -1,9 +1,13 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
// Based on
// https://github.com/matthieu-m/rfc2580/blob/b58d1d3cba0d4b5e859d3617ea2d0943aaa31329/examples/thin.rs
// by matthieu-m
use crate::alloc::{self, Layout, LayoutError};
use core::fmt::{self, Debug, Display, Formatter};
-use core::marker::{PhantomData, Unsize};
+use core::marker::PhantomData;
+#[cfg(not(no_global_oom_handling))]
+use core::marker::Unsize;
use core::mem;
use core::ops::{Deref, DerefMut};
use core::ptr::Pointee;
diff --git a/rust/alloc/collections/mod.rs b/rust/alloc/collections/mod.rs
index 628a5b155673..1eec265b28f8 100644
--- a/rust/alloc/collections/mod.rs
+++ b/rust/alloc/collections/mod.rs
@@ -1,3 +1,5 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
//! Collection types.
#![stable(feature = "rust1", since = "1.0.0")]
diff --git a/rust/alloc/ffi/c_str.rs b/rust/alloc/ffi/c_str.rs
index 172a008e89a0..5e2f4073771a 100644
--- a/rust/alloc/ffi/c_str.rs
+++ b/rust/alloc/ffi/c_str.rs
@@ -1,3 +1,5 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
#[cfg(test)]
mod tests;
diff --git a/rust/alloc/ffi/mod.rs b/rust/alloc/ffi/mod.rs
index eed2851c1539..56d429785339 100644
--- a/rust/alloc/ffi/mod.rs
+++ b/rust/alloc/ffi/mod.rs
@@ -1,3 +1,5 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
//! Utilities related to FFI bindings.
//!
//! This module provides utilities to handle data across non-Rust
diff --git a/rust/alloc/fmt.rs b/rust/alloc/fmt.rs
index 73b75ea4d83d..b9c4d2926d23 100644
--- a/rust/alloc/fmt.rs
+++ b/rust/alloc/fmt.rs
@@ -1,3 +1,5 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
//! Utilities for formatting and printing `String`s.
//!
//! This module contains the runtime support for the [`format!`] syntax extension.
diff --git a/rust/alloc/lib.rs b/rust/alloc/lib.rs
index fd21b3671182..03d2ce1df814 100644
--- a/rust/alloc/lib.rs
+++ b/rust/alloc/lib.rs
@@ -1,3 +1,5 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
//! # The Rust core allocation and collections library
//!
//! This library provides smart pointers and collections for managing
@@ -217,11 +219,12 @@ pub mod collections;
#[cfg(not(no_global_oom_handling))]
pub mod ffi;
pub mod fmt;
+#[cfg(not(no_rc))]
pub mod rc;
pub mod slice;
pub mod str;
pub mod string;
-#[cfg(target_has_atomic = "ptr")]
+#[cfg(all(not(no_sync), target_has_atomic = "ptr"))]
pub mod sync;
#[cfg(all(not(no_global_oom_handling), target_has_atomic = "ptr"))]
pub mod task;
diff --git a/rust/alloc/macros.rs b/rust/alloc/macros.rs
index 093b02113c3a..fa7bacfd5847 100644
--- a/rust/alloc/macros.rs
+++ b/rust/alloc/macros.rs
@@ -1,3 +1,5 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
/// Creates a [`Vec`] containing the arguments.
///
/// `vec!` allows `Vec`s to be defined with the same syntax as array expressions.
diff --git a/rust/alloc/raw_vec.rs b/rust/alloc/raw_vec.rs
index 4be5f6cf9ca5..59e353bfe5d3 100644
--- a/rust/alloc/raw_vec.rs
+++ b/rust/alloc/raw_vec.rs
@@ -1,3 +1,5 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
#![unstable(feature = "raw_vec_internals", reason = "unstable const warnings", issue = "none")]
use core::alloc::LayoutError;
@@ -18,10 +20,10 @@ use crate::collections::TryReserveErrorKind::*;
#[cfg(test)]
mod tests;
-#[cfg(not(no_global_oom_handling))]
enum AllocInit {
/// The contents of the new memory are uninitialized.
Uninitialized,
+ #[allow(dead_code)]
/// The new memory is guaranteed to be zeroed.
Zeroed,
}
@@ -131,6 +133,13 @@ impl<T, A: Allocator> RawVec<T, A> {
Self::allocate_in(capacity, AllocInit::Uninitialized, alloc)
}
+ /// Like `try_with_capacity`, but parameterized over the choice of
+ /// allocator for the returned `RawVec`.
+ #[inline]
+ pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
+ Self::try_allocate_in(capacity, AllocInit::Uninitialized, alloc)
+ }
+
/// Like `with_capacity_zeroed`, but parameterized over the choice
/// of allocator for the returned `RawVec`.
#[cfg(not(no_global_oom_handling))]
@@ -201,6 +210,30 @@ impl<T, A: Allocator> RawVec<T, A> {
}
}
+ fn try_allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Result<Self, TryReserveError> {
+ // Don't allocate here because `Drop` will not deallocate when `capacity` is 0.
+ if mem::size_of::<T>() == 0 || capacity == 0 {
+ return Ok(Self::new_in(alloc));
+ }
+
+ let layout = Layout::array::<T>(capacity).map_err(|_| CapacityOverflow)?;
+ alloc_guard(layout.size())?;
+ let result = match init {
+ AllocInit::Uninitialized => alloc.allocate(layout),
+ AllocInit::Zeroed => alloc.allocate_zeroed(layout),
+ };
+ let ptr = result.map_err(|_| AllocError { layout, non_exhaustive: () })?;
+
+ // Allocators currently return a `NonNull<[u8]>` whose length
+ // matches the size requested. If that ever changes, the capacity
+ // here should change to `ptr.len() / mem::size_of::<T>()`.
+ Ok(Self {
+ ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) },
+ cap: capacity,
+ alloc,
+ })
+ }
+
/// Reconstitutes a `RawVec` from a pointer, capacity, and allocator.
///
/// # Safety
@@ -307,6 +340,12 @@ impl<T, A: Allocator> RawVec<T, A> {
}
}
+ /// The same as `reserve_for_push`, but returns on errors instead of panicking or aborting.
+ #[inline(never)]
+ pub fn try_reserve_for_push(&mut self, len: usize) -> Result<(), TryReserveError> {
+ self.grow_amortized(len, 1)
+ }
+
/// Ensures that the buffer contains at least enough space to hold `len +
/// additional` elements. If it doesn't already, will reallocate the
/// minimum possible amount of memory necessary. Generally this will be
@@ -352,6 +391,16 @@ impl<T, A: Allocator> RawVec<T, A> {
pub fn shrink_to_fit(&mut self, cap: usize) {
handle_reserve(self.shrink(cap));
}
+
+ /// Tries to shrink the buffer down to the specified capacity. If the given amount
+ /// is 0, actually completely deallocates.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the given amount is *larger* than the current capacity.
+ pub fn try_shrink_to_fit(&mut self, cap: usize) -> Result<(), TryReserveError> {
+ self.shrink(cap)
+ }
}
impl<T, A: Allocator> RawVec<T, A> {
diff --git a/rust/alloc/slice.rs b/rust/alloc/slice.rs
index 199b3c9d0290..d53f6051f3a8 100644
--- a/rust/alloc/slice.rs
+++ b/rust/alloc/slice.rs
@@ -1,3 +1,5 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
//! A dynamically-sized view into a contiguous sequence, `[T]`.
//!
//! *[See also the slice primitive type](slice).*
@@ -93,11 +95,11 @@ use core::mem::size_of;
use core::ptr;
use crate::alloc::Allocator;
-#[cfg(not(no_global_oom_handling))]
use crate::alloc::Global;
#[cfg(not(no_global_oom_handling))]
use crate::borrow::ToOwned;
use crate::boxed::Box;
+use crate::collections::TryReserveError;
use crate::vec::Vec;
#[unstable(feature = "slice_range", issue = "76393")]
@@ -157,6 +159,7 @@ pub(crate) mod hack {
use core::alloc::Allocator;
use crate::boxed::Box;
+ use crate::collections::TryReserveError;
use crate::vec::Vec;
// We shouldn't add inline attribute to this since this is used in
@@ -176,6 +179,11 @@ pub(crate) mod hack {
T::to_vec(s, alloc)
}
+ #[inline]
+ pub fn try_to_vec<T: TryConvertVec, A: Allocator>(s: &[T], alloc: A) -> Result<Vec<T, A>, TryReserveError> {
+ T::try_to_vec(s, alloc)
+ }
+
#[cfg(not(no_global_oom_handling))]
pub trait ConvertVec {
fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A>
@@ -183,6 +191,12 @@ pub(crate) mod hack {
Self: Sized;
}
+ pub trait TryConvertVec {
+ fn try_to_vec<A: Allocator>(s: &[Self], alloc: A) -> Result<Vec<Self, A>, TryReserveError>
+ where
+ Self: Sized;
+ }
+
#[cfg(not(no_global_oom_handling))]
impl<T: Clone> ConvertVec for T {
#[inline]
@@ -235,6 +249,42 @@ pub(crate) mod hack {
v
}
}
+
+ impl<T: Clone> TryConvertVec for T {
+ #[inline]
+ default fn try_to_vec<A: Allocator>(s: &[Self], alloc: A) -> Result<Vec<Self, A>, TryReserveError> {
+ struct DropGuard<'a, T, A: Allocator> {
+ vec: &'a mut Vec<T, A>,
+ num_init: usize,
+ }
+ impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> {
+ #[inline]
+ fn drop(&mut self) {
+ // SAFETY:
+ // items were marked initialized in the loop below
+ unsafe {
+ self.vec.set_len(self.num_init);
+ }
+ }
+ }
+ let mut vec = Vec::try_with_capacity_in(s.len(), alloc)?;
+ let mut guard = DropGuard { vec: &mut vec, num_init: 0 };
+ let slots = guard.vec.spare_capacity_mut();
+ // .take(slots.len()) is necessary for LLVM to remove bounds checks
+ // and has better codegen than zip.
+ for (i, b) in s.iter().enumerate().take(slots.len()) {
+ guard.num_init = i;
+ slots[i].write(b.clone());
+ }
+ core::mem::forget(guard);
+ // SAFETY:
+ // the vec was allocated and initialized above to at least this length.
+ unsafe {
+ vec.set_len(s.len());
+ }
+ Ok(vec)
+ }
+ }
}
#[cfg(not(test))]
@@ -481,6 +531,25 @@ impl<T> [T] {
self.to_vec_in(Global)
}
+ /// Tries to copy `self` into a new `Vec`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let s = [10, 40, 30];
+ /// let x = s.try_to_vec().unwrap();
+ /// // Here, `s` and `x` can be modified independently.
+ /// ```
+ #[rustc_allow_incoherent_impl]
+ #[inline]
+ #[stable(feature = "kernel", since = "1.0.0")]
+ pub fn try_to_vec(&self) -> Result<Vec<T>, TryReserveError>
+ where
+ T: Clone,
+ {
+ self.try_to_vec_in(Global)
+ }
+
/// Copies `self` into a new `Vec` with an allocator.
///
/// # Examples
@@ -506,6 +575,30 @@ impl<T> [T] {
hack::to_vec(self, alloc)
}
+ /// Tries to copy `self` into a new `Vec` with an allocator.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api)]
+ ///
+ /// use std::alloc::System;
+ ///
+ /// let s = [10, 40, 30];
+ /// let x = s.try_to_vec_in(System).unwrap();
+ /// // Here, `s` and `x` can be modified independently.
+ /// ```
+ #[rustc_allow_incoherent_impl]
+ #[inline]
+ #[stable(feature = "kernel", since = "1.0.0")]
+ pub fn try_to_vec_in<A: Allocator>(&self, alloc: A) -> Result<Vec<T, A>, TryReserveError>
+ where
+ T: Clone,
+ {
+ // N.B., see the `hack` module in this file for more details.
+ hack::try_to_vec(self, alloc)
+ }
+
/// Converts `self` into a vector without clones or allocation.
///
/// The resulting vector can be converted back into a box via
diff --git a/rust/alloc/str.rs b/rust/alloc/str.rs
index 0eaa26398635..4e3aec690fdb 100644
--- a/rust/alloc/str.rs
+++ b/rust/alloc/str.rs
@@ -1,3 +1,5 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
//! Unicode string slices.
//!
//! *[See also the `str` primitive type](str).*
@@ -36,6 +38,7 @@ use core::unicode::conversions;
use crate::borrow::ToOwned;
use crate::boxed::Box;
+use crate::collections::TryReserveError;
use crate::slice::{Concat, Join, SliceIndex};
use crate::string::String;
use crate::vec::Vec;
@@ -598,6 +601,23 @@ impl str {
// make_ascii_lowercase() preserves the UTF-8 invariant.
unsafe { String::from_utf8_unchecked(bytes) }
}
+
+ /// Tries to create a `String`.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s: &str = "a";
+ /// let ss: String = s.try_to_owned().unwrap();
+ /// ```
+ #[rustc_allow_incoherent_impl]
+ #[inline]
+ #[stable(feature = "kernel", since = "1.0.0")]
+ pub fn try_to_owned(&self) -> Result<String, TryReserveError> {
+ unsafe { Ok(String::from_utf8_unchecked(self.as_bytes().try_to_vec()?)) }
+ }
}
/// Converts a boxed slice of bytes to a boxed string slice without checking
diff --git a/rust/alloc/string.rs b/rust/alloc/string.rs
index 2272c5b7330d..2ba7f30a7503 100644
--- a/rust/alloc/string.rs
+++ b/rust/alloc/string.rs
@@ -1,3 +1,5 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
//! A UTF-8–encoded, growable string.
//!
//! This module contains the [`String`] type, the [`ToString`] trait for
@@ -47,8 +49,8 @@ use core::char::{decode_utf16, REPLACEMENT_CHARACTER};
use core::fmt;
use core::hash;
#[cfg(not(no_global_oom_handling))]
-use core::iter::FromIterator;
-use core::iter::{from_fn, FusedIterator};
+use core::iter::{from_fn, FromIterator};
+use core::iter::FusedIterator;
#[cfg(not(no_global_oom_handling))]
use core::ops::Add;
#[cfg(not(no_global_oom_handling))]
diff --git a/rust/alloc/vec/drain.rs b/rust/alloc/vec/drain.rs
index 5cdee0bd4da4..b6a5f98e4fcd 100644
--- a/rust/alloc/vec/drain.rs
+++ b/rust/alloc/vec/drain.rs
@@ -1,3 +1,5 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
use crate::alloc::{Allocator, Global};
use core::fmt;
use core::iter::{FusedIterator, TrustedLen};
diff --git a/rust/alloc/vec/drain_filter.rs b/rust/alloc/vec/drain_filter.rs
index 3c37c92ae44b..b04fce041622 100644
--- a/rust/alloc/vec/drain_filter.rs
+++ b/rust/alloc/vec/drain_filter.rs
@@ -1,3 +1,5 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
use crate::alloc::{Allocator, Global};
use core::ptr::{self};
use core::slice::{self};
diff --git a/rust/alloc/vec/into_iter.rs b/rust/alloc/vec/into_iter.rs
index 9b84a1d9b4b6..09cfee0ae631 100644
--- a/rust/alloc/vec/into_iter.rs
+++ b/rust/alloc/vec/into_iter.rs
@@ -1,3 +1,5 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
#[cfg(not(no_global_oom_handling))]
use super::AsVecIntoIter;
use crate::alloc::{Allocator, Global};
@@ -9,6 +11,7 @@ use core::iter::{
};
use core::marker::PhantomData;
use core::mem::{self, ManuallyDrop};
+#[cfg(not(no_global_oom_handling))]
use core::ops::Deref;
use core::ptr::{self, NonNull};
use core::slice::{self};
diff --git a/rust/alloc/vec/is_zero.rs b/rust/alloc/vec/is_zero.rs
index edf270db81d4..377f3d172777 100644
--- a/rust/alloc/vec/is_zero.rs
+++ b/rust/alloc/vec/is_zero.rs
@@ -1,3 +1,5 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
use crate::boxed::Box;
#[rustc_specialization_trait]
diff --git a/rust/alloc/vec/mod.rs b/rust/alloc/vec/mod.rs
index 3dc8a4fbba86..4ae81b890fd9 100644
--- a/rust/alloc/vec/mod.rs
+++ b/rust/alloc/vec/mod.rs
@@ -1,3 +1,5 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
//! A contiguous growable array type with heap-allocated contents, written
//! `Vec<T>`.
//!
@@ -118,10 +120,8 @@ use self::spec_from_elem::SpecFromElem;
#[cfg(not(no_global_oom_handling))]
mod spec_from_elem;
-#[cfg(not(no_global_oom_handling))]
use self::set_len_on_drop::SetLenOnDrop;
-#[cfg(not(no_global_oom_handling))]
mod set_len_on_drop;
#[cfg(not(no_global_oom_handling))]
@@ -145,7 +145,8 @@ mod spec_from_iter;
#[cfg(not(no_global_oom_handling))]
use self::spec_extend::SpecExtend;
-#[cfg(not(no_global_oom_handling))]
+use self::spec_extend::TrySpecExtend;
+
mod spec_extend;
/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
@@ -470,6 +471,48 @@ impl<T> Vec<T> {
Self::with_capacity_in(capacity, Global)
}
+ /// Tries to construct a new, empty `Vec<T>` with the specified capacity.
+ ///
+ /// The vector will be able to hold exactly `capacity` elements without
+ /// reallocating. If `capacity` is 0, the vector will not allocate.
+ ///
+ /// It is important to note that although the returned vector has the
+ /// *capacity* specified, the vector will have a zero *length*. For an
+ /// explanation of the difference between length and capacity, see
+ /// *[Capacity and reallocation]*.
+ ///
+ /// [Capacity and reallocation]: #capacity-and-reallocation
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = Vec::try_with_capacity(10).unwrap();
+ ///
+ /// // The vector contains no items, even though it has capacity for more
+ /// assert_eq!(vec.len(), 0);
+ /// assert_eq!(vec.capacity(), 10);
+ ///
+ /// // These are all done without reallocating...
+ /// for i in 0..10 {
+ /// vec.push(i);
+ /// }
+ /// assert_eq!(vec.len(), 10);
+ /// assert_eq!(vec.capacity(), 10);
+ ///
+ /// // ...but this may make the vector reallocate
+ /// vec.push(11);
+ /// assert_eq!(vec.len(), 11);
+ /// assert!(vec.capacity() >= 11);
+ ///
+ /// let mut result = Vec::try_with_capacity(usize::MAX);
+ /// assert!(result.is_err());
+ /// ```
+ #[inline]
+ #[stable(feature = "kernel", since = "1.0.0")]
+ pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
+ Self::try_with_capacity_in(capacity, Global)
+ }
+
/// Creates a `Vec<T>` directly from the raw components of another vector.
///
/// # Safety
@@ -615,6 +658,53 @@ impl<T, A: Allocator> Vec<T, A> {
Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
}
+ /// Tries to construct a new, empty `Vec<T, A>` with the specified capacity
+ /// with the provided allocator.
+ ///
+ /// The vector will be able to hold exactly `capacity` elements without
+ /// reallocating. If `capacity` is 0, the vector will not allocate.
+ ///
+ /// It is important to note that although the returned vector has the
+ /// *capacity* specified, the vector will have a zero *length*. For an
+ /// explanation of the difference between length and capacity, see
+ /// *[Capacity and reallocation]*.
+ ///
+ /// [Capacity and reallocation]: #capacity-and-reallocation
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api)]
+ ///
+ /// use std::alloc::System;
+ ///
+ /// let mut vec = Vec::try_with_capacity_in(10, System).unwrap();
+ ///
+ /// // The vector contains no items, even though it has capacity for more
+ /// assert_eq!(vec.len(), 0);
+ /// assert_eq!(vec.capacity(), 10);
+ ///
+ /// // These are all done without reallocating...
+ /// for i in 0..10 {
+ /// vec.push(i);
+ /// }
+ /// assert_eq!(vec.len(), 10);
+ /// assert_eq!(vec.capacity(), 10);
+ ///
+ /// // ...but this may make the vector reallocate
+ /// vec.push(11);
+ /// assert_eq!(vec.len(), 11);
+ /// assert!(vec.capacity() >= 11);
+ ///
+ /// let mut result = Vec::try_with_capacity_in(usize::MAX, System);
+ /// assert!(result.is_err());
+ /// ```
+ #[inline]
+ #[stable(feature = "kernel", since = "1.0.0")]
+ pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
+ Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
+ }
+
/// Creates a `Vec<T, A>` directly from the raw components of another vector.
///
/// # Safety
@@ -946,6 +1036,32 @@ impl<T, A: Allocator> Vec<T, A> {
}
}
+ /// Tries to shrink the capacity of the vector as much as possible.
+ ///
+ /// It will drop down as close as possible to the length but the allocator
+ /// may still inform the vector that there is space for a few more elements.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = Vec::with_capacity(10);
+ /// vec.extend([1, 2, 3]);
+ /// assert_eq!(vec.capacity(), 10);
+ /// vec.try_shrink_to_fit().unwrap();
+ /// assert!(vec.capacity() >= 3);
+ /// ```
+ #[stable(feature = "kernel", since = "1.0.0")]
+ pub fn try_shrink_to_fit(&mut self) -> Result<(), TryReserveError> {
+ // The capacity is never less than the length, and there's nothing to do when
+ // they are equal, so we can avoid the panic case in `RawVec::try_shrink_to_fit`
+ // by only calling it with a greater capacity.
+ if self.capacity() <= self.len {
+ return Ok(());
+ }
+
+ self.buf.try_shrink_to_fit(self.len)
+ }
+
/// Shrinks the capacity of the vector with a lower bound.
///
/// The capacity will remain at least as large as both the length
@@ -1008,6 +1124,41 @@ impl<T, A: Allocator> Vec<T, A> {
}
}
+ /// Tries to convert the vector into [`Box<[T]>`][owned slice].
+ ///
+ /// Note that this will drop any excess capacity.
+ ///
+ /// [owned slice]: Box
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = vec![1, 2, 3];
+ ///
+ /// let slice = v.try_into_boxed_slice().unwrap();
+ /// ```
+ ///
+ /// Any excess capacity is removed:
+ ///
+ /// ```
+ /// let mut vec = Vec::with_capacity(10);
+ /// vec.extend([1, 2, 3]);
+ ///
+ /// assert_eq!(vec.capacity(), 10);
+ /// let slice = vec.try_into_boxed_slice().unwrap();
+ /// assert_eq!(slice.into_vec().capacity(), 3);
+ /// ```
+ #[stable(feature = "kernel", since = "1.0.0")]
+ pub fn try_into_boxed_slice(mut self) -> Result<Box<[T], A>, TryReserveError> {
+ unsafe {
+ self.try_shrink_to_fit()?;
+ let me = ManuallyDrop::new(self);
+ let buf = ptr::read(&me.buf);
+ let len = me.len();
+ Ok(buf.into_box(len).assume_init())
+ }
+ }
+
/// Shortens the vector, keeping the first `len` elements and dropping
/// the rest.
///
@@ -1739,6 +1890,29 @@ impl<T, A: Allocator> Vec<T, A> {
}
}
+ /// Tries to append an element to the back of a collection.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = vec![1, 2];
+ /// vec.try_push(3).unwrap();
+ /// assert_eq!(vec, [1, 2, 3]);
+ /// ```
+ #[inline]
+ #[stable(feature = "kernel", since = "1.0.0")]
+ pub fn try_push(&mut self, value: T) -> Result<(), TryReserveError> {
+ if self.len == self.buf.capacity() {
+ self.buf.try_reserve_for_push(self.len)?;
+ }
+ unsafe {
+ let end = self.as_mut_ptr().add(self.len);
+ ptr::write(end, value);
+ self.len += 1;
+ }
+ Ok(())
+ }
+
/// Removes the last element from a vector and returns it, or [`None`] if it
/// is empty.
///
@@ -1803,6 +1977,17 @@ impl<T, A: Allocator> Vec<T, A> {
self.len += count;
}
+ /// Tries to append elements to `self` from other buffer.
+ #[inline]
+ unsafe fn try_append_elements(&mut self, other: *const [T]) -> Result<(), TryReserveError> {
+ let count = unsafe { (*other).len() };
+ self.try_reserve(count)?;
+ let len = self.len();
+ unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
+ self.len += count;
+ Ok(())
+ }
+
/// Removes the specified range from the vector in bulk, returning all
/// removed elements as an iterator. If the iterator is dropped before
/// being fully consumed, it drops the remaining removed elements.
@@ -2224,6 +2409,44 @@ impl<T: Clone, A: Allocator> Vec<T, A> {
}
}
+ /// Tries to resize the `Vec` in-place so that `len` is equal to `new_len`.
+ ///
+ /// If `new_len` is greater than `len`, the `Vec` is extended by the
+ /// difference, with each additional slot filled with `value`.
+ /// If `new_len` is less than `len`, the `Vec` is simply truncated.
+ ///
+ /// This method requires `T` to implement [`Clone`],
+ /// in order to be able to clone the passed value.
+ /// If you need more flexibility (or want to rely on [`Default`] instead of
+ /// [`Clone`]), use [`Vec::resize_with`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = vec!["hello"];
+ /// vec.try_resize(3, "world").unwrap();
+ /// assert_eq!(vec, ["hello", "world", "world"]);
+ ///
+ /// let mut vec = vec![1, 2, 3, 4];
+ /// vec.try_resize(2, 0).unwrap();
+ /// assert_eq!(vec, [1, 2]);
+ ///
+ /// let mut vec = vec![42];
+ /// let result = vec.try_resize(usize::MAX, 0);
+ /// assert!(result.is_err());
+ /// ```
+ #[stable(feature = "kernel", since = "1.0.0")]
+ pub fn try_resize(&mut self, new_len: usize, value: T) -> Result<(), TryReserveError> {
+ let len = self.len();
+
+ if new_len > len {
+ self.try_extend_with(new_len - len, ExtendElement(value))
+ } else {
+ self.truncate(new_len);
+ Ok(())
+ }
+ }
+
/// Clones and appends all elements in a slice to the `Vec`.
///
/// Iterates over the slice `other`, clones each element, and then appends
@@ -2249,6 +2472,30 @@ impl<T: Clone, A: Allocator> Vec<T, A> {
self.spec_extend(other.iter())
}
+ /// Tries to clone and append all elements in a slice to the `Vec`.
+ ///
+ /// Iterates over the slice `other`, clones each element, and then appends
+ /// it to this `Vec`. The `other` slice is traversed in-order.
+ ///
+ /// Note that this function is same as [`extend`] except that it is
+ /// specialized to work with slices instead. If and when Rust gets
+ /// specialization this function will likely be deprecated (but still
+ /// available).
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = vec![1];
+ /// vec.try_extend_from_slice(&[2, 3, 4]).unwrap();
+ /// assert_eq!(vec, [1, 2, 3, 4]);
+ /// ```
+ ///
+ /// [`extend`]: Vec::extend
+ #[stable(feature = "kernel", since = "1.0.0")]
+ pub fn try_extend_from_slice(&mut self, other: &[T]) -> Result<(), TryReserveError> {
+ self.try_spec_extend(other.iter())
+ }
+
/// Copies elements from `src` range to the end of the vector.
///
/// # Panics
@@ -2388,6 +2635,36 @@ impl<T, A: Allocator> Vec<T, A> {
// len set by scope guard
}
}
+
+ /// Try to extend the vector by `n` values, using the given generator.
+ fn try_extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) -> Result<(), TryReserveError> {
+ self.try_reserve(n)?;
+
+ unsafe {
+ let mut ptr = self.as_mut_ptr().add(self.len());
+ // Use SetLenOnDrop to work around bug where compiler
+ // might not realize the store through `ptr` through self.set_len()
+ // don't alias.
+ let mut local_len = SetLenOnDrop::new(&mut self.len);
+
+ // Write all elements except the last one
+ for _ in 1..n {
+ ptr::write(ptr, value.next());
+ ptr = ptr.offset(1);
+ // Increment the length in every step in case next() panics
+ local_len.increment_len(1);
+ }
+
+ if n > 0 {
+ // We can write the last element directly without cloning needlessly
+ ptr::write(ptr, value.last());
+ local_len.increment_len(1);
+ }
+
+ // len set by scope guard
+ Ok(())
+ }
+ }
}
impl<T: PartialEq, A: Allocator> Vec<T, A> {
@@ -2722,6 +2999,34 @@ impl<T, A: Allocator> Vec<T, A> {
}
}
+ // leaf method to which various SpecFrom/SpecExtend implementations delegate when
+ // they have no further optimizations to apply
+ fn try_extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) -> Result<(), TryReserveError> {
+ // This is the case for a general iterator.
+ //
+ // This function should be the moral equivalent of:
+ //
+ // for item in iterator {
+ // self.push(item);
+ // }
+ while let Some(element) = iterator.next() {
+ let len = self.len();
+ if len == self.capacity() {
+ let (lower, _) = iterator.size_hint();
+ self.try_reserve(lower.saturating_add(1))?;
+ }
+ unsafe {
+ ptr::write(self.as_mut_ptr().add(len), element);
+ // Since next() executes user code which can panic we have to bump the length
+ // after each step.
+ // NB can't overflow since we would have had to alloc the address space
+ self.set_len(len + 1);
+ }
+ }
+
+ Ok(())
+ }
+
/// Creates a splicing iterator that replaces the specified range in the vector
/// with the given `replace_with` iterator and yields the removed items.
/// `replace_with` does not need to be the same length as `range`.
diff --git a/rust/alloc/vec/partial_eq.rs b/rust/alloc/vec/partial_eq.rs
index b0cf72577a1b..10ad4e492287 100644
--- a/rust/alloc/vec/partial_eq.rs
+++ b/rust/alloc/vec/partial_eq.rs
@@ -1,3 +1,5 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
use crate::alloc::Allocator;
#[cfg(not(no_global_oom_handling))]
use crate::borrow::Cow;
diff --git a/rust/alloc/vec/set_len_on_drop.rs b/rust/alloc/vec/set_len_on_drop.rs
index 8b66bc812129..448bf5076a0b 100644
--- a/rust/alloc/vec/set_len_on_drop.rs
+++ b/rust/alloc/vec/set_len_on_drop.rs
@@ -1,3 +1,5 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
// Set the length of the vec when the `SetLenOnDrop` value goes out of scope.
//
// The idea is: The length field in SetLenOnDrop is a local variable
diff --git a/rust/alloc/vec/spec_extend.rs b/rust/alloc/vec/spec_extend.rs
index 506ee0ecfa27..5ce2d00991bc 100644
--- a/rust/alloc/vec/spec_extend.rs
+++ b/rust/alloc/vec/spec_extend.rs
@@ -1,4 +1,7 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
use crate::alloc::Allocator;
+use crate::collections::{TryReserveError, TryReserveErrorKind};
use core::iter::TrustedLen;
use core::ptr::{self};
use core::slice::{self};
@@ -6,10 +9,17 @@ use core::slice::{self};
use super::{IntoIter, SetLenOnDrop, Vec};
// Specialization trait used for Vec::extend
+#[cfg(not(no_global_oom_handling))]
pub(super) trait SpecExtend<T, I> {
fn spec_extend(&mut self, iter: I);
}
+// Specialization trait used for Vec::try_extend
+pub(super) trait TrySpecExtend<T, I> {
+ fn try_spec_extend(&mut self, iter: I) -> Result<(), TryReserveError>;
+}
+
+#[cfg(not(no_global_oom_handling))]
impl<T, I, A: Allocator> SpecExtend<T, I> for Vec<T, A>
where
I: Iterator<Item = T>,
@@ -19,6 +29,16 @@ where
}
}
+impl<T, I, A: Allocator> TrySpecExtend<T, I> for Vec<T, A>
+where
+ I: Iterator<Item = T>,
+{
+ default fn try_spec_extend(&mut self, iter: I) -> Result<(), TryReserveError> {
+ self.try_extend_desugared(iter)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
impl<T, I, A: Allocator> SpecExtend<T, I> for Vec<T, A>
where
I: TrustedLen<Item = T>,
@@ -57,6 +77,41 @@ where
}
}
+impl<T, I, A: Allocator> TrySpecExtend<T, I> for Vec<T, A>
+where
+ I: TrustedLen<Item = T>,
+{
+ default fn try_spec_extend(&mut self, iterator: I) -> Result<(), TryReserveError> {
+ // This is the case for a TrustedLen iterator.
+ let (low, high) = iterator.size_hint();
+ if let Some(additional) = high {
+ debug_assert_eq!(
+ low,
+ additional,
+ "TrustedLen iterator's size hint is not exact: {:?}",
+ (low, high)
+ );
+ self.try_reserve(additional)?;
+ unsafe {
+ let mut ptr = self.as_mut_ptr().add(self.len());
+ let mut local_len = SetLenOnDrop::new(&mut self.len);
+ iterator.for_each(move |element| {
+ ptr::write(ptr, element);
+ ptr = ptr.offset(1);
+ // Since the loop executes user code which can panic we have to bump the pointer
+ // after each step.
+ // NB can't overflow since we would have had to alloc the address space
+ local_len.increment_len(1);
+ });
+ }
+ Ok(())
+ } else {
+ Err(TryReserveErrorKind::CapacityOverflow.into())
+ }
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
impl<T, A: Allocator> SpecExtend<T, IntoIter<T>> for Vec<T, A> {
fn spec_extend(&mut self, mut iterator: IntoIter<T>) {
unsafe {
@@ -66,6 +121,17 @@ impl<T, A: Allocator> SpecExtend<T, IntoIter<T>> for Vec<T, A> {
}
}
+impl<T, A: Allocator> TrySpecExtend<T, IntoIter<T>> for Vec<T, A> {
+ fn try_spec_extend(&mut self, mut iterator: IntoIter<T>) -> Result<(), TryReserveError> {
+ unsafe {
+ self.try_append_elements(iterator.as_slice() as _)?;
+ }
+ iterator.forget_remaining_elements();
+ Ok(())
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
impl<'a, T: 'a, I, A: Allocator + 'a> SpecExtend<&'a T, I> for Vec<T, A>
where
I: Iterator<Item = &'a T>,
@@ -76,6 +142,17 @@ where
}
}
+impl<'a, T: 'a, I, A: Allocator + 'a> TrySpecExtend<&'a T, I> for Vec<T, A>
+where
+ I: Iterator<Item = &'a T>,
+ T: Clone,
+{
+ default fn try_spec_extend(&mut self, iterator: I) -> Result<(), TryReserveError> {
+ self.try_spec_extend(iterator.cloned())
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
impl<'a, T: 'a, A: Allocator + 'a> SpecExtend<&'a T, slice::Iter<'a, T>> for Vec<T, A>
where
T: Copy,
@@ -85,3 +162,13 @@ where
unsafe { self.append_elements(slice) };
}
}
+
+impl<'a, T: 'a, A: Allocator + 'a> TrySpecExtend<&'a T, slice::Iter<'a, T>> for Vec<T, A>
+where
+ T: Copy,
+{
+ fn try_spec_extend(&mut self, iterator: slice::Iter<'a, T>) -> Result<(), TryReserveError> {
+ let slice = iterator.as_slice();
+ unsafe { self.try_append_elements(slice) }
+ }
+}
--
2.37.1
From: Wedson Almeida Filho <[email protected]>
A port to Rust of the Android Binder IPC mechanism.
This module is a work in progress and will be sent for review later
on, as well as separately from the Rust support.
However, it is included to show how an actual working module
written in Rust may look like.
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Finn Behrens <[email protected]>
Signed-off-by: Finn Behrens <[email protected]>
Co-developed-by: Sven Van Asbroeck <[email protected]>
Signed-off-by: Sven Van Asbroeck <[email protected]>
Co-developed-by: Gary Guo <[email protected]>
Signed-off-by: Gary Guo <[email protected]>
Co-developed-by: Wayne Campbell <[email protected]>
Signed-off-by: Wayne Campbell <[email protected]>
Co-developed-by: Daniel Xu <[email protected]>
Signed-off-by: Daniel Xu <[email protected]>
Co-developed-by: Björn Roy Baron <[email protected]>
Signed-off-by: Björn Roy Baron <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Co-developed-by: Miguel Ojeda <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
drivers/android/Kconfig | 6 +
drivers/android/Makefile | 2 +
drivers/android/allocation.rs | 266 ++++++++
drivers/android/context.rs | 80 +++
drivers/android/defs.rs | 99 +++
drivers/android/node.rs | 476 ++++++++++++++
drivers/android/process.rs | 961 ++++++++++++++++++++++++++++
drivers/android/range_alloc.rs | 189 ++++++
drivers/android/rust_binder.rs | 106 +++
drivers/android/thread.rs | 871 +++++++++++++++++++++++++
drivers/android/transaction.rs | 326 ++++++++++
include/uapi/linux/android/binder.h | 30 +-
12 files changed, 3398 insertions(+), 14 deletions(-)
create mode 100644 drivers/android/allocation.rs
create mode 100644 drivers/android/context.rs
create mode 100644 drivers/android/defs.rs
create mode 100644 drivers/android/node.rs
create mode 100644 drivers/android/process.rs
create mode 100644 drivers/android/range_alloc.rs
create mode 100644 drivers/android/rust_binder.rs
create mode 100644 drivers/android/thread.rs
create mode 100644 drivers/android/transaction.rs
diff --git a/drivers/android/Kconfig b/drivers/android/Kconfig
index 53b22e26266c..bc10eebd3ad3 100644
--- a/drivers/android/Kconfig
+++ b/drivers/android/Kconfig
@@ -20,6 +20,12 @@ config ANDROID_BINDER_IPC
Android process, using Binder to identify, invoke and pass arguments
between said processes.
+config ANDROID_BINDER_IPC_RUST
+ bool "Android Binder IPC Driver in Rust"
+ depends on MMU && RUST
+ help
+ Implementation of the Binder IPC in Rust.
+
config ANDROID_BINDERFS
bool "Android Binderfs filesystem"
depends on ANDROID_BINDER_IPC
diff --git a/drivers/android/Makefile b/drivers/android/Makefile
index c9d3d0c99c25..c428f2ce2f05 100644
--- a/drivers/android/Makefile
+++ b/drivers/android/Makefile
@@ -4,3 +4,5 @@ ccflags-y += -I$(src) # needed for trace events
obj-$(CONFIG_ANDROID_BINDERFS) += binderfs.o
obj-$(CONFIG_ANDROID_BINDER_IPC) += binder.o binder_alloc.o
obj-$(CONFIG_ANDROID_BINDER_IPC_SELFTEST) += binder_alloc_selftest.o
+
+obj-$(CONFIG_ANDROID_BINDER_IPC_RUST) += rust_binder.o
diff --git a/drivers/android/allocation.rs b/drivers/android/allocation.rs
new file mode 100644
index 000000000000..3ed7b649eeb7
--- /dev/null
+++ b/drivers/android/allocation.rs
@@ -0,0 +1,266 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use core::mem::{replace, size_of, MaybeUninit};
+use kernel::{
+ bindings, linked_list::List, pages::Pages, prelude::*, sync::Ref, user_ptr::UserSlicePtrReader,
+};
+
+use crate::{
+ defs::*,
+ node::NodeRef,
+ process::{AllocationInfo, Process},
+ thread::{BinderError, BinderResult},
+ transaction::FileInfo,
+};
+
+pub(crate) struct Allocation<'a> {
+ pub(crate) offset: usize,
+ size: usize,
+ pub(crate) ptr: usize,
+ pages: Ref<[Pages<0>]>,
+ pub(crate) process: &'a Process,
+ allocation_info: Option<AllocationInfo>,
+ free_on_drop: bool,
+ file_list: List<Box<FileInfo>>,
+}
+
+impl<'a> Allocation<'a> {
+ pub(crate) fn new(
+ process: &'a Process,
+ offset: usize,
+ size: usize,
+ ptr: usize,
+ pages: Ref<[Pages<0>]>,
+ ) -> Self {
+ Self {
+ process,
+ offset,
+ size,
+ ptr,
+ pages,
+ allocation_info: None,
+ free_on_drop: true,
+ file_list: List::new(),
+ }
+ }
+
+ pub(crate) fn take_file_list(&mut self) -> List<Box<FileInfo>> {
+ replace(&mut self.file_list, List::new())
+ }
+
+ pub(crate) fn add_file_info(&mut self, file: Box<FileInfo>) {
+ self.file_list.push_back(file);
+ }
+
+ fn iterate<T>(&self, mut offset: usize, mut size: usize, mut cb: T) -> Result
+ where
+ T: FnMut(&Pages<0>, usize, usize) -> Result,
+ {
+ // Check that the request is within the buffer.
+ if offset.checked_add(size).ok_or(EINVAL)? > self.size {
+ return Err(EINVAL);
+ }
+ offset += self.offset;
+ let mut page_index = offset >> bindings::PAGE_SHIFT;
+ offset &= (1 << bindings::PAGE_SHIFT) - 1;
+ while size > 0 {
+ let available = core::cmp::min(size, (1 << bindings::PAGE_SHIFT) as usize - offset);
+ cb(&self.pages[page_index], offset, available)?;
+ size -= available;
+ page_index += 1;
+ offset = 0;
+ }
+ Ok(())
+ }
+
+ pub(crate) fn copy_into(
+ &self,
+ reader: &mut UserSlicePtrReader,
+ offset: usize,
+ size: usize,
+ ) -> Result {
+ self.iterate(offset, size, |page, offset, to_copy| {
+ page.copy_into_page(reader, offset, to_copy)
+ })
+ }
+
+ pub(crate) fn read<T>(&self, offset: usize) -> Result<T> {
+ let mut out = MaybeUninit::<T>::uninit();
+ let mut out_offset = 0;
+ self.iterate(offset, size_of::<T>(), |page, offset, to_copy| {
+ // SAFETY: Data buffer is allocated on the stack.
+ unsafe {
+ page.read(
+ (out.as_mut_ptr() as *mut u8).add(out_offset),
+ offset,
+ to_copy,
+ )
+ }?;
+ out_offset += to_copy;
+ Ok(())
+ })?;
+ // SAFETY: We just initialised the data.
+ Ok(unsafe { out.assume_init() })
+ }
+
+ pub(crate) fn write<T>(&self, offset: usize, obj: &T) -> Result {
+ let mut obj_offset = 0;
+ self.iterate(offset, size_of::<T>(), |page, offset, to_copy| {
+ // SAFETY: The sum of `offset` and `to_copy` is bounded by the size of T.
+ let obj_ptr = unsafe { (obj as *const T as *const u8).add(obj_offset) };
+ // SAFETY: We have a reference to the object, so the pointer is valid.
+ unsafe { page.write(obj_ptr, offset, to_copy) }?;
+ obj_offset += to_copy;
+ Ok(())
+ })
+ }
+
+ pub(crate) fn keep_alive(mut self) {
+ self.process
+ .buffer_make_freeable(self.offset, self.allocation_info.take());
+ self.free_on_drop = false;
+ }
+
+ pub(crate) fn set_info(&mut self, info: AllocationInfo) {
+ self.allocation_info = Some(info);
+ }
+}
+
+impl Drop for Allocation<'_> {
+ fn drop(&mut self) {
+ if !self.free_on_drop {
+ return;
+ }
+
+ if let Some(info) = &self.allocation_info {
+ let offsets = info.offsets.clone();
+ let view = AllocationView::new(self, offsets.start);
+ for i in offsets.step_by(size_of::<usize>()) {
+ if view.cleanup_object(i).is_err() {
+ pr_warn!("Error cleaning up object at offset {}\n", i)
+ }
+ }
+ }
+
+ self.process.buffer_raw_free(self.ptr);
+ }
+}
+
+pub(crate) struct AllocationView<'a, 'b> {
+ pub(crate) alloc: &'a mut Allocation<'b>,
+ limit: usize,
+}
+
+impl<'a, 'b> AllocationView<'a, 'b> {
+ pub(crate) fn new(alloc: &'a mut Allocation<'b>, limit: usize) -> Self {
+ AllocationView { alloc, limit }
+ }
+
+ pub(crate) fn read<T>(&self, offset: usize) -> Result<T> {
+ if offset.checked_add(size_of::<T>()).ok_or(EINVAL)? > self.limit {
+ return Err(EINVAL);
+ }
+ self.alloc.read(offset)
+ }
+
+ pub(crate) fn write<T>(&self, offset: usize, obj: &T) -> Result {
+ if offset.checked_add(size_of::<T>()).ok_or(EINVAL)? > self.limit {
+ return Err(EINVAL);
+ }
+ self.alloc.write(offset, obj)
+ }
+
+ pub(crate) fn transfer_binder_object<T>(
+ &self,
+ offset: usize,
+ strong: bool,
+ get_node: T,
+ ) -> BinderResult
+ where
+ T: FnOnce(&bindings::flat_binder_object) -> BinderResult<NodeRef>,
+ {
+ // TODO: Do we want this function to take a &mut self?
+ let obj = self.read::<bindings::flat_binder_object>(offset)?;
+ let node_ref = get_node(&obj)?;
+
+ if core::ptr::eq(&*node_ref.node.owner, self.alloc.process) {
+ // The receiving process is the owner of the node, so send it a binder object (instead
+ // of a handle).
+ let (ptr, cookie) = node_ref.node.get_id();
+ let newobj = bindings::flat_binder_object {
+ hdr: bindings::binder_object_header {
+ type_: if strong {
+ BINDER_TYPE_BINDER
+ } else {
+ BINDER_TYPE_WEAK_BINDER
+ },
+ },
+ flags: obj.flags,
+ __bindgen_anon_1: bindings::flat_binder_object__bindgen_ty_1 { binder: ptr as _ },
+ cookie: cookie as _,
+ };
+ self.write(offset, &newobj)?;
+
+ // Increment the user ref count on the node. It will be decremented as part of the
+ // destruction of the buffer, when we see a binder or weak-binder object.
+ node_ref.node.update_refcount(true, strong);
+ } else {
+ // The receiving process is different from the owner, so we need to insert a handle to
+ // the binder object.
+ let handle = self
+ .alloc
+ .process
+ .insert_or_update_handle(node_ref, false)?;
+
+ let newobj = bindings::flat_binder_object {
+ hdr: bindings::binder_object_header {
+ type_: if strong {
+ BINDER_TYPE_HANDLE
+ } else {
+ BINDER_TYPE_WEAK_HANDLE
+ },
+ },
+ flags: obj.flags,
+ // TODO: To avoid padding, we write to `binder` instead of `handle` here. We need a
+ // better solution though.
+ __bindgen_anon_1: bindings::flat_binder_object__bindgen_ty_1 {
+ binder: handle as _,
+ },
+ ..bindings::flat_binder_object::default()
+ };
+ if self.write(offset, &newobj).is_err() {
+ // Decrement ref count on the handle we just created.
+ let _ = self.alloc.process.update_ref(handle, false, strong);
+ return Err(BinderError::new_failed());
+ }
+ }
+ Ok(())
+ }
+
+ fn cleanup_object(&self, index_offset: usize) -> Result {
+ let offset = self.alloc.read(index_offset)?;
+ let header = self.read::<bindings::binder_object_header>(offset)?;
+ // TODO: Handle other types.
+ match header.type_ {
+ BINDER_TYPE_WEAK_BINDER | BINDER_TYPE_BINDER => {
+ let obj = self.read::<bindings::flat_binder_object>(offset)?;
+ let strong = header.type_ == BINDER_TYPE_BINDER;
+ // SAFETY: The type is `BINDER_TYPE_{WEAK_}BINDER`, so the `binder` field is
+ // populated.
+ let ptr = unsafe { obj.__bindgen_anon_1.binder } as usize;
+ let cookie = obj.cookie as usize;
+ self.alloc.process.update_node(ptr, cookie, strong, false);
+ Ok(())
+ }
+ BINDER_TYPE_WEAK_HANDLE | BINDER_TYPE_HANDLE => {
+ let obj = self.read::<bindings::flat_binder_object>(offset)?;
+ let strong = header.type_ == BINDER_TYPE_HANDLE;
+ // SAFETY: The type is `BINDER_TYPE_{WEAK_}HANDLE`, so the `handle` field is
+ // populated.
+ let handle = unsafe { obj.__bindgen_anon_1.handle } as _;
+ self.alloc.process.update_ref(handle, false, strong)
+ }
+ _ => Ok(()),
+ }
+ }
+}
diff --git a/drivers/android/context.rs b/drivers/android/context.rs
new file mode 100644
index 000000000000..2bb448df6641
--- /dev/null
+++ b/drivers/android/context.rs
@@ -0,0 +1,80 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use kernel::{
+ bindings,
+ prelude::*,
+ security,
+ sync::{Mutex, Ref, UniqueRef},
+};
+
+use crate::{
+ node::NodeRef,
+ thread::{BinderError, BinderResult},
+};
+
+struct Manager {
+ node: Option<NodeRef>,
+ uid: Option<bindings::kuid_t>,
+}
+
+pub(crate) struct Context {
+ manager: Mutex<Manager>,
+}
+
+#[allow(clippy::non_send_fields_in_send_ty)]
+unsafe impl Send for Context {}
+unsafe impl Sync for Context {}
+
+impl Context {
+ pub(crate) fn new() -> Result<Ref<Self>> {
+ let mut ctx = Pin::from(UniqueRef::try_new(Self {
+ // SAFETY: Init is called below.
+ manager: unsafe {
+ Mutex::new(Manager {
+ node: None,
+ uid: None,
+ })
+ },
+ })?);
+
+ // SAFETY: `manager` is also pinned when `ctx` is.
+ let manager = unsafe { ctx.as_mut().map_unchecked_mut(|c| &mut c.manager) };
+ kernel::mutex_init!(manager, "Context::manager");
+
+ Ok(ctx.into())
+ }
+
+ pub(crate) fn set_manager_node(&self, node_ref: NodeRef) -> Result {
+ let mut manager = self.manager.lock();
+ if manager.node.is_some() {
+ return Err(EBUSY);
+ }
+ security::binder_set_context_mgr(&node_ref.node.owner.cred)?;
+
+ // TODO: Get the actual caller id.
+ let caller_uid = bindings::kuid_t::default();
+ if let Some(ref uid) = manager.uid {
+ if uid.val != caller_uid.val {
+ return Err(EPERM);
+ }
+ }
+
+ manager.node = Some(node_ref);
+ manager.uid = Some(caller_uid);
+ Ok(())
+ }
+
+ pub(crate) fn unset_manager_node(&self) {
+ let node_ref = self.manager.lock().node.take();
+ drop(node_ref);
+ }
+
+ pub(crate) fn get_manager_node(&self, strong: bool) -> BinderResult<NodeRef> {
+ self.manager
+ .lock()
+ .node
+ .as_ref()
+ .ok_or_else(BinderError::new_dead)?
+ .clone(strong)
+ }
+}
diff --git a/drivers/android/defs.rs b/drivers/android/defs.rs
new file mode 100644
index 000000000000..925e751a2564
--- /dev/null
+++ b/drivers/android/defs.rs
@@ -0,0 +1,99 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use core::ops::{Deref, DerefMut};
+use kernel::{
+ bindings,
+ bindings::*,
+ io_buffer::{ReadableFromBytes, WritableToBytes},
+};
+
+macro_rules! pub_no_prefix {
+ ($prefix:ident, $($newname:ident),+) => {
+ $(pub(crate) const $newname: u32 = kernel::macros::concat_idents!($prefix, $newname);)+
+ };
+}
+
+pub_no_prefix!(
+ binder_driver_return_protocol_,
+ BR_OK,
+ BR_ERROR,
+ BR_TRANSACTION,
+ BR_REPLY,
+ BR_DEAD_REPLY,
+ BR_TRANSACTION_COMPLETE,
+ BR_INCREFS,
+ BR_ACQUIRE,
+ BR_RELEASE,
+ BR_DECREFS,
+ BR_NOOP,
+ BR_SPAWN_LOOPER,
+ BR_DEAD_BINDER,
+ BR_CLEAR_DEATH_NOTIFICATION_DONE,
+ BR_FAILED_REPLY
+);
+
+pub_no_prefix!(
+ binder_driver_command_protocol_,
+ BC_TRANSACTION,
+ BC_REPLY,
+ BC_FREE_BUFFER,
+ BC_INCREFS,
+ BC_ACQUIRE,
+ BC_RELEASE,
+ BC_DECREFS,
+ BC_INCREFS_DONE,
+ BC_ACQUIRE_DONE,
+ BC_REGISTER_LOOPER,
+ BC_ENTER_LOOPER,
+ BC_EXIT_LOOPER,
+ BC_REQUEST_DEATH_NOTIFICATION,
+ BC_CLEAR_DEATH_NOTIFICATION,
+ BC_DEAD_BINDER_DONE
+);
+
+pub_no_prefix!(transaction_flags_, TF_ONE_WAY, TF_ACCEPT_FDS);
+
+pub(crate) use bindings::{
+ BINDER_TYPE_BINDER, BINDER_TYPE_FD, BINDER_TYPE_HANDLE, BINDER_TYPE_WEAK_BINDER,
+ BINDER_TYPE_WEAK_HANDLE, FLAT_BINDER_FLAG_ACCEPTS_FDS,
+};
+
+macro_rules! decl_wrapper {
+ ($newname:ident, $wrapped:ty) => {
+ #[derive(Copy, Clone, Default)]
+ pub(crate) struct $newname($wrapped);
+
+ // TODO: This must be justified by inspecting the type, so should live outside the macro or
+ // the macro should be somehow marked unsafe.
+ unsafe impl ReadableFromBytes for $newname {}
+ unsafe impl WritableToBytes for $newname {}
+
+ impl Deref for $newname {
+ type Target = $wrapped;
+ fn deref(&self) -> &Self::Target {
+ &self.0
+ }
+ }
+
+ impl DerefMut for $newname {
+ fn deref_mut(&mut self) -> &mut Self::Target {
+ &mut self.0
+ }
+ }
+ };
+}
+
+decl_wrapper!(BinderNodeDebugInfo, bindings::binder_node_debug_info);
+decl_wrapper!(BinderNodeInfoForRef, bindings::binder_node_info_for_ref);
+decl_wrapper!(FlatBinderObject, bindings::flat_binder_object);
+decl_wrapper!(BinderTransactionData, bindings::binder_transaction_data);
+decl_wrapper!(BinderWriteRead, bindings::binder_write_read);
+decl_wrapper!(BinderVersion, bindings::binder_version);
+
+impl BinderVersion {
+ pub(crate) fn current() -> Self {
+ Self(bindings::binder_version {
+ protocol_version: bindings::BINDER_CURRENT_PROTOCOL_VERSION as _,
+ })
+ }
+}
diff --git a/drivers/android/node.rs b/drivers/android/node.rs
new file mode 100644
index 000000000000..1a46de1e736c
--- /dev/null
+++ b/drivers/android/node.rs
@@ -0,0 +1,476 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use core::sync::atomic::{AtomicU64, Ordering};
+use kernel::{
+ io_buffer::IoBufferWriter,
+ linked_list::{GetLinks, Links, List},
+ prelude::*,
+ sync::{Guard, LockedBy, Mutex, Ref, SpinLock},
+ user_ptr::UserSlicePtrWriter,
+};
+
+use crate::{
+ defs::*,
+ process::{Process, ProcessInner},
+ thread::{BinderError, BinderResult, Thread},
+ DeliverToRead,
+};
+
+struct CountState {
+ count: usize,
+ has_count: bool,
+ is_biased: bool,
+}
+
+impl CountState {
+ fn new() -> Self {
+ Self {
+ count: 0,
+ has_count: false,
+ is_biased: false,
+ }
+ }
+
+ fn add_bias(&mut self) {
+ self.count += 1;
+ self.is_biased = true;
+ }
+}
+
+struct NodeInner {
+ strong: CountState,
+ weak: CountState,
+ death_list: List<Ref<NodeDeath>>,
+}
+
+struct NodeDeathInner {
+ dead: bool,
+ cleared: bool,
+ notification_done: bool,
+
+ /// Indicates whether the normal flow was interrupted by removing the handle. In this case, we
+ /// need behave as if the death notification didn't exist (i.e., we don't deliver anything to
+ /// the user.
+ aborted: bool,
+}
+
+pub(crate) struct NodeDeath {
+ node: Ref<Node>,
+ process: Ref<Process>,
+ // TODO: Make this private.
+ pub(crate) cookie: usize,
+ work_links: Links<dyn DeliverToRead>,
+ // TODO: Add the moment we're using this for two lists, which isn't safe because we want to
+ // remove from the list without knowing the list it's in. We need to separate this out.
+ death_links: Links<NodeDeath>,
+ inner: SpinLock<NodeDeathInner>,
+}
+
+impl NodeDeath {
+ /// Constructs a new node death notification object.
+ ///
+ /// # Safety
+ ///
+ /// The caller must call `NodeDeath::init` before using the notification object.
+ pub(crate) unsafe fn new(node: Ref<Node>, process: Ref<Process>, cookie: usize) -> Self {
+ Self {
+ node,
+ process,
+ cookie,
+ work_links: Links::new(),
+ death_links: Links::new(),
+ inner: unsafe {
+ SpinLock::new(NodeDeathInner {
+ dead: false,
+ cleared: false,
+ notification_done: false,
+ aborted: false,
+ })
+ },
+ }
+ }
+
+ pub(crate) fn init(self: Pin<&mut Self>) {
+ // SAFETY: `inner` is pinned when `self` is.
+ let inner = unsafe { self.map_unchecked_mut(|n| &mut n.inner) };
+ kernel::spinlock_init!(inner, "NodeDeath::inner");
+ }
+
+ /// Sets the cleared flag to `true`.
+ ///
+ /// It removes `self` from the node's death notification list if needed. It must only be called
+ /// once.
+ ///
+ /// Returns whether it needs to be queued.
+ pub(crate) fn set_cleared(self: &Ref<Self>, abort: bool) -> bool {
+ let (needs_removal, needs_queueing) = {
+ // Update state and determine if we need to queue a work item. We only need to do it
+ // when the node is not dead or if the user already completed the death notification.
+ let mut inner = self.inner.lock();
+ inner.cleared = true;
+ if abort {
+ inner.aborted = true;
+ }
+ (!inner.dead, !inner.dead || inner.notification_done)
+ };
+
+ // Remove death notification from node.
+ if needs_removal {
+ let mut owner_inner = self.node.owner.inner.lock();
+ let node_inner = self.node.inner.access_mut(&mut owner_inner);
+ unsafe { node_inner.death_list.remove(self) };
+ }
+
+ needs_queueing
+ }
+
+ /// Sets the 'notification done' flag to `true`.
+ ///
+ /// Returns whether it needs to be queued.
+ pub(crate) fn set_notification_done(self: Ref<Self>, thread: &Thread) {
+ let needs_queueing = {
+ let mut inner = self.inner.lock();
+ inner.notification_done = true;
+ inner.cleared
+ };
+
+ if needs_queueing {
+ let _ = thread.push_work_if_looper(self);
+ }
+ }
+
+ /// Sets the 'dead' flag to `true` and queues work item if needed.
+ pub(crate) fn set_dead(self: Ref<Self>) {
+ let needs_queueing = {
+ let mut inner = self.inner.lock();
+ if inner.cleared {
+ false
+ } else {
+ inner.dead = true;
+ true
+ }
+ };
+
+ if needs_queueing {
+ // Push the death notification to the target process. There is nothing else to do if
+ // it's already dead.
+ let process = self.process.clone();
+ let _ = process.push_work(self);
+ }
+ }
+}
+
+impl GetLinks for NodeDeath {
+ type EntryType = NodeDeath;
+ fn get_links(data: &NodeDeath) -> &Links<NodeDeath> {
+ &data.death_links
+ }
+}
+
+impl DeliverToRead for NodeDeath {
+ fn do_work(self: Ref<Self>, _thread: &Thread, writer: &mut UserSlicePtrWriter) -> Result<bool> {
+ let done = {
+ let inner = self.inner.lock();
+ if inner.aborted {
+ return Ok(true);
+ }
+ inner.cleared && (!inner.dead || inner.notification_done)
+ };
+
+ let cookie = self.cookie;
+ let cmd = if done {
+ BR_CLEAR_DEATH_NOTIFICATION_DONE
+ } else {
+ let process = self.process.clone();
+ let mut process_inner = process.inner.lock();
+ let inner = self.inner.lock();
+ if inner.aborted {
+ return Ok(true);
+ }
+ // We're still holding the inner lock, so it cannot be aborted while we insert it into
+ // the delivered list.
+ process_inner.death_delivered(self.clone());
+ BR_DEAD_BINDER
+ };
+
+ writer.write(&cmd)?;
+ writer.write(&cookie)?;
+
+ // Mimic the original code: we stop processing work items when we get to a death
+ // notification.
+ Ok(cmd != BR_DEAD_BINDER)
+ }
+
+ fn get_links(&self) -> &Links<dyn DeliverToRead> {
+ &self.work_links
+ }
+}
+
+pub(crate) struct Node {
+ pub(crate) global_id: u64,
+ ptr: usize,
+ cookie: usize,
+ pub(crate) flags: u32,
+ pub(crate) owner: Ref<Process>,
+ inner: LockedBy<NodeInner, Mutex<ProcessInner>>,
+ links: Links<dyn DeliverToRead>,
+}
+
+impl Node {
+ pub(crate) fn new(ptr: usize, cookie: usize, flags: u32, owner: Ref<Process>) -> Self {
+ static NEXT_ID: AtomicU64 = AtomicU64::new(1);
+ let inner = LockedBy::new(
+ &owner.inner,
+ NodeInner {
+ strong: CountState::new(),
+ weak: CountState::new(),
+ death_list: List::new(),
+ },
+ );
+ Self {
+ global_id: NEXT_ID.fetch_add(1, Ordering::Relaxed),
+ ptr,
+ cookie,
+ flags,
+ owner,
+ inner,
+ links: Links::new(),
+ }
+ }
+
+ pub(crate) fn get_id(&self) -> (usize, usize) {
+ (self.ptr, self.cookie)
+ }
+
+ pub(crate) fn next_death(
+ &self,
+ guard: &mut Guard<'_, Mutex<ProcessInner>>,
+ ) -> Option<Ref<NodeDeath>> {
+ self.inner.access_mut(guard).death_list.pop_front()
+ }
+
+ pub(crate) fn add_death(
+ &self,
+ death: Ref<NodeDeath>,
+ guard: &mut Guard<'_, Mutex<ProcessInner>>,
+ ) {
+ self.inner.access_mut(guard).death_list.push_back(death);
+ }
+
+ pub(crate) fn update_refcount_locked(
+ &self,
+ inc: bool,
+ strong: bool,
+ biased: bool,
+ owner_inner: &mut ProcessInner,
+ ) -> bool {
+ let inner = self.inner.access_from_mut(owner_inner);
+
+ // Get a reference to the state we'll update.
+ let state = if strong {
+ &mut inner.strong
+ } else {
+ &mut inner.weak
+ };
+
+ // Update biased state: if the count is not biased, there is nothing to do; otherwise,
+ // we're removing the bias, so mark the state as such.
+ if biased {
+ if !state.is_biased {
+ return false;
+ }
+
+ state.is_biased = false;
+ }
+
+ // Update the count and determine whether we need to push work.
+ // TODO: Here we may want to check the weak count being zero but the strong count being 1,
+ // because in such cases, we won't deliver anything to userspace, so we shouldn't queue
+ // either.
+ if inc {
+ state.count += 1;
+ !state.has_count
+ } else {
+ state.count -= 1;
+ state.count == 0 && state.has_count
+ }
+ }
+
+ pub(crate) fn update_refcount(self: &Ref<Self>, inc: bool, strong: bool) {
+ self.owner
+ .inner
+ .lock()
+ .update_node_refcount(self, inc, strong, false, None);
+ }
+
+ pub(crate) fn populate_counts(
+ &self,
+ out: &mut BinderNodeInfoForRef,
+ guard: &Guard<'_, Mutex<ProcessInner>>,
+ ) {
+ let inner = self.inner.access(guard);
+ out.strong_count = inner.strong.count as _;
+ out.weak_count = inner.weak.count as _;
+ }
+
+ pub(crate) fn populate_debug_info(
+ &self,
+ out: &mut BinderNodeDebugInfo,
+ guard: &Guard<'_, Mutex<ProcessInner>>,
+ ) {
+ out.ptr = self.ptr as _;
+ out.cookie = self.cookie as _;
+ let inner = self.inner.access(guard);
+ if inner.strong.has_count {
+ out.has_strong_ref = 1;
+ }
+ if inner.weak.has_count {
+ out.has_weak_ref = 1;
+ }
+ }
+
+ pub(crate) fn force_has_count(&self, guard: &mut Guard<'_, Mutex<ProcessInner>>) {
+ let inner = self.inner.access_mut(guard);
+ inner.strong.has_count = true;
+ inner.weak.has_count = true;
+ }
+
+ fn write(&self, writer: &mut UserSlicePtrWriter, code: u32) -> Result {
+ writer.write(&code)?;
+ writer.write(&self.ptr)?;
+ writer.write(&self.cookie)?;
+ Ok(())
+ }
+}
+
+impl DeliverToRead for Node {
+ fn do_work(self: Ref<Self>, _thread: &Thread, writer: &mut UserSlicePtrWriter) -> Result<bool> {
+ let mut owner_inner = self.owner.inner.lock();
+ let inner = self.inner.access_mut(&mut owner_inner);
+ let strong = inner.strong.count > 0;
+ let has_strong = inner.strong.has_count;
+ let weak = strong || inner.weak.count > 0;
+ let has_weak = inner.weak.has_count;
+ inner.weak.has_count = weak;
+ inner.strong.has_count = strong;
+
+ if !weak {
+ // Remove the node if there are no references to it.
+ owner_inner.remove_node(self.ptr);
+ } else {
+ if !has_weak {
+ inner.weak.add_bias();
+ }
+
+ if !has_strong && strong {
+ inner.strong.add_bias();
+ }
+ }
+
+ drop(owner_inner);
+
+ // This could be done more compactly but we write out all the posibilities for
+ // compatibility with the original implementation wrt the order of events.
+ if weak && !has_weak {
+ self.write(writer, BR_INCREFS)?;
+ }
+
+ if strong && !has_strong {
+ self.write(writer, BR_ACQUIRE)?;
+ }
+
+ if !strong && has_strong {
+ self.write(writer, BR_RELEASE)?;
+ }
+
+ if !weak && has_weak {
+ self.write(writer, BR_DECREFS)?;
+ }
+
+ Ok(true)
+ }
+
+ fn get_links(&self) -> &Links<dyn DeliverToRead> {
+ &self.links
+ }
+}
+
+pub(crate) struct NodeRef {
+ pub(crate) node: Ref<Node>,
+ strong_count: usize,
+ weak_count: usize,
+}
+
+impl NodeRef {
+ pub(crate) fn new(node: Ref<Node>, strong_count: usize, weak_count: usize) -> Self {
+ Self {
+ node,
+ strong_count,
+ weak_count,
+ }
+ }
+
+ pub(crate) fn absorb(&mut self, mut other: Self) {
+ self.strong_count += other.strong_count;
+ self.weak_count += other.weak_count;
+ other.strong_count = 0;
+ other.weak_count = 0;
+ }
+
+ pub(crate) fn clone(&self, strong: bool) -> BinderResult<NodeRef> {
+ if strong && self.strong_count == 0 {
+ return Err(BinderError::new_failed());
+ }
+
+ Ok(self
+ .node
+ .owner
+ .inner
+ .lock()
+ .new_node_ref(self.node.clone(), strong, None))
+ }
+
+ /// Updates (increments or decrements) the number of references held against the node. If the
+ /// count being updated transitions from 0 to 1 or from 1 to 0, the node is notified by having
+ /// its `update_refcount` function called.
+ ///
+ /// Returns whether `self` should be removed (when both counts are zero).
+ pub(crate) fn update(&mut self, inc: bool, strong: bool) -> bool {
+ if strong && self.strong_count == 0 {
+ return false;
+ }
+
+ let (count, other_count) = if strong {
+ (&mut self.strong_count, self.weak_count)
+ } else {
+ (&mut self.weak_count, self.strong_count)
+ };
+
+ if inc {
+ if *count == 0 {
+ self.node.update_refcount(true, strong);
+ }
+ *count += 1;
+ } else {
+ *count -= 1;
+ if *count == 0 {
+ self.node.update_refcount(false, strong);
+ return other_count == 0;
+ }
+ }
+
+ false
+ }
+}
+
+impl Drop for NodeRef {
+ fn drop(&mut self) {
+ if self.strong_count > 0 {
+ self.node.update_refcount(false, true);
+ }
+
+ if self.weak_count > 0 {
+ self.node.update_refcount(false, false);
+ }
+ }
+}
diff --git a/drivers/android/process.rs b/drivers/android/process.rs
new file mode 100644
index 000000000000..229493f0d7a1
--- /dev/null
+++ b/drivers/android/process.rs
@@ -0,0 +1,961 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use core::{convert::TryFrom, mem::take, ops::Range};
+use kernel::{
+ bindings,
+ cred::Credential,
+ file::{self, File, IoctlCommand, IoctlHandler, PollTable},
+ io_buffer::{IoBufferReader, IoBufferWriter},
+ linked_list::List,
+ mm,
+ pages::Pages,
+ prelude::*,
+ rbtree::RBTree,
+ sync::{Guard, Mutex, Ref, RefBorrow, UniqueRef},
+ task::Task,
+ user_ptr::{UserSlicePtr, UserSlicePtrReader},
+ Either,
+};
+
+use crate::{
+ allocation::Allocation,
+ context::Context,
+ defs::*,
+ node::{Node, NodeDeath, NodeRef},
+ range_alloc::RangeAllocator,
+ thread::{BinderError, BinderResult, Thread},
+ DeliverToRead, DeliverToReadListAdapter,
+};
+
+// TODO: Review this:
+// Lock order: Process::node_refs -> Process::inner -> Thread::inner
+
+pub(crate) struct AllocationInfo {
+ /// Range within the allocation where we can find the offsets to the object descriptors.
+ pub(crate) offsets: Range<usize>,
+}
+
+struct Mapping {
+ address: usize,
+ alloc: RangeAllocator<AllocationInfo>,
+ pages: Ref<[Pages<0>]>,
+}
+
+impl Mapping {
+ fn new(address: usize, size: usize, pages: Ref<[Pages<0>]>) -> Result<Self> {
+ let alloc = RangeAllocator::new(size)?;
+ Ok(Self {
+ address,
+ alloc,
+ pages,
+ })
+ }
+}
+
+// TODO: Make this private.
+pub(crate) struct ProcessInner {
+ is_manager: bool,
+ is_dead: bool,
+ threads: RBTree<i32, Ref<Thread>>,
+ ready_threads: List<Ref<Thread>>,
+ work: List<DeliverToReadListAdapter>,
+ mapping: Option<Mapping>,
+ nodes: RBTree<usize, Ref<Node>>,
+
+ delivered_deaths: List<Ref<NodeDeath>>,
+
+ /// The number of requested threads that haven't registered yet.
+ requested_thread_count: u32,
+
+ /// The maximum number of threads used by the process thread pool.
+ max_threads: u32,
+
+ /// The number of threads the started and registered with the thread pool.
+ started_thread_count: u32,
+}
+
+impl ProcessInner {
+ fn new() -> Self {
+ Self {
+ is_manager: false,
+ is_dead: false,
+ threads: RBTree::new(),
+ ready_threads: List::new(),
+ work: List::new(),
+ mapping: None,
+ nodes: RBTree::new(),
+ requested_thread_count: 0,
+ max_threads: 0,
+ started_thread_count: 0,
+ delivered_deaths: List::new(),
+ }
+ }
+
+ fn push_work(&mut self, work: Ref<dyn DeliverToRead>) -> BinderResult {
+ // Try to find a ready thread to which to push the work.
+ if let Some(thread) = self.ready_threads.pop_front() {
+ // Push to thread while holding state lock. This prevents the thread from giving up
+ // (for example, because of a signal) when we're about to deliver work.
+ thread.push_work(work)
+ } else if self.is_dead {
+ Err(BinderError::new_dead())
+ } else {
+ // There are no ready threads. Push work to process queue.
+ self.work.push_back(work);
+
+ // Wake up polling threads, if any.
+ for thread in self.threads.values() {
+ thread.notify_if_poll_ready();
+ }
+ Ok(())
+ }
+ }
+
+ // TODO: Should this be private?
+ pub(crate) fn remove_node(&mut self, ptr: usize) {
+ self.nodes.remove(&ptr);
+ }
+
+ /// Updates the reference count on the given node.
+ // TODO: Decide if this should be private.
+ pub(crate) fn update_node_refcount(
+ &mut self,
+ node: &Ref<Node>,
+ inc: bool,
+ strong: bool,
+ biased: bool,
+ othread: Option<&Thread>,
+ ) {
+ let push = node.update_refcount_locked(inc, strong, biased, self);
+
+ // If we decided that we need to push work, push either to the process or to a thread if
+ // one is specified.
+ if push {
+ if let Some(thread) = othread {
+ thread.push_work_deferred(node.clone());
+ } else {
+ let _ = self.push_work(node.clone());
+ // Nothing to do: `push_work` may fail if the process is dead, but that's ok as in
+ // that case, it doesn't care about the notification.
+ }
+ }
+ }
+
+ // TODO: Make this private.
+ pub(crate) fn new_node_ref(
+ &mut self,
+ node: Ref<Node>,
+ strong: bool,
+ thread: Option<&Thread>,
+ ) -> NodeRef {
+ self.update_node_refcount(&node, true, strong, false, thread);
+ let strong_count = if strong { 1 } else { 0 };
+ NodeRef::new(node, strong_count, 1 - strong_count)
+ }
+
+ /// Returns an existing node with the given pointer and cookie, if one exists.
+ ///
+ /// Returns an error if a node with the given pointer but a different cookie exists.
+ fn get_existing_node(&self, ptr: usize, cookie: usize) -> Result<Option<Ref<Node>>> {
+ match self.nodes.get(&ptr) {
+ None => Ok(None),
+ Some(node) => {
+ let (_, node_cookie) = node.get_id();
+ if node_cookie == cookie {
+ Ok(Some(node.clone()))
+ } else {
+ Err(EINVAL)
+ }
+ }
+ }
+ }
+
+ /// Returns a reference to an existing node with the given pointer and cookie. It requires a
+ /// mutable reference because it needs to increment the ref count on the node, which may
+ /// require pushing work to the work queue (to notify userspace of 0 to 1 transitions).
+ fn get_existing_node_ref(
+ &mut self,
+ ptr: usize,
+ cookie: usize,
+ strong: bool,
+ thread: Option<&Thread>,
+ ) -> Result<Option<NodeRef>> {
+ Ok(self
+ .get_existing_node(ptr, cookie)?
+ .map(|node| self.new_node_ref(node, strong, thread)))
+ }
+
+ fn register_thread(&mut self) -> bool {
+ if self.requested_thread_count == 0 {
+ return false;
+ }
+
+ self.requested_thread_count -= 1;
+ self.started_thread_count += 1;
+ true
+ }
+
+ /// Finds a delivered death notification with the given cookie, removes it from the thread's
+ /// delivered list, and returns it.
+ fn pull_delivered_death(&mut self, cookie: usize) -> Option<Ref<NodeDeath>> {
+ let mut cursor = self.delivered_deaths.cursor_front_mut();
+ while let Some(death) = cursor.current() {
+ if death.cookie == cookie {
+ return cursor.remove_current();
+ }
+ cursor.move_next();
+ }
+ None
+ }
+
+ pub(crate) fn death_delivered(&mut self, death: Ref<NodeDeath>) {
+ self.delivered_deaths.push_back(death);
+ }
+}
+
+struct NodeRefInfo {
+ node_ref: NodeRef,
+ death: Option<Ref<NodeDeath>>,
+}
+
+impl NodeRefInfo {
+ fn new(node_ref: NodeRef) -> Self {
+ Self {
+ node_ref,
+ death: None,
+ }
+ }
+}
+
+struct ProcessNodeRefs {
+ by_handle: RBTree<u32, NodeRefInfo>,
+ by_global_id: RBTree<u64, u32>,
+}
+
+impl ProcessNodeRefs {
+ fn new() -> Self {
+ Self {
+ by_handle: RBTree::new(),
+ by_global_id: RBTree::new(),
+ }
+ }
+}
+
+pub(crate) struct Process {
+ ctx: Ref<Context>,
+
+ // The task leader (process).
+ pub(crate) task: ARef<Task>,
+
+ // Credential associated with file when `Process` is created.
+ pub(crate) cred: ARef<Credential>,
+
+ // TODO: For now this a mutex because we have allocations in RangeAllocator while holding the
+ // lock. We may want to split up the process state at some point to use a spin lock for the
+ // other fields.
+ // TODO: Make this private again.
+ pub(crate) inner: Mutex<ProcessInner>,
+
+ // References are in a different mutex to avoid recursive acquisition when
+ // incrementing/decrementing a node in another process.
+ node_refs: Mutex<ProcessNodeRefs>,
+}
+
+#[allow(clippy::non_send_fields_in_send_ty)]
+unsafe impl Send for Process {}
+unsafe impl Sync for Process {}
+
+impl Process {
+ fn new(ctx: Ref<Context>, cred: ARef<Credential>) -> Result<Ref<Self>> {
+ let mut process = Pin::from(UniqueRef::try_new(Self {
+ ctx,
+ cred,
+ task: Task::current().group_leader().into(),
+ // SAFETY: `inner` is initialised in the call to `mutex_init` below.
+ inner: unsafe { Mutex::new(ProcessInner::new()) },
+ // SAFETY: `node_refs` is initialised in the call to `mutex_init` below.
+ node_refs: unsafe { Mutex::new(ProcessNodeRefs::new()) },
+ })?);
+
+ // SAFETY: `inner` is pinned when `Process` is.
+ let pinned = unsafe { process.as_mut().map_unchecked_mut(|p| &mut p.inner) };
+ kernel::mutex_init!(pinned, "Process::inner");
+
+ // SAFETY: `node_refs` is pinned when `Process` is.
+ let pinned = unsafe { process.as_mut().map_unchecked_mut(|p| &mut p.node_refs) };
+ kernel::mutex_init!(pinned, "Process::node_refs");
+
+ Ok(process.into())
+ }
+
+ /// Attempts to fetch a work item from the process queue.
+ pub(crate) fn get_work(&self) -> Option<Ref<dyn DeliverToRead>> {
+ self.inner.lock().work.pop_front()
+ }
+
+ /// Attempts to fetch a work item from the process queue. If none is available, it registers the
+ /// given thread as ready to receive work directly.
+ ///
+ /// This must only be called when the thread is not participating in a transaction chain; when
+ /// it is, work will always be delivered directly to the thread (and not through the process
+ /// queue).
+ pub(crate) fn get_work_or_register<'a>(
+ &'a self,
+ thread: &'a Ref<Thread>,
+ ) -> Either<Ref<dyn DeliverToRead>, Registration<'a>> {
+ let mut inner = self.inner.lock();
+
+ // Try to get work from the process queue.
+ if let Some(work) = inner.work.pop_front() {
+ return Either::Left(work);
+ }
+
+ // Register the thread as ready.
+ Either::Right(Registration::new(self, thread, &mut inner))
+ }
+
+ fn get_thread(self: RefBorrow<'_, Self>, id: i32) -> Result<Ref<Thread>> {
+ // TODO: Consider using read/write locks here instead.
+ {
+ let inner = self.inner.lock();
+ if let Some(thread) = inner.threads.get(&id) {
+ return Ok(thread.clone());
+ }
+ }
+
+ // Allocate a new `Thread` without holding any locks.
+ let ta = Thread::new(id, self.into())?;
+ let node = RBTree::try_allocate_node(id, ta.clone())?;
+
+ let mut inner = self.inner.lock();
+
+ // Recheck. It's possible the thread was create while we were not holding the lock.
+ if let Some(thread) = inner.threads.get(&id) {
+ return Ok(thread.clone());
+ }
+
+ inner.threads.insert(node);
+ Ok(ta)
+ }
+
+ pub(crate) fn push_work(&self, work: Ref<dyn DeliverToRead>) -> BinderResult {
+ self.inner.lock().push_work(work)
+ }
+
+ fn set_as_manager(
+ self: RefBorrow<'_, Self>,
+ info: Option<FlatBinderObject>,
+ thread: &Thread,
+ ) -> Result {
+ let (ptr, cookie, flags) = if let Some(obj) = info {
+ (
+ // SAFETY: The object type for this ioctl is implicitly `BINDER_TYPE_BINDER`, so it
+ // is safe to access the `binder` field.
+ unsafe { obj.__bindgen_anon_1.binder },
+ obj.cookie,
+ obj.flags,
+ )
+ } else {
+ (0, 0, 0)
+ };
+ let node_ref = self.get_node(ptr as _, cookie as _, flags as _, true, Some(thread))?;
+ let node = node_ref.node.clone();
+ self.ctx.set_manager_node(node_ref)?;
+ self.inner.lock().is_manager = true;
+
+ // Force the state of the node to prevent the delivery of acquire/increfs.
+ let mut owner_inner = node.owner.inner.lock();
+ node.force_has_count(&mut owner_inner);
+ Ok(())
+ }
+
+ pub(crate) fn get_node(
+ self: RefBorrow<'_, Self>,
+ ptr: usize,
+ cookie: usize,
+ flags: u32,
+ strong: bool,
+ thread: Option<&Thread>,
+ ) -> Result<NodeRef> {
+ // Try to find an existing node.
+ {
+ let mut inner = self.inner.lock();
+ if let Some(node) = inner.get_existing_node_ref(ptr, cookie, strong, thread)? {
+ return Ok(node);
+ }
+ }
+
+ // Allocate the node before reacquiring the lock.
+ let node = Ref::try_new(Node::new(ptr, cookie, flags, self.into()))?;
+ let rbnode = RBTree::try_allocate_node(ptr, node.clone())?;
+
+ let mut inner = self.inner.lock();
+ if let Some(node) = inner.get_existing_node_ref(ptr, cookie, strong, thread)? {
+ return Ok(node);
+ }
+
+ inner.nodes.insert(rbnode);
+ Ok(inner.new_node_ref(node, strong, thread))
+ }
+
+ pub(crate) fn insert_or_update_handle(
+ &self,
+ node_ref: NodeRef,
+ is_mananger: bool,
+ ) -> Result<u32> {
+ {
+ let mut refs = self.node_refs.lock();
+
+ // Do a lookup before inserting.
+ if let Some(handle_ref) = refs.by_global_id.get(&node_ref.node.global_id) {
+ let handle = *handle_ref;
+ let info = refs.by_handle.get_mut(&handle).unwrap();
+ info.node_ref.absorb(node_ref);
+ return Ok(handle);
+ }
+ }
+
+ // Reserve memory for tree nodes.
+ let reserve1 = RBTree::try_reserve_node()?;
+ let reserve2 = RBTree::try_reserve_node()?;
+
+ let mut refs = self.node_refs.lock();
+
+ // Do a lookup again as node may have been inserted before the lock was reacquired.
+ if let Some(handle_ref) = refs.by_global_id.get(&node_ref.node.global_id) {
+ let handle = *handle_ref;
+ let info = refs.by_handle.get_mut(&handle).unwrap();
+ info.node_ref.absorb(node_ref);
+ return Ok(handle);
+ }
+
+ // Find id.
+ let mut target = if is_mananger { 0 } else { 1 };
+ for handle in refs.by_handle.keys() {
+ if *handle > target {
+ break;
+ }
+ if *handle == target {
+ target = target.checked_add(1).ok_or(ENOMEM)?;
+ }
+ }
+
+ // Ensure the process is still alive while we insert a new reference.
+ let inner = self.inner.lock();
+ if inner.is_dead {
+ return Err(ESRCH);
+ }
+ refs.by_global_id
+ .insert(reserve1.into_node(node_ref.node.global_id, target));
+ refs.by_handle
+ .insert(reserve2.into_node(target, NodeRefInfo::new(node_ref)));
+ Ok(target)
+ }
+
+ pub(crate) fn get_transaction_node(&self, handle: u32) -> BinderResult<NodeRef> {
+ // When handle is zero, try to get the context manager.
+ if handle == 0 {
+ self.ctx.get_manager_node(true)
+ } else {
+ self.get_node_from_handle(handle, true)
+ }
+ }
+
+ pub(crate) fn get_node_from_handle(&self, handle: u32, strong: bool) -> BinderResult<NodeRef> {
+ self.node_refs
+ .lock()
+ .by_handle
+ .get(&handle)
+ .ok_or(ENOENT)?
+ .node_ref
+ .clone(strong)
+ }
+
+ pub(crate) fn remove_from_delivered_deaths(&self, death: &Ref<NodeDeath>) {
+ let mut inner = self.inner.lock();
+ let removed = unsafe { inner.delivered_deaths.remove(death) };
+ drop(inner);
+ drop(removed);
+ }
+
+ pub(crate) fn update_ref(&self, handle: u32, inc: bool, strong: bool) -> Result {
+ if inc && handle == 0 {
+ if let Ok(node_ref) = self.ctx.get_manager_node(strong) {
+ if core::ptr::eq(self, &*node_ref.node.owner) {
+ return Err(EINVAL);
+ }
+ let _ = self.insert_or_update_handle(node_ref, true);
+ return Ok(());
+ }
+ }
+
+ // To preserve original binder behaviour, we only fail requests where the manager tries to
+ // increment references on itself.
+ let mut refs = self.node_refs.lock();
+ if let Some(info) = refs.by_handle.get_mut(&handle) {
+ if info.node_ref.update(inc, strong) {
+ // Clean up death if there is one attached to this node reference.
+ if let Some(death) = info.death.take() {
+ death.set_cleared(true);
+ self.remove_from_delivered_deaths(&death);
+ }
+
+ // Remove reference from process tables.
+ let id = info.node_ref.node.global_id;
+ refs.by_handle.remove(&handle);
+ refs.by_global_id.remove(&id);
+ }
+ }
+ Ok(())
+ }
+
+ /// Decrements the refcount of the given node, if one exists.
+ pub(crate) fn update_node(&self, ptr: usize, cookie: usize, strong: bool, biased: bool) {
+ let mut inner = self.inner.lock();
+ if let Ok(Some(node)) = inner.get_existing_node(ptr, cookie) {
+ inner.update_node_refcount(&node, false, strong, biased, None);
+ }
+ }
+
+ pub(crate) fn inc_ref_done(&self, reader: &mut UserSlicePtrReader, strong: bool) -> Result {
+ let ptr = reader.read::<usize>()?;
+ let cookie = reader.read::<usize>()?;
+ self.update_node(ptr, cookie, strong, true);
+ Ok(())
+ }
+
+ pub(crate) fn buffer_alloc(&self, size: usize) -> BinderResult<Allocation<'_>> {
+ let mut inner = self.inner.lock();
+ let mapping = inner.mapping.as_mut().ok_or_else(BinderError::new_dead)?;
+
+ let offset = mapping.alloc.reserve_new(size)?;
+ Ok(Allocation::new(
+ self,
+ offset,
+ size,
+ mapping.address + offset,
+ mapping.pages.clone(),
+ ))
+ }
+
+ // TODO: Review if we want an Option or a Result.
+ pub(crate) fn buffer_get(&self, ptr: usize) -> Option<Allocation<'_>> {
+ let mut inner = self.inner.lock();
+ let mapping = inner.mapping.as_mut()?;
+ let offset = ptr.checked_sub(mapping.address)?;
+ let (size, odata) = mapping.alloc.reserve_existing(offset).ok()?;
+ let mut alloc = Allocation::new(self, offset, size, ptr, mapping.pages.clone());
+ if let Some(data) = odata {
+ alloc.set_info(data);
+ }
+ Some(alloc)
+ }
+
+ pub(crate) fn buffer_raw_free(&self, ptr: usize) {
+ let mut inner = self.inner.lock();
+ if let Some(ref mut mapping) = &mut inner.mapping {
+ if ptr < mapping.address
+ || mapping
+ .alloc
+ .reservation_abort(ptr - mapping.address)
+ .is_err()
+ {
+ pr_warn!(
+ "Pointer {:x} failed to free, base = {:x}\n",
+ ptr,
+ mapping.address
+ );
+ }
+ }
+ }
+
+ pub(crate) fn buffer_make_freeable(&self, offset: usize, data: Option<AllocationInfo>) {
+ let mut inner = self.inner.lock();
+ if let Some(ref mut mapping) = &mut inner.mapping {
+ if mapping.alloc.reservation_commit(offset, data).is_err() {
+ pr_warn!("Offset {} failed to be marked freeable\n", offset);
+ }
+ }
+ }
+
+ fn create_mapping(&self, vma: &mut mm::virt::Area) -> Result {
+ let size = core::cmp::min(vma.end() - vma.start(), bindings::SZ_4M as usize);
+ let page_count = size / kernel::PAGE_SIZE;
+
+ // Allocate and map all pages.
+ //
+ // N.B. If we fail halfway through mapping these pages, the kernel will unmap them.
+ let mut pages = Vec::new();
+ pages.try_reserve_exact(page_count)?;
+ let mut address = vma.start();
+ for _ in 0..page_count {
+ let page = Pages::<0>::new()?;
+ vma.insert_page(address, &page)?;
+ pages.try_push(page)?;
+ address += kernel::PAGE_SIZE;
+ }
+
+ let ref_pages = Ref::try_from(pages)?;
+
+ // Save pages for later.
+ let mut inner = self.inner.lock();
+ match &inner.mapping {
+ None => inner.mapping = Some(Mapping::new(vma.start(), size, ref_pages)?),
+ Some(_) => return Err(EBUSY),
+ }
+ Ok(())
+ }
+
+ fn version(&self, data: UserSlicePtr) -> Result {
+ data.writer().write(&BinderVersion::current())
+ }
+
+ pub(crate) fn register_thread(&self) -> bool {
+ self.inner.lock().register_thread()
+ }
+
+ fn remove_thread(&self, thread: Ref<Thread>) {
+ self.inner.lock().threads.remove(&thread.id);
+ thread.release();
+ }
+
+ fn set_max_threads(&self, max: u32) {
+ self.inner.lock().max_threads = max;
+ }
+
+ fn get_node_debug_info(&self, data: UserSlicePtr) -> Result {
+ let (mut reader, mut writer) = data.reader_writer();
+
+ // Read the starting point.
+ let ptr = reader.read::<BinderNodeDebugInfo>()?.ptr as usize;
+ let mut out = BinderNodeDebugInfo::default();
+
+ {
+ let inner = self.inner.lock();
+ for (node_ptr, node) in &inner.nodes {
+ if *node_ptr > ptr {
+ node.populate_debug_info(&mut out, &inner);
+ break;
+ }
+ }
+ }
+
+ writer.write(&out)
+ }
+
+ fn get_node_info_from_ref(&self, data: UserSlicePtr) -> Result {
+ let (mut reader, mut writer) = data.reader_writer();
+ let mut out = reader.read::<BinderNodeInfoForRef>()?;
+
+ if out.strong_count != 0
+ || out.weak_count != 0
+ || out.reserved1 != 0
+ || out.reserved2 != 0
+ || out.reserved3 != 0
+ {
+ return Err(EINVAL);
+ }
+
+ // Only the context manager is allowed to use this ioctl.
+ if !self.inner.lock().is_manager {
+ return Err(EPERM);
+ }
+
+ let node_ref = self
+ .get_node_from_handle(out.handle, true)
+ .or(Err(EINVAL))?;
+
+ // Get the counts from the node.
+ {
+ let owner_inner = node_ref.node.owner.inner.lock();
+ node_ref.node.populate_counts(&mut out, &owner_inner);
+ }
+
+ // Write the result back.
+ writer.write(&out)
+ }
+
+ pub(crate) fn needs_thread(&self) -> bool {
+ let mut inner = self.inner.lock();
+ let ret = inner.requested_thread_count == 0
+ && inner.ready_threads.is_empty()
+ && inner.started_thread_count < inner.max_threads;
+ if ret {
+ inner.requested_thread_count += 1
+ };
+ ret
+ }
+
+ pub(crate) fn request_death(
+ self: &Ref<Self>,
+ reader: &mut UserSlicePtrReader,
+ thread: &Thread,
+ ) -> Result {
+ let handle: u32 = reader.read()?;
+ let cookie: usize = reader.read()?;
+
+ // TODO: First two should result in error, but not the others.
+
+ // TODO: Do we care about the context manager dying?
+
+ // Queue BR_ERROR if we can't allocate memory for the death notification.
+ let death = UniqueRef::try_new_uninit().map_err(|err| {
+ thread.push_return_work(BR_ERROR);
+ err
+ })?;
+
+ let mut refs = self.node_refs.lock();
+ let info = refs.by_handle.get_mut(&handle).ok_or(EINVAL)?;
+
+ // Nothing to do if there is already a death notification request for this handle.
+ if info.death.is_some() {
+ return Ok(());
+ }
+
+ let death = {
+ let mut pinned = Pin::from(death.write(
+ // SAFETY: `init` is called below.
+ unsafe { NodeDeath::new(info.node_ref.node.clone(), self.clone(), cookie) },
+ ));
+ pinned.as_mut().init();
+ Ref::<NodeDeath>::from(pinned)
+ };
+
+ info.death = Some(death.clone());
+
+ // Register the death notification.
+ {
+ let mut owner_inner = info.node_ref.node.owner.inner.lock();
+ if owner_inner.is_dead {
+ drop(owner_inner);
+ let _ = self.push_work(death);
+ } else {
+ info.node_ref.node.add_death(death, &mut owner_inner);
+ }
+ }
+ Ok(())
+ }
+
+ pub(crate) fn clear_death(&self, reader: &mut UserSlicePtrReader, thread: &Thread) -> Result {
+ let handle: u32 = reader.read()?;
+ let cookie: usize = reader.read()?;
+
+ let mut refs = self.node_refs.lock();
+ let info = refs.by_handle.get_mut(&handle).ok_or(EINVAL)?;
+
+ let death = info.death.take().ok_or(EINVAL)?;
+ if death.cookie != cookie {
+ info.death = Some(death);
+ return Err(EINVAL);
+ }
+
+ // Update state and determine if we need to queue a work item. We only need to do it when
+ // the node is not dead or if the user already completed the death notification.
+ if death.set_cleared(false) {
+ let _ = thread.push_work_if_looper(death);
+ }
+
+ Ok(())
+ }
+
+ pub(crate) fn dead_binder_done(&self, cookie: usize, thread: &Thread) {
+ if let Some(death) = self.inner.lock().pull_delivered_death(cookie) {
+ death.set_notification_done(thread);
+ }
+ }
+}
+
+impl IoctlHandler for Process {
+ type Target<'a> = RefBorrow<'a, Process>;
+
+ fn write(
+ this: RefBorrow<'_, Process>,
+ _file: &File,
+ cmd: u32,
+ reader: &mut UserSlicePtrReader,
+ ) -> Result<i32> {
+ let thread = this.get_thread(Task::current().pid())?;
+ match cmd {
+ bindings::BINDER_SET_MAX_THREADS => this.set_max_threads(reader.read()?),
+ bindings::BINDER_SET_CONTEXT_MGR => this.set_as_manager(None, &thread)?,
+ bindings::BINDER_THREAD_EXIT => this.remove_thread(thread),
+ bindings::BINDER_SET_CONTEXT_MGR_EXT => {
+ this.set_as_manager(Some(reader.read()?), &thread)?
+ }
+ _ => return Err(EINVAL),
+ }
+ Ok(0)
+ }
+
+ fn read_write(
+ this: RefBorrow<'_, Process>,
+ file: &File,
+ cmd: u32,
+ data: UserSlicePtr,
+ ) -> Result<i32> {
+ let thread = this.get_thread(Task::current().pid())?;
+ let blocking = (file.flags() & file::flags::O_NONBLOCK) == 0;
+ match cmd {
+ bindings::BINDER_WRITE_READ => thread.write_read(data, blocking)?,
+ bindings::BINDER_GET_NODE_DEBUG_INFO => this.get_node_debug_info(data)?,
+ bindings::BINDER_GET_NODE_INFO_FOR_REF => this.get_node_info_from_ref(data)?,
+ bindings::BINDER_VERSION => this.version(data)?,
+ _ => return Err(EINVAL),
+ }
+ Ok(0)
+ }
+}
+
+#[vtable]
+impl file::Operations for Process {
+ type Data = Ref<Self>;
+ type OpenData = Ref<Context>;
+
+ fn open(ctx: &Ref<Context>, file: &File) -> Result<Self::Data> {
+ Self::new(ctx.clone(), file.cred().into())
+ }
+
+ fn release(obj: Self::Data, _file: &File) {
+ // Mark this process as dead. We'll do the same for the threads later.
+ obj.inner.lock().is_dead = true;
+
+ // If this process is the manager, unset it.
+ if obj.inner.lock().is_manager {
+ obj.ctx.unset_manager_node();
+ }
+
+ // TODO: Do this in a worker?
+
+ // Cancel all pending work items.
+ while let Some(work) = obj.get_work() {
+ work.cancel();
+ }
+
+ // Free any resources kept alive by allocated buffers.
+ let omapping = obj.inner.lock().mapping.take();
+ if let Some(mut mapping) = omapping {
+ let address = mapping.address;
+ let pages = mapping.pages.clone();
+ mapping.alloc.for_each(|offset, size, odata| {
+ let ptr = offset + address;
+ let mut alloc = Allocation::new(&obj, offset, size, ptr, pages.clone());
+ if let Some(data) = odata {
+ alloc.set_info(data);
+ }
+ drop(alloc)
+ });
+ }
+
+ // Drop all references. We do this dance with `swap` to avoid destroying the references
+ // while holding the lock.
+ let mut refs = obj.node_refs.lock();
+ let mut node_refs = take(&mut refs.by_handle);
+ drop(refs);
+
+ // Remove all death notifications from the nodes (that belong to a different process).
+ for info in node_refs.values_mut() {
+ let death = if let Some(existing) = info.death.take() {
+ existing
+ } else {
+ continue;
+ };
+
+ death.set_cleared(false);
+ }
+
+ // Do similar dance for the state lock.
+ let mut inner = obj.inner.lock();
+ let threads = take(&mut inner.threads);
+ let nodes = take(&mut inner.nodes);
+ drop(inner);
+
+ // Release all threads.
+ for thread in threads.values() {
+ thread.release();
+ }
+
+ // Deliver death notifications.
+ for node in nodes.values() {
+ loop {
+ let death = {
+ let mut inner = obj.inner.lock();
+ if let Some(death) = node.next_death(&mut inner) {
+ death
+ } else {
+ break;
+ }
+ };
+
+ death.set_dead();
+ }
+ }
+ }
+
+ fn ioctl(this: RefBorrow<'_, Process>, file: &File, cmd: &mut IoctlCommand) -> Result<i32> {
+ cmd.dispatch::<Self>(this, file)
+ }
+
+ fn compat_ioctl(
+ this: RefBorrow<'_, Process>,
+ file: &File,
+ cmd: &mut IoctlCommand,
+ ) -> Result<i32> {
+ cmd.dispatch::<Self>(this, file)
+ }
+
+ fn mmap(this: RefBorrow<'_, Process>, _file: &File, vma: &mut mm::virt::Area) -> Result {
+ // We don't allow mmap to be used in a different process.
+ if !core::ptr::eq(Task::current().group_leader(), &*this.task) {
+ return Err(EINVAL);
+ }
+
+ if vma.start() == 0 {
+ return Err(EINVAL);
+ }
+
+ let mut flags = vma.flags();
+ use mm::virt::flags::*;
+ if flags & WRITE != 0 {
+ return Err(EPERM);
+ }
+
+ flags |= DONTCOPY | MIXEDMAP;
+ flags &= !MAYWRITE;
+ vma.set_flags(flags);
+
+ // TODO: Set ops. We need to learn when the user unmaps so that we can stop using it.
+ this.create_mapping(vma)
+ }
+
+ fn poll(this: RefBorrow<'_, Process>, file: &File, table: &PollTable) -> Result<u32> {
+ let thread = this.get_thread(Task::current().pid())?;
+ let (from_proc, mut mask) = thread.poll(file, table);
+ if mask == 0 && from_proc && !this.inner.lock().work.is_empty() {
+ mask |= bindings::POLLIN;
+ }
+ Ok(mask)
+ }
+}
+
+pub(crate) struct Registration<'a> {
+ process: &'a Process,
+ thread: &'a Ref<Thread>,
+}
+
+impl<'a> Registration<'a> {
+ fn new(
+ process: &'a Process,
+ thread: &'a Ref<Thread>,
+ guard: &mut Guard<'_, Mutex<ProcessInner>>,
+ ) -> Self {
+ guard.ready_threads.push_back(thread.clone());
+ Self { process, thread }
+ }
+}
+
+impl Drop for Registration<'_> {
+ fn drop(&mut self) {
+ let mut inner = self.process.inner.lock();
+ unsafe { inner.ready_threads.remove(self.thread) };
+ }
+}
diff --git a/drivers/android/range_alloc.rs b/drivers/android/range_alloc.rs
new file mode 100644
index 000000000000..7b149048879b
--- /dev/null
+++ b/drivers/android/range_alloc.rs
@@ -0,0 +1,189 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use core::ptr::NonNull;
+use kernel::{
+ linked_list::{CursorMut, GetLinks, Links, List},
+ prelude::*,
+};
+
+pub(crate) struct RangeAllocator<T> {
+ list: List<Box<Descriptor<T>>>,
+}
+
+#[derive(Debug, PartialEq, Eq)]
+enum DescriptorState {
+ Free,
+ Reserved,
+ Allocated,
+}
+
+impl<T> RangeAllocator<T> {
+ pub(crate) fn new(size: usize) -> Result<Self> {
+ let desc = Box::try_new(Descriptor::new(0, size))?;
+ let mut list = List::new();
+ list.push_back(desc);
+ Ok(Self { list })
+ }
+
+ fn find_best_match(&self, size: usize) -> Option<NonNull<Descriptor<T>>> {
+ // TODO: Use a binary tree instead of list for this lookup.
+ let mut best = None;
+ let mut best_size = usize::MAX;
+ let mut cursor = self.list.cursor_front();
+ while let Some(desc) = cursor.current() {
+ if desc.state == DescriptorState::Free {
+ if size == desc.size {
+ return Some(NonNull::from(desc));
+ }
+
+ if size < desc.size && desc.size < best_size {
+ best = Some(NonNull::from(desc));
+ best_size = desc.size;
+ }
+ }
+
+ cursor.move_next();
+ }
+ best
+ }
+
+ pub(crate) fn reserve_new(&mut self, size: usize) -> Result<usize> {
+ let desc_ptr = match self.find_best_match(size) {
+ None => return Err(ENOMEM),
+ Some(found) => found,
+ };
+
+ // SAFETY: We hold the only mutable reference to list, so it cannot have changed.
+ let desc = unsafe { &mut *desc_ptr.as_ptr() };
+ if desc.size == size {
+ desc.state = DescriptorState::Reserved;
+ return Ok(desc.offset);
+ }
+
+ // We need to break up the descriptor.
+ let new = Box::try_new(Descriptor::new(desc.offset + size, desc.size - size))?;
+ unsafe { self.list.insert_after(desc_ptr, new) };
+ desc.state = DescriptorState::Reserved;
+ desc.size = size;
+ Ok(desc.offset)
+ }
+
+ fn free_with_cursor(cursor: &mut CursorMut<'_, Box<Descriptor<T>>>) -> Result {
+ let mut size = match cursor.current() {
+ None => return Err(EINVAL),
+ Some(ref mut entry) => {
+ match entry.state {
+ DescriptorState::Free => return Err(EINVAL),
+ DescriptorState::Allocated => return Err(EPERM),
+ DescriptorState::Reserved => {}
+ }
+ entry.state = DescriptorState::Free;
+ entry.size
+ }
+ };
+
+ // Try to merge with the next entry.
+ if let Some(next) = cursor.peek_next() {
+ if next.state == DescriptorState::Free {
+ next.offset -= size;
+ next.size += size;
+ size = next.size;
+ cursor.remove_current();
+ }
+ }
+
+ // Try to merge with the previous entry.
+ if let Some(prev) = cursor.peek_prev() {
+ if prev.state == DescriptorState::Free {
+ prev.size += size;
+ cursor.remove_current();
+ }
+ }
+
+ Ok(())
+ }
+
+ fn find_at_offset(&mut self, offset: usize) -> Option<CursorMut<'_, Box<Descriptor<T>>>> {
+ let mut cursor = self.list.cursor_front_mut();
+ while let Some(desc) = cursor.current() {
+ if desc.offset == offset {
+ return Some(cursor);
+ }
+
+ if desc.offset > offset {
+ return None;
+ }
+
+ cursor.move_next();
+ }
+ None
+ }
+
+ pub(crate) fn reservation_abort(&mut self, offset: usize) -> Result {
+ // TODO: The force case is currently O(n), but could be made O(1) with unsafe.
+ let mut cursor = self.find_at_offset(offset).ok_or(EINVAL)?;
+ Self::free_with_cursor(&mut cursor)
+ }
+
+ pub(crate) fn reservation_commit(&mut self, offset: usize, data: Option<T>) -> Result {
+ // TODO: This is currently O(n), make it O(1).
+ let mut cursor = self.find_at_offset(offset).ok_or(ENOENT)?;
+ let desc = cursor.current().unwrap();
+ desc.state = DescriptorState::Allocated;
+ desc.data = data;
+ Ok(())
+ }
+
+ /// Takes an entry at the given offset from [`DescriptorState::Allocated`] to
+ /// [`DescriptorState::Reserved`].
+ ///
+ /// Returns the size of the existing entry and the data associated with it.
+ pub(crate) fn reserve_existing(&mut self, offset: usize) -> Result<(usize, Option<T>)> {
+ // TODO: This is currently O(n), make it O(log n).
+ let mut cursor = self.find_at_offset(offset).ok_or(ENOENT)?;
+ let desc = cursor.current().unwrap();
+ if desc.state != DescriptorState::Allocated {
+ return Err(ENOENT);
+ }
+ desc.state = DescriptorState::Reserved;
+ Ok((desc.size, desc.data.take()))
+ }
+
+ pub(crate) fn for_each<F: Fn(usize, usize, Option<T>)>(&mut self, callback: F) {
+ let mut cursor = self.list.cursor_front_mut();
+ while let Some(desc) = cursor.current() {
+ if desc.state == DescriptorState::Allocated {
+ callback(desc.offset, desc.size, desc.data.take());
+ }
+
+ cursor.move_next();
+ }
+ }
+}
+
+struct Descriptor<T> {
+ state: DescriptorState,
+ size: usize,
+ offset: usize,
+ links: Links<Descriptor<T>>,
+ data: Option<T>,
+}
+
+impl<T> Descriptor<T> {
+ fn new(offset: usize, size: usize) -> Self {
+ Self {
+ size,
+ offset,
+ state: DescriptorState::Free,
+ links: Links::new(),
+ data: None,
+ }
+ }
+}
+
+impl<T> GetLinks for Descriptor<T> {
+ type EntryType = Self;
+ fn get_links(desc: &Self) -> &Links<Self> {
+ &desc.links
+ }
+}
diff --git a/drivers/android/rust_binder.rs b/drivers/android/rust_binder.rs
new file mode 100644
index 000000000000..6305a3045911
--- /dev/null
+++ b/drivers/android/rust_binder.rs
@@ -0,0 +1,106 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Binder -- the Android IPC mechanism.
+//!
+//! TODO: This module is a work in progress.
+
+use kernel::{
+ io_buffer::IoBufferWriter,
+ linked_list::{GetLinks, GetLinksWrapped, Links},
+ miscdev::Registration,
+ prelude::*,
+ str::CStr,
+ sync::Ref,
+ user_ptr::UserSlicePtrWriter,
+};
+
+mod allocation;
+mod context;
+mod defs;
+mod node;
+mod process;
+mod range_alloc;
+mod thread;
+mod transaction;
+
+use {context::Context, thread::Thread};
+
+module! {
+ type: BinderModule,
+ name: b"rust_binder",
+ author: b"Wedson Almeida Filho",
+ description: b"Android Binder",
+ license: b"GPL",
+}
+
+trait DeliverToRead {
+ /// Performs work. Returns true if remaining work items in the queue should be processed
+ /// immediately, or false if it should return to caller before processing additional work
+ /// items.
+ fn do_work(self: Ref<Self>, thread: &Thread, writer: &mut UserSlicePtrWriter) -> Result<bool>;
+
+ /// Cancels the given work item. This is called instead of [`DeliverToRead::do_work`] when work
+ /// won't be delivered.
+ fn cancel(self: Ref<Self>) {}
+
+ /// Returns the linked list links for the work item.
+ fn get_links(&self) -> &Links<dyn DeliverToRead>;
+}
+
+struct DeliverToReadListAdapter {}
+
+impl GetLinks for DeliverToReadListAdapter {
+ type EntryType = dyn DeliverToRead;
+
+ fn get_links(data: &Self::EntryType) -> &Links<Self::EntryType> {
+ data.get_links()
+ }
+}
+
+impl GetLinksWrapped for DeliverToReadListAdapter {
+ type Wrapped = Ref<dyn DeliverToRead>;
+}
+
+struct DeliverCode {
+ code: u32,
+ links: Links<dyn DeliverToRead>,
+}
+
+impl DeliverCode {
+ fn new(code: u32) -> Self {
+ Self {
+ code,
+ links: Links::new(),
+ }
+ }
+}
+
+impl DeliverToRead for DeliverCode {
+ fn do_work(self: Ref<Self>, _thread: &Thread, writer: &mut UserSlicePtrWriter) -> Result<bool> {
+ writer.write(&self.code)?;
+ Ok(true)
+ }
+
+ fn get_links(&self) -> &Links<dyn DeliverToRead> {
+ &self.links
+ }
+}
+
+const fn ptr_align(value: usize) -> usize {
+ let size = core::mem::size_of::<usize>() - 1;
+ (value + size) & !size
+}
+
+unsafe impl Sync for BinderModule {}
+
+struct BinderModule {
+ _reg: Pin<Box<Registration<process::Process>>>,
+}
+
+impl kernel::Module for BinderModule {
+ fn init(name: &'static CStr, _module: &'static kernel::ThisModule) -> Result<Self> {
+ let ctx = Context::new()?;
+ let reg = Registration::new_pinned(fmt!("{name}"), ctx)?;
+ Ok(Self { _reg: reg })
+ }
+}
diff --git a/drivers/android/thread.rs b/drivers/android/thread.rs
new file mode 100644
index 000000000000..105a65cec1d4
--- /dev/null
+++ b/drivers/android/thread.rs
@@ -0,0 +1,871 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use core::{
+ alloc::AllocError,
+ mem::size_of,
+ sync::atomic::{AtomicU32, Ordering},
+};
+use kernel::{
+ bindings,
+ file::{File, PollTable},
+ io_buffer::{IoBufferReader, IoBufferWriter},
+ linked_list::{GetLinks, Links, List},
+ prelude::*,
+ security,
+ sync::{CondVar, Ref, SpinLock, UniqueRef},
+ user_ptr::{UserSlicePtr, UserSlicePtrWriter},
+ Either,
+};
+
+use crate::{
+ allocation::{Allocation, AllocationView},
+ defs::*,
+ process::{AllocationInfo, Process},
+ ptr_align,
+ transaction::{FileInfo, Transaction},
+ DeliverCode, DeliverToRead, DeliverToReadListAdapter,
+};
+
+pub(crate) type BinderResult<T = ()> = core::result::Result<T, BinderError>;
+
+pub(crate) struct BinderError {
+ pub(crate) reply: u32,
+}
+
+impl BinderError {
+ pub(crate) fn new_failed() -> Self {
+ Self {
+ reply: BR_FAILED_REPLY,
+ }
+ }
+
+ pub(crate) fn new_dead() -> Self {
+ Self {
+ reply: BR_DEAD_REPLY,
+ }
+ }
+}
+
+impl From<Error> for BinderError {
+ fn from(_: Error) -> Self {
+ Self::new_failed()
+ }
+}
+
+impl From<AllocError> for BinderError {
+ fn from(_: AllocError) -> Self {
+ Self::new_failed()
+ }
+}
+
+const LOOPER_REGISTERED: u32 = 0x01;
+const LOOPER_ENTERED: u32 = 0x02;
+const LOOPER_EXITED: u32 = 0x04;
+const LOOPER_INVALID: u32 = 0x08;
+const LOOPER_WAITING: u32 = 0x10;
+const LOOPER_POLL: u32 = 0x20;
+
+struct InnerThread {
+ /// Determines the looper state of the thread. It is a bit-wise combination of the constants
+ /// prefixed with `LOOPER_`.
+ looper_flags: u32,
+
+ /// Determines if thread is dead.
+ is_dead: bool,
+
+ /// Work item used to deliver error codes to the thread that started a transaction. When set to
+ /// `Some(x)`, it will hold the only reference to the object so that it can update the error
+ /// code to be delivered before queuing it.
+ reply_work: Option<Ref<ThreadError>>,
+
+ /// Work item used to deliver error codes to the current thread. When set to `Some(x)`, it will
+ /// hold the only reference to the object so that it can update the error code to be delivered
+ /// before queuing.
+ return_work: Option<Ref<ThreadError>>,
+
+ /// Determines whether the work list below should be processed. When set to false, `work_list`
+ /// is treated as if it were empty.
+ process_work_list: bool,
+ work_list: List<DeliverToReadListAdapter>,
+ current_transaction: Option<Ref<Transaction>>,
+}
+
+impl InnerThread {
+ fn new() -> Self {
+ Self {
+ looper_flags: 0,
+ is_dead: false,
+ process_work_list: false,
+ work_list: List::new(),
+ current_transaction: None,
+ return_work: None,
+ reply_work: None,
+ }
+ }
+
+ fn set_reply_work(&mut self, reply_work: Ref<ThreadError>) {
+ self.reply_work = Some(reply_work);
+ }
+
+ fn push_reply_work(&mut self, code: u32) {
+ let work = self.reply_work.take();
+ self.push_existing_work(work, code);
+ }
+
+ fn set_return_work(&mut self, return_work: Ref<ThreadError>) {
+ self.return_work = Some(return_work);
+ }
+
+ fn push_return_work(&mut self, code: u32) {
+ let work = self.return_work.take();
+ self.push_existing_work(work, code);
+ }
+
+ fn push_existing_work(&mut self, owork: Option<Ref<ThreadError>>, code: u32) {
+ // TODO: Write some warning when the following fails. It should not happen, and
+ // if it does, there is likely something wrong.
+ if let Some(work) = owork {
+ // `error_code` is written to with relaxed semantics because the queue onto which it is
+ // being inserted is protected by a lock. The release barrier when the lock is released
+ // by the caller matches with the acquire barrier of the future reader to guarantee
+ // that `error_code` is visible.
+ work.error_code.store(code, Ordering::Relaxed);
+ self.push_work(work);
+ }
+ }
+
+ fn pop_work(&mut self) -> Option<Ref<dyn DeliverToRead>> {
+ if !self.process_work_list {
+ return None;
+ }
+
+ let ret = self.work_list.pop_front();
+ // Once the queue is drained, we stop processing it until a non-deferred item is pushed
+ // again onto it.
+ self.process_work_list = !self.work_list.is_empty();
+ ret
+ }
+
+ fn push_work_deferred(&mut self, work: Ref<dyn DeliverToRead>) {
+ self.work_list.push_back(work);
+ }
+
+ fn push_work(&mut self, work: Ref<dyn DeliverToRead>) {
+ self.push_work_deferred(work);
+ self.process_work_list = true;
+ }
+
+ fn has_work(&self) -> bool {
+ self.process_work_list && !self.work_list.is_empty()
+ }
+
+ /// Fetches the transaction the thread can reply to. If the thread has a pending transaction
+ /// (that it could respond to) but it has also issued a transaction, it must first wait for the
+ /// previously-issued transaction to complete.
+ fn pop_transaction_to_reply(&mut self, thread: &Thread) -> Result<Ref<Transaction>> {
+ let transaction = self.current_transaction.take().ok_or(EINVAL)?;
+
+ if core::ptr::eq(thread, transaction.from.as_ref()) {
+ self.current_transaction = Some(transaction);
+ return Err(EINVAL);
+ }
+
+ // Find a new current transaction for this thread.
+ self.current_transaction = transaction.find_from(thread);
+ Ok(transaction)
+ }
+
+ fn pop_transaction_replied(&mut self, transaction: &Ref<Transaction>) -> bool {
+ match self.current_transaction.take() {
+ None => false,
+ Some(old) => {
+ if !Ref::ptr_eq(transaction, &old) {
+ self.current_transaction = Some(old);
+ return false;
+ }
+ self.current_transaction = old.clone_next();
+ true
+ }
+ }
+ }
+
+ fn looper_enter(&mut self) {
+ self.looper_flags |= LOOPER_ENTERED;
+ if self.looper_flags & LOOPER_REGISTERED != 0 {
+ self.looper_flags |= LOOPER_INVALID;
+ }
+ }
+
+ fn looper_register(&mut self, valid: bool) {
+ self.looper_flags |= LOOPER_REGISTERED;
+ if !valid || self.looper_flags & LOOPER_ENTERED != 0 {
+ self.looper_flags |= LOOPER_INVALID;
+ }
+ }
+
+ fn looper_exit(&mut self) {
+ self.looper_flags |= LOOPER_EXITED;
+ }
+
+ /// Determines whether the thread is part of a pool, i.e., if it is a looper.
+ fn is_looper(&self) -> bool {
+ self.looper_flags & (LOOPER_ENTERED | LOOPER_REGISTERED) != 0
+ }
+
+ /// Determines whether the thread should attempt to fetch work items from the process queue
+ /// (when its own queue is empty). This is case when the thread is not part of a transaction
+ /// stack and it is registered as a looper.
+ fn should_use_process_work_queue(&self) -> bool {
+ self.current_transaction.is_none() && self.is_looper()
+ }
+
+ fn poll(&mut self) -> u32 {
+ self.looper_flags |= LOOPER_POLL;
+ if self.has_work() {
+ bindings::POLLIN
+ } else {
+ 0
+ }
+ }
+}
+
+pub(crate) struct Thread {
+ pub(crate) id: i32,
+ pub(crate) process: Ref<Process>,
+ inner: SpinLock<InnerThread>,
+ work_condvar: CondVar,
+ links: Links<Thread>,
+}
+
+impl Thread {
+ pub(crate) fn new(id: i32, process: Ref<Process>) -> Result<Ref<Self>> {
+ let return_work = Ref::try_new(ThreadError::new(InnerThread::set_return_work))?;
+ let reply_work = Ref::try_new(ThreadError::new(InnerThread::set_reply_work))?;
+ let mut thread = Pin::from(UniqueRef::try_new(Self {
+ id,
+ process,
+ // SAFETY: `inner` is initialised in the call to `spinlock_init` below.
+ inner: unsafe { SpinLock::new(InnerThread::new()) },
+ // SAFETY: `work_condvar` is initialised in the call to `condvar_init` below.
+ work_condvar: unsafe { CondVar::new() },
+ links: Links::new(),
+ })?);
+
+ // SAFETY: `inner` is pinned when `thread` is.
+ let inner = unsafe { thread.as_mut().map_unchecked_mut(|t| &mut t.inner) };
+ kernel::spinlock_init!(inner, "Thread::inner");
+
+ // SAFETY: `work_condvar` is pinned when `thread` is.
+ let condvar = unsafe { thread.as_mut().map_unchecked_mut(|t| &mut t.work_condvar) };
+ kernel::condvar_init!(condvar, "Thread::work_condvar");
+
+ {
+ let mut inner = thread.inner.lock();
+ inner.set_reply_work(reply_work);
+ inner.set_return_work(return_work);
+ }
+
+ Ok(thread.into())
+ }
+
+ pub(crate) fn set_current_transaction(&self, transaction: Ref<Transaction>) {
+ self.inner.lock().current_transaction = Some(transaction);
+ }
+
+ /// Attempts to fetch a work item from the thread-local queue. The behaviour if the queue is
+ /// empty depends on `wait`: if it is true, the function waits for some work to be queued (or a
+ /// signal); otherwise it returns indicating that none is available.
+ fn get_work_local(self: &Ref<Self>, wait: bool) -> Result<Ref<dyn DeliverToRead>> {
+ // Try once if the caller does not want to wait.
+ if !wait {
+ return self.inner.lock().pop_work().ok_or(EAGAIN);
+ }
+
+ // Loop waiting only on the local queue (i.e., not registering with the process queue).
+ let mut inner = self.inner.lock();
+ loop {
+ if let Some(work) = inner.pop_work() {
+ return Ok(work);
+ }
+
+ inner.looper_flags |= LOOPER_WAITING;
+ let signal_pending = self.work_condvar.wait(&mut inner);
+ inner.looper_flags &= !LOOPER_WAITING;
+
+ if signal_pending {
+ return Err(ERESTARTSYS);
+ }
+ }
+ }
+
+ /// Attempts to fetch a work item from the thread-local queue, falling back to the process-wide
+ /// queue if none is available locally.
+ ///
+ /// This must only be called when the thread is not participating in a transaction chain. If it
+ /// is, the local version (`get_work_local`) should be used instead.
+ fn get_work(self: &Ref<Self>, wait: bool) -> Result<Ref<dyn DeliverToRead>> {
+ // Try to get work from the thread's work queue, using only a local lock.
+ {
+ let mut inner = self.inner.lock();
+ if let Some(work) = inner.pop_work() {
+ return Ok(work);
+ }
+ }
+
+ // If the caller doesn't want to wait, try to grab work from the process queue.
+ //
+ // We know nothing will have been queued directly to the thread queue because it is not in
+ // a transaction and it is not in the process' ready list.
+ if !wait {
+ return self.process.get_work().ok_or(EAGAIN);
+ }
+
+ // Get work from the process queue. If none is available, atomically register as ready.
+ let reg = match self.process.get_work_or_register(self) {
+ Either::Left(work) => return Ok(work),
+ Either::Right(reg) => reg,
+ };
+
+ let mut inner = self.inner.lock();
+ loop {
+ if let Some(work) = inner.pop_work() {
+ return Ok(work);
+ }
+
+ inner.looper_flags |= LOOPER_WAITING;
+ let signal_pending = self.work_condvar.wait(&mut inner);
+ inner.looper_flags &= !LOOPER_WAITING;
+
+ if signal_pending {
+ // A signal is pending. We need to pull the thread off the list, then check the
+ // state again after it's off the list to ensure that something was not queued in
+ // the meantime. If something has been queued, we just return it (instead of the
+ // error).
+ drop(inner);
+ drop(reg);
+ return self.inner.lock().pop_work().ok_or(ERESTARTSYS);
+ }
+ }
+ }
+
+ pub(crate) fn push_work(&self, work: Ref<dyn DeliverToRead>) -> BinderResult {
+ {
+ let mut inner = self.inner.lock();
+ if inner.is_dead {
+ return Err(BinderError::new_dead());
+ }
+ inner.push_work(work);
+ }
+ self.work_condvar.notify_one();
+ Ok(())
+ }
+
+ /// Attempts to push to given work item to the thread if it's a looper thread (i.e., if it's
+ /// part of a thread pool) and is alive. Otherwise, push the work item to the process instead.
+ pub(crate) fn push_work_if_looper(&self, work: Ref<dyn DeliverToRead>) -> BinderResult {
+ let mut inner = self.inner.lock();
+ if inner.is_looper() && !inner.is_dead {
+ inner.push_work(work);
+ Ok(())
+ } else {
+ drop(inner);
+ self.process.push_work(work)
+ }
+ }
+
+ pub(crate) fn push_work_deferred(&self, work: Ref<dyn DeliverToRead>) {
+ self.inner.lock().push_work_deferred(work);
+ }
+
+ fn translate_object(
+ &self,
+ index_offset: usize,
+ view: &mut AllocationView<'_, '_>,
+ allow_fds: bool,
+ ) -> BinderResult {
+ let offset = view.alloc.read(index_offset)?;
+ let header = view.read::<bindings::binder_object_header>(offset)?;
+ // TODO: Handle other types.
+ match header.type_ {
+ BINDER_TYPE_WEAK_BINDER | BINDER_TYPE_BINDER => {
+ let strong = header.type_ == BINDER_TYPE_BINDER;
+ view.transfer_binder_object(offset, strong, |obj| {
+ // SAFETY: `binder` is a `binder_uintptr_t`; any bit pattern is a valid
+ // representation.
+ let ptr = unsafe { obj.__bindgen_anon_1.binder } as _;
+ let cookie = obj.cookie as _;
+ let flags = obj.flags as _;
+ let node = self.process.as_ref_borrow().get_node(
+ ptr,
+ cookie,
+ flags,
+ strong,
+ Some(self),
+ )?;
+ security::binder_transfer_binder(&self.process.cred, &view.alloc.process.cred)?;
+ Ok(node)
+ })?;
+ }
+ BINDER_TYPE_WEAK_HANDLE | BINDER_TYPE_HANDLE => {
+ let strong = header.type_ == BINDER_TYPE_HANDLE;
+ view.transfer_binder_object(offset, strong, |obj| {
+ // SAFETY: `handle` is a `u32`; any bit pattern is a valid representation.
+ let handle = unsafe { obj.__bindgen_anon_1.handle } as _;
+ let node = self.process.get_node_from_handle(handle, strong)?;
+ security::binder_transfer_binder(&self.process.cred, &view.alloc.process.cred)?;
+ Ok(node)
+ })?;
+ }
+ BINDER_TYPE_FD => {
+ if !allow_fds {
+ return Err(BinderError::new_failed());
+ }
+
+ let obj = view.read::<bindings::binder_fd_object>(offset)?;
+ // SAFETY: `fd` is a `u32`; any bit pattern is a valid representation.
+ let fd = unsafe { obj.__bindgen_anon_1.fd };
+ let file = File::from_fd(fd)?;
+ security::binder_transfer_file(
+ &self.process.cred,
+ &view.alloc.process.cred,
+ &file,
+ )?;
+ let field_offset =
+ kernel::offset_of!(bindings::binder_fd_object, __bindgen_anon_1.fd) as usize;
+ let file_info = Box::try_new(FileInfo::new(file, offset + field_offset))?;
+ view.alloc.add_file_info(file_info);
+ }
+ _ => pr_warn!("Unsupported binder object type: {:x}\n", header.type_),
+ }
+ Ok(())
+ }
+
+ fn translate_objects(
+ &self,
+ alloc: &mut Allocation<'_>,
+ start: usize,
+ end: usize,
+ allow_fds: bool,
+ ) -> BinderResult {
+ let mut view = AllocationView::new(alloc, start);
+ for i in (start..end).step_by(size_of::<usize>()) {
+ if let Err(err) = self.translate_object(i, &mut view, allow_fds) {
+ alloc.set_info(AllocationInfo { offsets: start..i });
+ return Err(err);
+ }
+ }
+ alloc.set_info(AllocationInfo {
+ offsets: start..end,
+ });
+ Ok(())
+ }
+
+ pub(crate) fn copy_transaction_data<'a>(
+ &self,
+ to_process: &'a Process,
+ tr: &BinderTransactionData,
+ allow_fds: bool,
+ ) -> BinderResult<Allocation<'a>> {
+ let data_size = tr.data_size as _;
+ let adata_size = ptr_align(data_size);
+ let offsets_size = tr.offsets_size as _;
+ let aoffsets_size = ptr_align(offsets_size);
+
+ // This guarantees that at least `sizeof(usize)` bytes will be allocated.
+ let len = core::cmp::max(
+ adata_size.checked_add(aoffsets_size).ok_or(ENOMEM)?,
+ size_of::<usize>(),
+ );
+ let mut alloc = to_process.buffer_alloc(len)?;
+
+ // Copy raw data.
+ let mut reader = unsafe { UserSlicePtr::new(tr.data.ptr.buffer as _, data_size) }.reader();
+ alloc.copy_into(&mut reader, 0, data_size)?;
+
+ // Copy offsets if there are any.
+ if offsets_size > 0 {
+ let mut reader =
+ unsafe { UserSlicePtr::new(tr.data.ptr.offsets as _, offsets_size) }.reader();
+ alloc.copy_into(&mut reader, adata_size, offsets_size)?;
+
+ // Traverse the objects specified.
+ self.translate_objects(
+ &mut alloc,
+ adata_size,
+ adata_size + aoffsets_size,
+ allow_fds,
+ )?;
+ }
+
+ Ok(alloc)
+ }
+
+ fn unwind_transaction_stack(self: &Ref<Self>) {
+ let mut thread = self.clone();
+ while let Ok(transaction) = {
+ let mut inner = thread.inner.lock();
+ inner.pop_transaction_to_reply(thread.as_ref())
+ } {
+ let reply = Either::Right(BR_DEAD_REPLY);
+ if !transaction.from.deliver_single_reply(reply, &transaction) {
+ break;
+ }
+
+ thread = transaction.from.clone();
+ }
+ }
+
+ pub(crate) fn deliver_reply(
+ &self,
+ reply: Either<Ref<Transaction>, u32>,
+ transaction: &Ref<Transaction>,
+ ) {
+ if self.deliver_single_reply(reply, transaction) {
+ transaction.from.unwind_transaction_stack();
+ }
+ }
+
+ /// Delivers a reply to the thread that started a transaction. The reply can either be a
+ /// reply-transaction or an error code to be delivered instead.
+ ///
+ /// Returns whether the thread is dead. If it is, the caller is expected to unwind the
+ /// transaction stack by completing transactions for threads that are dead.
+ fn deliver_single_reply(
+ &self,
+ reply: Either<Ref<Transaction>, u32>,
+ transaction: &Ref<Transaction>,
+ ) -> bool {
+ {
+ let mut inner = self.inner.lock();
+ if !inner.pop_transaction_replied(transaction) {
+ return false;
+ }
+
+ if inner.is_dead {
+ return true;
+ }
+
+ match reply {
+ Either::Left(work) => inner.push_work(work),
+ Either::Right(code) => inner.push_reply_work(code),
+ }
+ }
+
+ // Notify the thread now that we've released the inner lock.
+ self.work_condvar.notify_one();
+ false
+ }
+
+ /// Determines if the given transaction is the current transaction for this thread.
+ fn is_current_transaction(&self, transaction: &Ref<Transaction>) -> bool {
+ let inner = self.inner.lock();
+ match &inner.current_transaction {
+ None => false,
+ Some(current) => Ref::ptr_eq(current, transaction),
+ }
+ }
+
+ fn transaction<T>(self: &Ref<Self>, tr: &BinderTransactionData, inner: T)
+ where
+ T: FnOnce(&Ref<Self>, &BinderTransactionData) -> BinderResult,
+ {
+ if let Err(err) = inner(self, tr) {
+ self.inner.lock().push_return_work(err.reply);
+ }
+ }
+
+ fn reply_inner(self: &Ref<Self>, tr: &BinderTransactionData) -> BinderResult {
+ let orig = self.inner.lock().pop_transaction_to_reply(self)?;
+ if !orig.from.is_current_transaction(&orig) {
+ return Err(BinderError::new_failed());
+ }
+
+ // We need to complete the transaction even if we cannot complete building the reply.
+ (|| -> BinderResult<_> {
+ let completion = Ref::try_new(DeliverCode::new(BR_TRANSACTION_COMPLETE))?;
+ let process = orig.from.process.clone();
+ let allow_fds = orig.flags & TF_ACCEPT_FDS != 0;
+ let reply = Transaction::new_reply(self, process, tr, allow_fds)?;
+ self.inner.lock().push_work(completion);
+ orig.from.deliver_reply(Either::Left(reply), &orig);
+ Ok(())
+ })()
+ .map_err(|mut err| {
+ // At this point we only return `BR_TRANSACTION_COMPLETE` to the caller, and we must let
+ // the sender know that the transaction has completed (with an error in this case).
+ let reply = Either::Right(BR_FAILED_REPLY);
+ orig.from.deliver_reply(reply, &orig);
+ err.reply = BR_TRANSACTION_COMPLETE;
+ err
+ })
+ }
+
+ /// Determines the current top of the transaction stack. It fails if the top is in another
+ /// thread (i.e., this thread belongs to a stack but it has called another thread). The top is
+ /// [`None`] if the thread is not currently participating in a transaction stack.
+ fn top_of_transaction_stack(&self) -> Result<Option<Ref<Transaction>>> {
+ let inner = self.inner.lock();
+ Ok(if let Some(cur) = &inner.current_transaction {
+ if core::ptr::eq(self, cur.from.as_ref()) {
+ return Err(EINVAL);
+ }
+ Some(cur.clone())
+ } else {
+ None
+ })
+ }
+
+ fn oneway_transaction_inner(self: &Ref<Self>, tr: &BinderTransactionData) -> BinderResult {
+ let handle = unsafe { tr.target.handle };
+ let node_ref = self.process.get_transaction_node(handle)?;
+ security::binder_transaction(&self.process.cred, &node_ref.node.owner.cred)?;
+ let completion = Ref::try_new(DeliverCode::new(BR_TRANSACTION_COMPLETE))?;
+ let transaction = Transaction::new(node_ref, None, self, tr)?;
+ self.inner.lock().push_work(completion);
+ // TODO: Remove the completion on error?
+ transaction.submit()?;
+ Ok(())
+ }
+
+ fn transaction_inner(self: &Ref<Self>, tr: &BinderTransactionData) -> BinderResult {
+ let handle = unsafe { tr.target.handle };
+ let node_ref = self.process.get_transaction_node(handle)?;
+ security::binder_transaction(&self.process.cred, &node_ref.node.owner.cred)?;
+ // TODO: We need to ensure that there isn't a pending transaction in the work queue. How
+ // could this happen?
+ let top = self.top_of_transaction_stack()?;
+ let completion = Ref::try_new(DeliverCode::new(BR_TRANSACTION_COMPLETE))?;
+ let transaction = Transaction::new(node_ref, top, self, tr)?;
+
+ // Check that the transaction stack hasn't changed while the lock was released, then update
+ // it with the new transaction.
+ {
+ let mut inner = self.inner.lock();
+ if !transaction.is_stacked_on(&inner.current_transaction) {
+ return Err(BinderError::new_failed());
+ }
+ inner.current_transaction = Some(transaction.clone());
+ }
+
+ // We push the completion as a deferred work so that we wait for the reply before returning
+ // to userland.
+ self.push_work_deferred(completion);
+ // TODO: Remove completion if submission fails?
+ transaction.submit()?;
+ Ok(())
+ }
+
+ fn write(self: &Ref<Self>, req: &mut BinderWriteRead) -> Result {
+ let write_start = req.write_buffer.wrapping_add(req.write_consumed);
+ let write_len = req.write_size - req.write_consumed;
+ let mut reader = unsafe { UserSlicePtr::new(write_start as _, write_len as _).reader() };
+
+ while reader.len() >= size_of::<u32>() && self.inner.lock().return_work.is_some() {
+ let before = reader.len();
+ match reader.read::<u32>()? {
+ BC_TRANSACTION => {
+ let tr = reader.read::<BinderTransactionData>()?;
+ if tr.flags & TF_ONE_WAY != 0 {
+ self.transaction(&tr, Self::oneway_transaction_inner)
+ } else {
+ self.transaction(&tr, Self::transaction_inner)
+ }
+ }
+ BC_REPLY => self.transaction(&reader.read()?, Self::reply_inner),
+ BC_FREE_BUFFER => drop(self.process.buffer_get(reader.read()?)),
+ BC_INCREFS => self.process.update_ref(reader.read()?, true, false)?,
+ BC_ACQUIRE => self.process.update_ref(reader.read()?, true, true)?,
+ BC_RELEASE => self.process.update_ref(reader.read()?, false, true)?,
+ BC_DECREFS => self.process.update_ref(reader.read()?, false, false)?,
+ BC_INCREFS_DONE => self.process.inc_ref_done(&mut reader, false)?,
+ BC_ACQUIRE_DONE => self.process.inc_ref_done(&mut reader, true)?,
+ BC_REQUEST_DEATH_NOTIFICATION => self.process.request_death(&mut reader, self)?,
+ BC_CLEAR_DEATH_NOTIFICATION => self.process.clear_death(&mut reader, self)?,
+ BC_DEAD_BINDER_DONE => self.process.dead_binder_done(reader.read()?, self),
+ BC_REGISTER_LOOPER => {
+ let valid = self.process.register_thread();
+ self.inner.lock().looper_register(valid);
+ }
+ BC_ENTER_LOOPER => self.inner.lock().looper_enter(),
+ BC_EXIT_LOOPER => self.inner.lock().looper_exit(),
+
+ // TODO: Add support for BC_TRANSACTION_SG and BC_REPLY_SG.
+ // BC_ATTEMPT_ACQUIRE and BC_ACQUIRE_RESULT are no longer supported.
+ _ => return Err(EINVAL),
+ }
+
+ // Update the number of write bytes consumed.
+ req.write_consumed += (before - reader.len()) as u64;
+ }
+ Ok(())
+ }
+
+ fn read(self: &Ref<Self>, req: &mut BinderWriteRead, wait: bool) -> Result {
+ let read_start = req.read_buffer.wrapping_add(req.read_consumed);
+ let read_len = req.read_size - req.read_consumed;
+ let mut writer = unsafe { UserSlicePtr::new(read_start as _, read_len as _) }.writer();
+ let (in_pool, getter) = {
+ let inner = self.inner.lock();
+ (
+ inner.is_looper(),
+ if inner.should_use_process_work_queue() {
+ Self::get_work
+ } else {
+ Self::get_work_local
+ },
+ )
+ };
+
+ // Reserve some room at the beginning of the read buffer so that we can send a
+ // BR_SPAWN_LOOPER if we need to.
+ if req.read_consumed == 0 {
+ writer.write(&BR_NOOP)?;
+ }
+
+ // Loop doing work while there is room in the buffer.
+ let initial_len = writer.len();
+ while writer.len() >= size_of::<u32>() {
+ match getter(self, wait && initial_len == writer.len()) {
+ Ok(work) => {
+ if !work.do_work(self, &mut writer)? {
+ break;
+ }
+ }
+ Err(err) => {
+ // Propagate the error if we haven't written anything else.
+ if initial_len == writer.len() {
+ return Err(err);
+ } else {
+ break;
+ }
+ }
+ }
+ }
+
+ req.read_consumed += read_len - writer.len() as u64;
+
+ // Write BR_SPAWN_LOOPER if the process needs more threads for its pool.
+ if in_pool && self.process.needs_thread() {
+ let mut writer =
+ unsafe { UserSlicePtr::new(req.read_buffer as _, req.read_size as _) }.writer();
+ writer.write(&BR_SPAWN_LOOPER)?;
+ }
+
+ Ok(())
+ }
+
+ pub(crate) fn write_read(self: &Ref<Self>, data: UserSlicePtr, wait: bool) -> Result {
+ let (mut reader, mut writer) = data.reader_writer();
+ let mut req = reader.read::<BinderWriteRead>()?;
+
+ // TODO: `write(&req)` happens in all exit paths from here on. Find a better way to encode
+ // it.
+
+ // Go through the write buffer.
+ if req.write_size > 0 {
+ if let Err(err) = self.write(&mut req) {
+ req.read_consumed = 0;
+ writer.write(&req)?;
+ return Err(err);
+ }
+ }
+
+ // Go through the work queue.
+ let mut ret = Ok(());
+ if req.read_size > 0 {
+ ret = self.read(&mut req, wait);
+ }
+
+ // Write the request back so that the consumed fields are visible to the caller.
+ writer.write(&req)?;
+ ret
+ }
+
+ pub(crate) fn poll(&self, file: &File, table: &PollTable) -> (bool, u32) {
+ // SAFETY: `free_waiters` is called on release.
+ unsafe { table.register_wait(file, &self.work_condvar) };
+ let mut inner = self.inner.lock();
+ (inner.should_use_process_work_queue(), inner.poll())
+ }
+
+ pub(crate) fn notify_if_poll_ready(&self) {
+ // Determine if we need to notify. This requires the lock.
+ let inner = self.inner.lock();
+ let notify = inner.looper_flags & LOOPER_POLL != 0
+ && inner.should_use_process_work_queue()
+ && !inner.has_work();
+ drop(inner);
+
+ // Now that the lock is no longer held, notify the waiters if we have to.
+ if notify {
+ self.work_condvar.notify_one();
+ }
+ }
+
+ pub(crate) fn push_return_work(&self, code: u32) {
+ self.inner.lock().push_return_work(code)
+ }
+
+ pub(crate) fn release(self: &Ref<Self>) {
+ // Mark the thread as dead.
+ self.inner.lock().is_dead = true;
+
+ // Cancel all pending work items.
+ while let Ok(work) = self.get_work_local(false) {
+ work.cancel();
+ }
+
+ // Complete the transaction stack as far as we can.
+ self.unwind_transaction_stack();
+
+ // Remove epoll items if polling was ever used on the thread.
+ let poller = self.inner.lock().looper_flags & LOOPER_POLL != 0;
+ if poller {
+ self.work_condvar.free_waiters();
+
+ unsafe { bindings::synchronize_rcu() };
+ }
+ }
+}
+
+impl GetLinks for Thread {
+ type EntryType = Thread;
+ fn get_links(data: &Thread) -> &Links<Thread> {
+ &data.links
+ }
+}
+
+struct ThreadError {
+ error_code: AtomicU32,
+ return_fn: fn(&mut InnerThread, Ref<ThreadError>),
+ links: Links<dyn DeliverToRead>,
+}
+
+impl ThreadError {
+ fn new(return_fn: fn(&mut InnerThread, Ref<ThreadError>)) -> Self {
+ Self {
+ error_code: AtomicU32::new(BR_OK),
+ return_fn,
+ links: Links::new(),
+ }
+ }
+}
+
+impl DeliverToRead for ThreadError {
+ fn do_work(self: Ref<Self>, thread: &Thread, writer: &mut UserSlicePtrWriter) -> Result<bool> {
+ // See `ThreadInner::push_existing_work` for the reason why `error_code` is up to date even
+ // though we use relaxed semantics.
+ let code = self.error_code.load(Ordering::Relaxed);
+
+ // Return the `ThreadError` to the thread.
+ (self.return_fn)(&mut *thread.inner.lock(), self);
+
+ // Deliver the error code to userspace.
+ writer.write(&code)?;
+ Ok(true)
+ }
+
+ fn get_links(&self) -> &Links<dyn DeliverToRead> {
+ &self.links
+ }
+}
diff --git a/drivers/android/transaction.rs b/drivers/android/transaction.rs
new file mode 100644
index 000000000000..6d8510e3f889
--- /dev/null
+++ b/drivers/android/transaction.rs
@@ -0,0 +1,326 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use core::sync::atomic::{AtomicBool, Ordering};
+use kernel::{
+ bindings,
+ file::{File, FileDescriptorReservation},
+ io_buffer::IoBufferWriter,
+ linked_list::List,
+ linked_list::{GetLinks, Links},
+ prelude::*,
+ sync::{Ref, SpinLock, UniqueRef},
+ user_ptr::UserSlicePtrWriter,
+ Either, ScopeGuard,
+};
+
+use crate::{
+ defs::*,
+ node::NodeRef,
+ process::Process,
+ ptr_align,
+ thread::{BinderResult, Thread},
+ DeliverToRead,
+};
+
+struct TransactionInner {
+ file_list: List<Box<FileInfo>>,
+}
+
+pub(crate) struct Transaction {
+ inner: SpinLock<TransactionInner>,
+ // TODO: Node should be released when the buffer is released.
+ node_ref: Option<NodeRef>,
+ stack_next: Option<Ref<Transaction>>,
+ pub(crate) from: Ref<Thread>,
+ to: Ref<Process>,
+ free_allocation: AtomicBool,
+ code: u32,
+ pub(crate) flags: u32,
+ data_size: usize,
+ offsets_size: usize,
+ data_address: usize,
+ links: Links<dyn DeliverToRead>,
+}
+
+impl Transaction {
+ pub(crate) fn new(
+ node_ref: NodeRef,
+ stack_next: Option<Ref<Transaction>>,
+ from: &Ref<Thread>,
+ tr: &BinderTransactionData,
+ ) -> BinderResult<Ref<Self>> {
+ let allow_fds = node_ref.node.flags & FLAT_BINDER_FLAG_ACCEPTS_FDS != 0;
+ let to = node_ref.node.owner.clone();
+ let mut alloc = from.copy_transaction_data(&to, tr, allow_fds)?;
+ let data_address = alloc.ptr;
+ let file_list = alloc.take_file_list();
+ alloc.keep_alive();
+ let mut tr = Pin::from(UniqueRef::try_new(Self {
+ // SAFETY: `spinlock_init` is called below.
+ inner: unsafe { SpinLock::new(TransactionInner { file_list }) },
+ node_ref: Some(node_ref),
+ stack_next,
+ from: from.clone(),
+ to,
+ code: tr.code,
+ flags: tr.flags,
+ data_size: tr.data_size as _,
+ data_address,
+ offsets_size: tr.offsets_size as _,
+ links: Links::new(),
+ free_allocation: AtomicBool::new(true),
+ })?);
+
+ // SAFETY: `inner` is pinned when `tr` is.
+ let pinned = unsafe { tr.as_mut().map_unchecked_mut(|t| &mut t.inner) };
+ kernel::spinlock_init!(pinned, "Transaction::inner");
+
+ Ok(tr.into())
+ }
+
+ pub(crate) fn new_reply(
+ from: &Ref<Thread>,
+ to: Ref<Process>,
+ tr: &BinderTransactionData,
+ allow_fds: bool,
+ ) -> BinderResult<Ref<Self>> {
+ let mut alloc = from.copy_transaction_data(&to, tr, allow_fds)?;
+ let data_address = alloc.ptr;
+ let file_list = alloc.take_file_list();
+ alloc.keep_alive();
+ let mut tr = Pin::from(UniqueRef::try_new(Self {
+ // SAFETY: `spinlock_init` is called below.
+ inner: unsafe { SpinLock::new(TransactionInner { file_list }) },
+ node_ref: None,
+ stack_next: None,
+ from: from.clone(),
+ to,
+ code: tr.code,
+ flags: tr.flags,
+ data_size: tr.data_size as _,
+ data_address,
+ offsets_size: tr.offsets_size as _,
+ links: Links::new(),
+ free_allocation: AtomicBool::new(true),
+ })?);
+
+ // SAFETY: `inner` is pinned when `tr` is.
+ let pinned = unsafe { tr.as_mut().map_unchecked_mut(|t| &mut t.inner) };
+ kernel::spinlock_init!(pinned, "Transaction::inner");
+
+ Ok(tr.into())
+ }
+
+ /// Determines if the transaction is stacked on top of the given transaction.
+ pub(crate) fn is_stacked_on(&self, onext: &Option<Ref<Self>>) -> bool {
+ match (&self.stack_next, onext) {
+ (None, None) => true,
+ (Some(stack_next), Some(next)) => Ref::ptr_eq(stack_next, next),
+ _ => false,
+ }
+ }
+
+ /// Returns a pointer to the next transaction on the transaction stack, if there is one.
+ pub(crate) fn clone_next(&self) -> Option<Ref<Self>> {
+ let next = self.stack_next.as_ref()?;
+ Some(next.clone())
+ }
+
+ /// Searches in the transaction stack for a thread that belongs to the target process. This is
+ /// useful when finding a target for a new transaction: if the node belongs to a process that
+ /// is already part of the transaction stack, we reuse the thread.
+ fn find_target_thread(&self) -> Option<Ref<Thread>> {
+ let process = &self.node_ref.as_ref()?.node.owner;
+
+ let mut it = &self.stack_next;
+ while let Some(transaction) = it {
+ if Ref::ptr_eq(&transaction.from.process, process) {
+ return Some(transaction.from.clone());
+ }
+ it = &transaction.stack_next;
+ }
+ None
+ }
+
+ /// Searches in the transaction stack for a transaction originating at the given thread.
+ pub(crate) fn find_from(&self, thread: &Thread) -> Option<Ref<Transaction>> {
+ let mut it = &self.stack_next;
+ while let Some(transaction) = it {
+ if core::ptr::eq(thread, transaction.from.as_ref()) {
+ return Some(transaction.clone());
+ }
+
+ it = &transaction.stack_next;
+ }
+ None
+ }
+
+ /// Submits the transaction to a work queue. Use a thread if there is one in the transaction
+ /// stack, otherwise use the destination process.
+ pub(crate) fn submit(self: Ref<Self>) -> BinderResult {
+ if let Some(thread) = self.find_target_thread() {
+ thread.push_work(self)
+ } else {
+ let process = self.to.clone();
+ process.push_work(self)
+ }
+ }
+
+ /// Prepares the file list for delivery to the caller.
+ fn prepare_file_list(&self) -> Result<List<Box<FileInfo>>> {
+ // Get list of files that are being transferred as part of the transaction.
+ let mut file_list = core::mem::replace(&mut self.inner.lock().file_list, List::new());
+
+ // If the list is non-empty, prepare the buffer.
+ if !file_list.is_empty() {
+ let alloc = self.to.buffer_get(self.data_address).ok_or(ESRCH)?;
+ let cleanup = ScopeGuard::new(|| {
+ self.free_allocation.store(false, Ordering::Relaxed);
+ });
+
+ let mut it = file_list.cursor_front_mut();
+ while let Some(file_info) = it.current() {
+ let reservation = FileDescriptorReservation::new(bindings::O_CLOEXEC)?;
+ alloc.write(file_info.buffer_offset, &reservation.reserved_fd())?;
+ file_info.reservation = Some(reservation);
+ it.move_next();
+ }
+
+ alloc.keep_alive();
+ cleanup.dismiss();
+ }
+
+ Ok(file_list)
+ }
+}
+
+impl DeliverToRead for Transaction {
+ fn do_work(self: Ref<Self>, thread: &Thread, writer: &mut UserSlicePtrWriter) -> Result<bool> {
+ // TODO: Initialise the following fields from `tr`:
+ // - `pub sender_pid: pid_t`.
+ // - `pub sender_euid: uid_t`.
+
+ let send_failed_reply = ScopeGuard::new(|| {
+ if self.node_ref.is_some() && self.flags & TF_ONE_WAY == 0 {
+ let reply = Either::Right(BR_FAILED_REPLY);
+ self.from.deliver_reply(reply, &self);
+ }
+ });
+ let mut file_list = if let Ok(list) = self.prepare_file_list() {
+ list
+ } else {
+ // On failure to process the list, we send a reply back to the sender and ignore the
+ // transaction on the recipient.
+ return Ok(true);
+ };
+
+ let mut tr = BinderTransactionData::default();
+
+ if let Some(nref) = &self.node_ref {
+ let (ptr, cookie) = nref.node.get_id();
+ tr.target.ptr = ptr as _;
+ tr.cookie = cookie as _;
+ };
+
+ tr.code = self.code;
+ tr.flags = self.flags;
+ tr.data_size = self.data_size as _;
+ tr.data.ptr.buffer = self.data_address as _;
+ tr.offsets_size = self.offsets_size as _;
+ if tr.offsets_size > 0 {
+ tr.data.ptr.offsets = (self.data_address + ptr_align(self.data_size)) as _;
+ }
+
+ let code = if self.node_ref.is_none() {
+ BR_REPLY
+ } else {
+ BR_TRANSACTION
+ };
+
+ // Write the transaction code and data to the user buffer.
+ writer.write(&code)?;
+ writer.write(&tr)?;
+
+ // Dismiss the completion of transaction with a failure. No failure paths are allowed from
+ // here on out.
+ send_failed_reply.dismiss();
+
+ // Commit all files.
+ {
+ let mut it = file_list.cursor_front_mut();
+ while let Some(file_info) = it.current() {
+ if let Some(reservation) = file_info.reservation.take() {
+ if let Some(file) = file_info.file.take() {
+ reservation.commit(file);
+ }
+ }
+
+ it.move_next();
+ }
+ }
+
+ // When `drop` is called, we don't want the allocation to be freed because it is now the
+ // user's reponsibility to free it.
+ //
+ // `drop` is guaranteed to see this relaxed store because `Ref` guarantess that everything
+ // that happens when an object is referenced happens-before the eventual `drop`.
+ self.free_allocation.store(false, Ordering::Relaxed);
+
+ // When this is not a reply and not an async transaction, update `current_transaction`. If
+ // it's a reply, `current_transaction` has already been updated appropriately.
+ if self.node_ref.is_some() && tr.flags & TF_ONE_WAY == 0 {
+ thread.set_current_transaction(self);
+ }
+
+ Ok(false)
+ }
+
+ fn cancel(self: Ref<Self>) {
+ let reply = Either::Right(BR_DEAD_REPLY);
+ self.from.deliver_reply(reply, &self);
+ }
+
+ fn get_links(&self) -> &Links<dyn DeliverToRead> {
+ &self.links
+ }
+}
+
+impl Drop for Transaction {
+ fn drop(&mut self) {
+ if self.free_allocation.load(Ordering::Relaxed) {
+ self.to.buffer_get(self.data_address);
+ }
+ }
+}
+
+pub(crate) struct FileInfo {
+ links: Links<FileInfo>,
+
+ /// The file for which a descriptor will be created in the recipient process.
+ file: Option<ARef<File>>,
+
+ /// The file descriptor reservation on the recipient process.
+ reservation: Option<FileDescriptorReservation>,
+
+ /// The offset in the buffer where the file descriptor is stored.
+ buffer_offset: usize,
+}
+
+impl FileInfo {
+ pub(crate) fn new(file: ARef<File>, buffer_offset: usize) -> Self {
+ Self {
+ file: Some(file),
+ reservation: None,
+ buffer_offset,
+ links: Links::new(),
+ }
+ }
+}
+
+impl GetLinks for FileInfo {
+ type EntryType = Self;
+
+ fn get_links(data: &Self::EntryType) -> &Links<Self::EntryType> {
+ &data.links
+ }
+}
diff --git a/include/uapi/linux/android/binder.h b/include/uapi/linux/android/binder.h
index 986333cf5bbe..a3bd993c5c9a 100644
--- a/include/uapi/linux/android/binder.h
+++ b/include/uapi/linux/android/binder.h
@@ -251,20 +251,22 @@ struct binder_extended_error {
__s32 param;
};
-#define BINDER_WRITE_READ _IOWR('b', 1, struct binder_write_read)
-#define BINDER_SET_IDLE_TIMEOUT _IOW('b', 3, __s64)
-#define BINDER_SET_MAX_THREADS _IOW('b', 5, __u32)
-#define BINDER_SET_IDLE_PRIORITY _IOW('b', 6, __s32)
-#define BINDER_SET_CONTEXT_MGR _IOW('b', 7, __s32)
-#define BINDER_THREAD_EXIT _IOW('b', 8, __s32)
-#define BINDER_VERSION _IOWR('b', 9, struct binder_version)
-#define BINDER_GET_NODE_DEBUG_INFO _IOWR('b', 11, struct binder_node_debug_info)
-#define BINDER_GET_NODE_INFO_FOR_REF _IOWR('b', 12, struct binder_node_info_for_ref)
-#define BINDER_SET_CONTEXT_MGR_EXT _IOW('b', 13, struct flat_binder_object)
-#define BINDER_FREEZE _IOW('b', 14, struct binder_freeze_info)
-#define BINDER_GET_FROZEN_INFO _IOWR('b', 15, struct binder_frozen_status_info)
-#define BINDER_ENABLE_ONEWAY_SPAM_DETECTION _IOW('b', 16, __u32)
-#define BINDER_GET_EXTENDED_ERROR _IOWR('b', 17, struct binder_extended_error)
+enum {
+ BINDER_WRITE_READ = _IOWR('b', 1, struct binder_write_read),
+ BINDER_SET_IDLE_TIMEOUT = _IOW('b', 3, __s64),
+ BINDER_SET_MAX_THREADS = _IOW('b', 5, __u32),
+ BINDER_SET_IDLE_PRIORITY = _IOW('b', 6, __s32),
+ BINDER_SET_CONTEXT_MGR = _IOW('b', 7, __s32),
+ BINDER_THREAD_EXIT = _IOW('b', 8, __s32),
+ BINDER_VERSION = _IOWR('b', 9, struct binder_version),
+ BINDER_GET_NODE_DEBUG_INFO = _IOWR('b', 11, struct binder_node_debug_info),
+ BINDER_GET_NODE_INFO_FOR_REF = _IOWR('b', 12, struct binder_node_info_for_ref),
+ BINDER_SET_CONTEXT_MGR_EXT = _IOW('b', 13, struct flat_binder_object),
+ BINDER_FREEZE = _IOW('b', 14, struct binder_freeze_info),
+ BINDER_GET_FROZEN_INFO = _IOWR('b', 15, struct binder_frozen_status_info),
+ BINDER_ENABLE_ONEWAY_SPAM_DETECTION = _IOW('b', 16, __u32),
+ BINDER_GET_EXTENDED_ERROR = _IOWR('b', 17, struct binder_extended_error),
+};
/*
* NOTE: Two special error codes you should check for when calling
--
2.37.1
From: Boqun Feng <[email protected]>
This removes one place where the `500` constant is hardcoded.
Signed-off-by: Boqun Feng <[email protected]>
Co-developed-by: Miguel Ojeda <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
scripts/kallsyms.c | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/scripts/kallsyms.c b/scripts/kallsyms.c
index f18e6dfc68c5..52f5488c61bc 100644
--- a/scripts/kallsyms.c
+++ b/scripts/kallsyms.c
@@ -206,7 +206,7 @@ static struct sym_entry *read_symbol(FILE *in)
rc = fscanf(in, "%llx %c %499s\n", &addr, &type, name);
if (rc != 3) {
- if (rc != EOF && fgets(name, 500, in) == NULL)
+ if (rc != EOF && fgets(name, sizeof(name), in) == NULL)
fprintf(stderr, "Read error or end of file.\n");
return NULL;
}
--
2.37.1
From: Gary Guo <[email protected]>
The `build_error` crate provides the `build_error` function which
is then used to provide the `build_error!` and the `build_assert!`
macros.
`build_assert!` is intended to be used when `static_assert!` cannot
be used, e.g. when the condition refers to generic parameters or
parameters of an inline function.
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Gary Guo <[email protected]>
Co-developed-by: Miguel Ojeda <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
rust/build_error.rs | 29 +++++++++++++++++++++++++++++
1 file changed, 29 insertions(+)
create mode 100644 rust/build_error.rs
diff --git a/rust/build_error.rs b/rust/build_error.rs
new file mode 100644
index 000000000000..bbd3a05440b2
--- /dev/null
+++ b/rust/build_error.rs
@@ -0,0 +1,29 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Build-time error.
+//!
+//! This crate provides a function `build_error`, which will panic in
+//! compile-time if executed in const context, and will cause a build error
+//! if not executed at compile time and the optimizer does not optimise away the
+//! call.
+//!
+//! It is used by `build_assert!` in the kernel crate, allowing checking of
+//! conditions that could be checked statically, but could not be enforced in
+//! Rust yet (e.g. perform some checks in const functions, but those
+//! functions could still be called in the runtime).
+
+#![no_std]
+
+/// Panics if executed in const context, or triggers a build error if not.
+#[inline(never)]
+#[cold]
+#[export_name = "rust_build_error"]
+#[track_caller]
+pub const fn build_error(msg: &'static str) -> ! {
+ panic!("{}", msg);
+}
+
+#[cfg(CONFIG_RUST_BUILD_ASSERT_WARN)]
+#[link_section = ".gnu.warning.rust_build_error"]
+#[used]
+static BUILD_ERROR_WARNING: [u8; 45] = *b"call to build_error present after compilation";
--
2.37.1
All symbols are reexported reusing the `EXPORT_SYMBOL_GPL` macro
from C. The lists of symbols are generated on the fly.
There are three main sets of symbols to distinguish:
- The ones from the `core` and `alloc` crates (from the Rust
standard library). The code is licensed as Apache/MIT.
- The ones from our abstractions in the `kernel` crate.
- The helpers (already exported since they are not generated).
We export everything as GPL. This ensures we do not mistakenly
expose GPL kernel symbols/features as non-GPL, even indirectly.
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Co-developed-by: Björn Roy Baron <[email protected]>
Signed-off-by: Björn Roy Baron <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
rust/exports.c | 21 +++++++++++++++++++++
1 file changed, 21 insertions(+)
create mode 100644 rust/exports.c
diff --git a/rust/exports.c b/rust/exports.c
new file mode 100644
index 000000000000..bb7cc64cecd0
--- /dev/null
+++ b/rust/exports.c
@@ -0,0 +1,21 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * A hack to export Rust symbols for loadable modules without having to redo
+ * the entire `include/linux/export.h` logic in Rust.
+ *
+ * This requires the Rust's new/future `v0` mangling scheme because the default
+ * one ("legacy") uses invalid characters for C identifiers (thus we cannot use
+ * the `EXPORT_SYMBOL_*` macros).
+ *
+ * All symbols are exported as GPL-only to guarantee no GPL-only feature is
+ * accidentally exposed.
+ */
+
+#include <linux/module.h>
+
+#define EXPORT_SYMBOL_RUST_GPL(sym) extern int sym; EXPORT_SYMBOL_GPL(sym)
+
+#include "exports_core_generated.h"
+#include "exports_alloc_generated.h"
+#include "exports_bindings_generated.h"
+#include "exports_kernel_generated.h"
--
2.37.1
Most of the documentation for Rust is written within the source code
itself, as it is idiomatic for Rust projects. This applies to both
the shared infrastructure at `rust/` as well as any other Rust module
(e.g. drivers) written across the kernel.
However, these documents contain general information that does not
fit particularly well in the source code, like the Quick Start guide.
It also contains a few other small changes elsewhere in the
documentation folder.
Reviewed-by: Kees Cook <[email protected]>
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Finn Behrens <[email protected]>
Signed-off-by: Finn Behrens <[email protected]>
Co-developed-by: Adam Bratschi-Kaye <[email protected]>
Signed-off-by: Adam Bratschi-Kaye <[email protected]>
Co-developed-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Co-developed-by: Michael Ellerman <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Co-developed-by: Sven Van Asbroeck <[email protected]>
Signed-off-by: Sven Van Asbroeck <[email protected]>
Co-developed-by: Wu XiangCheng <[email protected]>
Signed-off-by: Wu XiangCheng <[email protected]>
Co-developed-by: Gary Guo <[email protected]>
Signed-off-by: Gary Guo <[email protected]>
Co-developed-by: Boris-Chengbiao Zhou <[email protected]>
Signed-off-by: Boris-Chengbiao Zhou <[email protected]>
Co-developed-by: Yuki Okushi <[email protected]>
Signed-off-by: Yuki Okushi <[email protected]>
Co-developed-by: Wei Liu <[email protected]>
Signed-off-by: Wei Liu <[email protected]>
Co-developed-by: Daniel Xu <[email protected]>
Signed-off-by: Daniel Xu <[email protected]>
Co-developed-by: Julian Merkle <[email protected]>
Signed-off-by: Julian Merkle <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
Documentation/doc-guide/kernel-doc.rst | 3 +
Documentation/index.rst | 1 +
Documentation/kbuild/kbuild.rst | 17 ++
Documentation/kbuild/makefiles.rst | 50 ++++-
Documentation/process/changes.rst | 41 ++++
Documentation/rust/arch-support.rst | 23 ++
Documentation/rust/coding-guidelines.rst | 216 +++++++++++++++++++
Documentation/rust/general-information.rst | 79 +++++++
Documentation/rust/index.rst | 22 ++
Documentation/rust/quick-start.rst | 232 +++++++++++++++++++++
10 files changed, 680 insertions(+), 4 deletions(-)
create mode 100644 Documentation/rust/arch-support.rst
create mode 100644 Documentation/rust/coding-guidelines.rst
create mode 100644 Documentation/rust/general-information.rst
create mode 100644 Documentation/rust/index.rst
create mode 100644 Documentation/rust/quick-start.rst
diff --git a/Documentation/doc-guide/kernel-doc.rst b/Documentation/doc-guide/kernel-doc.rst
index a7cb2afd7990..9b868d9eb20f 100644
--- a/Documentation/doc-guide/kernel-doc.rst
+++ b/Documentation/doc-guide/kernel-doc.rst
@@ -12,6 +12,9 @@ when it is embedded in source files.
reasons. The kernel source contains tens of thousands of kernel-doc
comments. Please stick to the style described here.
+.. note:: kernel-doc does not cover Rust code: please see
+ Documentation/rust/general-information.rst instead.
+
The kernel-doc structure is extracted from the comments, and proper
`Sphinx C Domain`_ function and type descriptions with anchors are
generated from them. The descriptions are filtered for special kernel-doc
diff --git a/Documentation/index.rst b/Documentation/index.rst
index 67036a05b771..35d90903242a 100644
--- a/Documentation/index.rst
+++ b/Documentation/index.rst
@@ -82,6 +82,7 @@ merged much easier.
maintainer/index
fault-injection/index
livepatch/index
+ rust/index
Kernel API documentation
diff --git a/Documentation/kbuild/kbuild.rst b/Documentation/kbuild/kbuild.rst
index ef19b9c13523..08f575e6236c 100644
--- a/Documentation/kbuild/kbuild.rst
+++ b/Documentation/kbuild/kbuild.rst
@@ -48,6 +48,10 @@ KCFLAGS
-------
Additional options to the C compiler (for built-in and modules).
+KRUSTFLAGS
+----------
+Additional options to the Rust compiler (for built-in and modules).
+
CFLAGS_KERNEL
-------------
Additional options for $(CC) when used to compile
@@ -57,6 +61,15 @@ CFLAGS_MODULE
-------------
Additional module specific options to use for $(CC).
+RUSTFLAGS_KERNEL
+----------------
+Additional options for $(RUSTC) when used to compile
+code that is compiled as built-in.
+
+RUSTFLAGS_MODULE
+----------------
+Additional module specific options to use for $(RUSTC).
+
LDFLAGS_MODULE
--------------
Additional options used for $(LD) when linking modules.
@@ -69,6 +82,10 @@ HOSTCXXFLAGS
------------
Additional flags to be passed to $(HOSTCXX) when building host programs.
+HOSTRUSTFLAGS
+-------------
+Additional flags to be passed to $(HOSTRUSTC) when building host programs.
+
HOSTLDFLAGS
-----------
Additional flags to be passed when linking host programs.
diff --git a/Documentation/kbuild/makefiles.rst b/Documentation/kbuild/makefiles.rst
index 11a296e52d68..5ea1e72d89c8 100644
--- a/Documentation/kbuild/makefiles.rst
+++ b/Documentation/kbuild/makefiles.rst
@@ -29,8 +29,9 @@ This document describes the Linux kernel Makefiles.
--- 4.1 Simple Host Program
--- 4.2 Composite Host Programs
--- 4.3 Using C++ for host programs
- --- 4.4 Controlling compiler options for host programs
- --- 4.5 When host programs are actually built
+ --- 4.4 Using Rust for host programs
+ --- 4.5 Controlling compiler options for host programs
+ --- 4.6 When host programs are actually built
=== 5 Userspace Program support
--- 5.1 Simple Userspace Program
@@ -835,7 +836,24 @@ Both possibilities are described in the following.
qconf-cxxobjs := qconf.o
qconf-objs := check.o
-4.4 Controlling compiler options for host programs
+4.4 Using Rust for host programs
+--------------------------------
+
+ Kbuild offers support for host programs written in Rust. However,
+ since a Rust toolchain is not mandatory for kernel compilation,
+ it may only be used in scenarios where Rust is required to be
+ available (e.g. when ``CONFIG_RUST`` is enabled).
+
+ Example::
+
+ hostprogs := target
+ target-rust := y
+
+ Kbuild will compile ``target`` using ``target.rs`` as the crate root,
+ located in the same directory as the ``Makefile``. The crate may
+ consist of several source files (see ``samples/rust/hostprogs``).
+
+4.5 Controlling compiler options for host programs
--------------------------------------------------
When compiling host programs, it is possible to set specific flags.
@@ -867,7 +885,7 @@ Both possibilities are described in the following.
When linking qconf, it will be passed the extra option
"-L$(QTDIR)/lib".
-4.5 When host programs are actually built
+4.6 When host programs are actually built
-----------------------------------------
Kbuild will only build host-programs when they are referenced
@@ -1181,6 +1199,17 @@ When kbuild executes, the following steps are followed (roughly):
The first example utilises the trick that a config option expands
to 'y' when selected.
+ KBUILD_RUSTFLAGS
+ $(RUSTC) compiler flags
+
+ Default value - see top level Makefile
+ Append or modify as required per architecture.
+
+ Often, the KBUILD_RUSTFLAGS variable depends on the configuration.
+
+ Note that target specification file generation (for ``--target``)
+ is handled in ``scripts/generate_rust_target.rs``.
+
KBUILD_AFLAGS_KERNEL
Assembler options specific for built-in
@@ -1208,6 +1237,19 @@ When kbuild executes, the following steps are followed (roughly):
are used for $(CC).
From commandline CFLAGS_MODULE shall be used (see kbuild.rst).
+ KBUILD_RUSTFLAGS_KERNEL
+ $(RUSTC) options specific for built-in
+
+ $(KBUILD_RUSTFLAGS_KERNEL) contains extra Rust compiler flags used to
+ compile resident kernel code.
+
+ KBUILD_RUSTFLAGS_MODULE
+ Options for $(RUSTC) when building modules
+
+ $(KBUILD_RUSTFLAGS_MODULE) is used to add arch-specific options that
+ are used for $(RUSTC).
+ From commandline RUSTFLAGS_MODULE shall be used (see kbuild.rst).
+
KBUILD_LDFLAGS_MODULE
Options for $(LD) when linking modules
diff --git a/Documentation/process/changes.rst b/Documentation/process/changes.rst
index 19c286c23786..9a90197989dd 100644
--- a/Documentation/process/changes.rst
+++ b/Documentation/process/changes.rst
@@ -31,6 +31,8 @@ you probably needn't concern yourself with pcmciautils.
====================== =============== ========================================
GNU C 5.1 gcc --version
Clang/LLVM (optional) 11.0.0 clang --version
+Rust (optional) 1.62.0 rustc --version
+bindgen (optional) 0.56.0 bindgen --version
GNU make 3.81 make --version
bash 4.2 bash --version
binutils 2.23 ld -v
@@ -80,6 +82,29 @@ kernels. Older releases aren't guaranteed to work, and we may drop workarounds
from the kernel that were used to support older versions. Please see additional
docs on :ref:`Building Linux with Clang/LLVM <kbuild_llvm>`.
+Rust (optional)
+---------------
+
+A particular version of the Rust toolchain is required. Newer versions may or
+may not work because the kernel depends on some unstable Rust features, for
+the moment.
+
+Each Rust toolchain comes with several "components", some of which are required
+(like ``rustc``) and some that are optional. The ``rust-src`` component (which
+is optional) needs to be installed to build the kernel. Other components are
+useful for developing.
+
+Please see Documentation/rust/quick-start.rst for instructions on how to
+satisfy the build requirements of Rust support. In particular, the ``Makefile``
+target ``rustavailable`` is useful to check why the Rust toolchain may not
+be detected.
+
+bindgen (optional)
+------------------
+
+``bindgen`` is used to generate the Rust bindings to the C side of the kernel.
+It depends on ``libclang``.
+
Make
----
@@ -348,6 +373,12 @@ Sphinx
Please see :ref:`sphinx_install` in :ref:`Documentation/doc-guide/sphinx.rst <sphinxdoc>`
for details about Sphinx requirements.
+rustdoc
+-------
+
+``rustdoc`` is used to generate the documentation for Rust code. Please see
+Documentation/rust/general-information.rst for more information.
+
Getting updated software
========================
@@ -364,6 +395,16 @@ Clang/LLVM
- :ref:`Getting LLVM <getting_llvm>`.
+Rust
+----
+
+- Documentation/rust/quick-start.rst.
+
+bindgen
+-------
+
+- Documentation/rust/quick-start.rst.
+
Make
----
diff --git a/Documentation/rust/arch-support.rst b/Documentation/rust/arch-support.rst
new file mode 100644
index 000000000000..bcc92cae11d9
--- /dev/null
+++ b/Documentation/rust/arch-support.rst
@@ -0,0 +1,23 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+Arch Support
+============
+
+Currently, the Rust compiler (``rustc``) uses LLVM for code generation,
+which limits the supported architectures that can be targeted. In addition,
+support for building the kernel with LLVM/Clang varies (please see
+Documentation/kbuild/llvm.rst). This support is needed for ``bindgen``
+which uses ``libclang``.
+
+Below is a general summary of architectures that currently work. Level of
+support corresponds to ``S`` values in the ``MAINTAINERS`` file.
+
+============ ================ ==============================================
+Architecture Level of support Constraints
+============ ================ ==============================================
+``arm`` Maintained ``armv6`` and compatible only.
+``arm64`` Maintained None.
+``powerpc`` Maintained ``ppc64le`` only.
+``riscv`` Maintained ``riscv64`` only.
+``x86`` Maintained ``x86_64`` only.
+============ ================ ==============================================
diff --git a/Documentation/rust/coding-guidelines.rst b/Documentation/rust/coding-guidelines.rst
new file mode 100644
index 000000000000..aa8ed082613e
--- /dev/null
+++ b/Documentation/rust/coding-guidelines.rst
@@ -0,0 +1,216 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+Coding Guidelines
+=================
+
+This document describes how to write Rust code in the kernel.
+
+
+Style & formatting
+------------------
+
+The code should be formatted using ``rustfmt``. In this way, a person
+contributing from time to time to the kernel does not need to learn and
+remember one more style guide. More importantly, reviewers and maintainers
+do not need to spend time pointing out style issues anymore, and thus
+less patch roundtrips may be needed to land a change.
+
+.. note:: Conventions on comments and documentation are not checked by
+ ``rustfmt``. Thus those are still needed to be taken care of.
+
+The default settings of ``rustfmt`` are used. This means the idiomatic Rust
+style is followed. For instance, 4 spaces are used for indentation rather
+than tabs.
+
+It is convenient to instruct editors/IDEs to format while typing,
+when saving or at commit time. However, if for some reason reformatting
+the entire kernel Rust sources is needed at some point, the following can be
+run::
+
+ make LLVM=1 rustfmt
+
+It is also possible to check if everything is formatted (printing a diff
+otherwise), for instance for a CI, with::
+
+ make LLVM=1 rustfmtcheck
+
+Like ``clang-format`` for the rest of the kernel, ``rustfmt`` works on
+individual files, and does not require a kernel configuration. Sometimes it may
+even work with broken code.
+
+
+Comments
+--------
+
+"Normal" comments (i.e. ``//``, rather than code documentation which starts
+with ``///`` or ``//!``) are written in Markdown the same way as documentation
+comments are, even though they will not be rendered. This improves consistency,
+simplifies the rules and allows to move content between the two kinds of
+comments more easily. For instance:
+
+.. code-block:: rust
+
+ // `object` is ready to be handled now.
+ f(object);
+
+Furthermore, just like documentation, comments are capitalized at the beginning
+of a sentence and ended with a period (even if it is a single sentence). This
+includes ``// SAFETY:``, ``// TODO:`` and other "tagged" comments, e.g.:
+
+.. code-block:: rust
+
+ // FIXME: The error should be handled properly.
+
+Comments should not be used for documentation purposes: comments are intended
+for implementation details, not users. This distinction is useful even if the
+reader of the source file is both an implementor and a user of an API. In fact,
+sometimes it is useful to use both comments and documentation at the same time.
+For instance, for a ``TODO`` list or to comment on the documentation itself.
+For the latter case, comments can be inserted in the middle; that is, closer to
+the line of documentation to be commented. For any other case, comments are
+written after the documentation, e.g.:
+
+.. code-block:: rust
+
+ /// Returns a new [`Foo`].
+ ///
+ /// # Examples
+ ///
+ // TODO: Find a better example.
+ /// ```
+ /// let foo = f(42);
+ /// ```
+ // FIXME: Use fallible approach.
+ pub fn f(x: i32) -> Foo {
+ // ...
+ }
+
+One special kind of comments are the ``// SAFETY:`` comments. These must appear
+before every ``unsafe`` block, and they explain why the code inside the block is
+correct/sound, i.e. why it cannot trigger undefined behavior in any case, e.g.:
+
+.. code-block:: rust
+
+ // SAFETY: `p` is valid by the safety requirements.
+ unsafe { *p = 0; }
+
+``// SAFETY:`` comments are not to be confused with the ``# Safety`` sections
+in code documentation. ``# Safety`` sections specify the contract that callers
+(for functions) or implementors (for traits) need to abide by. ``// SAFETY:``
+comments show why a call (for functions) or implementation (for traits) actually
+respects the preconditions stated in a ``# Safety`` section or the language
+reference.
+
+
+Code documentation
+------------------
+
+Rust kernel code is not documented like C kernel code (i.e. via kernel-doc).
+Instead, the usual system for documenting Rust code is used: the ``rustdoc``
+tool, which uses Markdown (a lightweight markup language).
+
+To learn Markdown, there are many guides available out there. For instance,
+the one at:
+
+ https://commonmark.org/help/
+
+This is how a well-documented Rust function may look like:
+
+.. code-block:: rust
+
+ /// Returns the contained [`Some`] value, consuming the `self` value,
+ /// without checking that the value is not [`None`].
+ ///
+ /// # Safety
+ ///
+ /// Calling this method on [`None`] is *[undefined behavior]*.
+ ///
+ /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let x = Some("air");
+ /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
+ /// ```
+ pub unsafe fn unwrap_unchecked(self) -> T {
+ match self {
+ Some(val) => val,
+
+ // SAFETY: The safety contract must be upheld by the caller.
+ None => unsafe { hint::unreachable_unchecked() },
+ }
+ }
+
+This example showcases a few ``rustdoc`` features and some conventions followed
+in the kernel:
+
+ - The first paragraph must be a single sentence briefly describing what
+ the documented item does. Further explanations must go in extra paragraphs.
+
+ - Unsafe functions must document their safety preconditions under
+ a ``# Safety`` section.
+
+ - While not shown here, if a function may panic, the conditions under which
+ that happens must be described under a ``# Panics`` section.
+
+ Please note that panicking should be very rare and used only with a good
+ reason. In almost all cases, a fallible approach should be used, typically
+ returning a ``Result``.
+
+ - If providing examples of usage would help readers, they must be written in
+ a section called ``# Examples``.
+
+ - Rust items (functions, types, constants...) must be linked appropriately
+ (``rustdoc`` will create a link automatically).
+
+ - Any ``unsafe`` block must be preceded by a ``// SAFETY:`` comment
+ describing why the code inside is sound.
+
+ While sometimes the reason might look trivial and therefore unneeded,
+ writing these comments is not just a good way of documenting what has been
+ taken into account, but most importantly, it provides a way to know that
+ there are no *extra* implicit constraints.
+
+To learn more about how to write documentation for Rust and extra features,
+please take a look at the ``rustdoc`` book at:
+
+ https://doc.rust-lang.org/rustdoc/how-to-write-documentation.html
+
+
+Naming
+------
+
+Rust kernel code follows the usual Rust naming conventions:
+
+ https://rust-lang.github.io/api-guidelines/naming.html
+
+When existing C concepts (e.g. macros, functions, objects...) are wrapped into
+a Rust abstraction, a name as close as reasonably possible to the C side should
+be used in order to avoid confusion and to improve readability when switching
+back and forth between the C and Rust sides. For instance, macros such as
+``pr_info`` from C are named the same in the Rust side.
+
+Having said that, casing should be adjusted to follow the Rust naming
+conventions, and namespacing introduced by modules and types should not be
+repeated in the item names. For instance, when wrapping constants like:
+
+.. code-block:: c
+
+ #define GPIO_LINE_DIRECTION_IN 0
+ #define GPIO_LINE_DIRECTION_OUT 1
+
+The equivalent in Rust may look like (ignoring documentation):
+
+.. code-block:: rust
+
+ pub mod gpio {
+ pub enum LineDirection {
+ In = bindings::GPIO_LINE_DIRECTION_IN as _,
+ Out = bindings::GPIO_LINE_DIRECTION_OUT as _,
+ }
+ }
+
+That is, the equivalent of ``GPIO_LINE_DIRECTION_IN`` would be referred to as
+``gpio::LineDirection::In``. In particular, it should not be named
+``gpio::gpio_line_direction::GPIO_LINE_DIRECTION_IN``.
diff --git a/Documentation/rust/general-information.rst b/Documentation/rust/general-information.rst
new file mode 100644
index 000000000000..49029ee82e55
--- /dev/null
+++ b/Documentation/rust/general-information.rst
@@ -0,0 +1,79 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+General Information
+===================
+
+This document contains useful information to know when working with
+the Rust support in the kernel.
+
+
+Code documentation
+------------------
+
+Rust kernel code is documented using ``rustdoc``, its built-in documentation
+generator.
+
+The generated HTML docs include integrated search, linked items (e.g. types,
+functions, constants), source code, etc. They may be read at (TODO: link when
+in mainline and generated alongside the rest of the documentation):
+
+ http://kernel.org/
+
+The docs can also be easily generated and read locally. This is quite fast
+(same order as compiling the code itself) and no special tools or environment
+are needed. This has the added advantage that they will be tailored to
+the particular kernel configuration used. To generate them, use the ``rustdoc``
+target with the same invocation used for compilation, e.g.::
+
+ make LLVM=1 rustdoc
+
+To read the docs locally in your web browser, run e.g.::
+
+ xdg-open rust/doc/kernel/index.html
+
+To learn about how to write the documentation, please see coding-guidelines.rst.
+
+
+Extra lints
+-----------
+
+While ``rustc`` is a very helpful compiler, some extra lints and analyses are
+available via ``clippy``, a Rust linter. To enable it, pass ``CLIPPY=1`` to
+the same invocation used for compilation, e.g.::
+
+ make LLVM=1 CLIPPY=1
+
+Please note that Clippy may change code generation, thus it should not be
+enabled while building a production kernel.
+
+
+Abstractions vs. bindings
+-------------------------
+
+Abstractions are Rust code wrapping kernel functionality from the C side.
+
+In order to use functions and types from the C side, bindings are created.
+Bindings are the declarations for Rust of those functions and types from
+the C side.
+
+For instance, one may write a ``Mutex`` abstraction in Rust which wraps
+a ``struct mutex`` from the C side and calls its functions through the bindings.
+
+Abstractions are not available for all the kernel internal APIs and concepts,
+but it is intended that coverage is expanded as time goes on. "Leaf" modules
+(e.g. drivers) should not use the C bindings directly. Instead, subsystems
+should provide as-safe-as-possible abstractions as needed.
+
+
+Conditional compilation
+-----------------------
+
+Rust code has access to conditional compilation based on the kernel
+configuration:
+
+.. code-block:: rust
+
+ #[cfg(CONFIG_X)] // Enabled (`y` or `m`)
+ #[cfg(CONFIG_X="y")] // Enabled as a built-in (`y`)
+ #[cfg(CONFIG_X="m")] // Enabled as a module (`m`)
+ #[cfg(not(CONFIG_X))] // Disabled
diff --git a/Documentation/rust/index.rst b/Documentation/rust/index.rst
new file mode 100644
index 000000000000..4ae8c66b94fa
--- /dev/null
+++ b/Documentation/rust/index.rst
@@ -0,0 +1,22 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+Rust
+====
+
+Documentation related to Rust within the kernel. To start using Rust
+in the kernel, please read the quick-start.rst guide.
+
+.. toctree::
+ :maxdepth: 1
+
+ quick-start
+ general-information
+ coding-guidelines
+ arch-support
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/rust/quick-start.rst b/Documentation/rust/quick-start.rst
new file mode 100644
index 000000000000..13b7744b1e27
--- /dev/null
+++ b/Documentation/rust/quick-start.rst
@@ -0,0 +1,232 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+Quick Start
+===========
+
+This document describes how to get started with kernel development in Rust.
+
+
+Requirements: Building
+----------------------
+
+This section explains how to fetch the tools needed for building.
+
+Some of these requirements might be available from Linux distributions
+under names like ``rustc``, ``rust-src``, ``rust-bindgen``, etc. However,
+at the time of writing, they are likely not to be recent enough unless
+the distribution tracks the latest releases.
+
+To easily check whether the requirements are met, the following target
+can be used::
+
+ make LLVM=1 rustavailable
+
+This triggers the same logic used by Kconfig to determine whether
+``RUST_IS_AVAILABLE`` should be enabled; but it also explains why not
+if that is the case.
+
+
+rustc
+*****
+
+A particular version of the Rust compiler is required. Newer versions may or
+may not work because, for the moment, the kernel depends on some unstable
+Rust features.
+
+If ``rustup`` is being used, enter the checked out source code directory
+and run::
+
+ rustup override set $(scripts/min-tool-version.sh rustc)
+
+Otherwise, fetch a standalone installer or install ``rustup`` from:
+
+ https://www.rust-lang.org
+
+
+Rust standard library source
+****************************
+
+The Rust standard library source is required because the build system will
+cross-compile ``core`` and ``alloc``.
+
+If ``rustup`` is being used, run::
+
+ rustup component add rust-src
+
+The components are installed per toolchain, thus upgrading the Rust compiler
+version later on requires re-adding the component.
+
+Otherwise, if a standalone installer is used, the Rust repository may be cloned
+into the installation folder of the toolchain::
+
+ git clone --recurse-submodules \
+ --branch $(scripts/min-tool-version.sh rustc) \
+ https://github.com/rust-lang/rust \
+ $(rustc --print sysroot)/lib/rustlib/src/rust
+
+In this case, upgrading the Rust compiler version later on requires manually
+updating this clone.
+
+
+libclang
+********
+
+``libclang`` (part of LLVM) is used by ``bindgen`` to understand the C code
+in the kernel, which means LLVM needs to be installed; like when the kernel
+is compiled with ``CC=clang`` or ``LLVM=1``.
+
+Linux distributions are likely to have a suitable one available, so it is
+best to check that first.
+
+There are also some binaries for several systems and architectures uploaded at:
+
+ https://releases.llvm.org/download.html
+
+Otherwise, building LLVM takes quite a while, but it is not a complex process:
+
+ https://llvm.org/docs/GettingStarted.html#getting-the-source-code-and-building-llvm
+
+Please see Documentation/kbuild/llvm.rst for more information and further ways
+to fetch pre-built releases and distribution packages.
+
+
+bindgen
+*******
+
+The bindings to the C side of the kernel are generated at build time using
+the ``bindgen`` tool. A particular version is required.
+
+Install it via (note that this will download and build the tool from source)::
+
+ cargo install --locked --version $(scripts/min-tool-version.sh bindgen) bindgen
+
+
+Requirements: Developing
+------------------------
+
+This section explains how to fetch the tools needed for developing. That is,
+they are not needed when just building the kernel.
+
+
+rustfmt
+*******
+
+The ``rustfmt`` tool is used to automatically format all the Rust kernel code,
+including the generated C bindings (for details, please see
+coding-guidelines.rst).
+
+If ``rustup`` is being used, its ``default`` profile already installs the tool,
+thus nothing needs to be done. If another profile is being used, the component
+can be installed manually::
+
+ rustup component add rustfmt
+
+The standalone installers also come with ``rustfmt``.
+
+
+clippy
+******
+
+``clippy`` is a Rust linter. Running it provides extra warnings for Rust code.
+It can be run by passing ``CLIPPY=1`` to ``make`` (for details, please see
+general-information.rst).
+
+If ``rustup`` is being used, its ``default`` profile already installs the tool,
+thus nothing needs to be done. If another profile is being used, the component
+can be installed manually::
+
+ rustup component add clippy
+
+The standalone installers also come with ``clippy``.
+
+
+cargo
+*****
+
+``cargo`` is the Rust native build system. It is currently required to run
+the tests since it is used to build a custom standard library that contains
+the facilities provided by the custom ``alloc`` in the kernel. The tests can
+be run using the ``rusttest`` Make target.
+
+If ``rustup`` is being used, all the profiles already install the tool,
+thus nothing needs to be done.
+
+The standalone installers also come with ``cargo``.
+
+
+rustdoc
+*******
+
+``rustdoc`` is the documentation tool for Rust. It generates pretty HTML
+documentation for Rust code (for details, please see
+general-information.rst).
+
+``rustdoc`` is also used to test the examples provided in documented Rust code
+(called doctests or documentation tests). The ``rusttest`` Make target uses
+this feature.
+
+If ``rustup`` is being used, all the profiles already install the tool,
+thus nothing needs to be done.
+
+The standalone installers also come with ``rustdoc``.
+
+
+rust-analyzer
+*************
+
+The `rust-analyzer <https://rust-analyzer.github.io/>`_ language server can
+be used with many editors to enable syntax highlighting, completion, go to
+definition, and other features.
+
+``rust-analyzer`` needs a configuration file, ``rust-project.json``, which
+can be generated by the ``rust-analyzer`` Make target.
+
+
+Configuration
+-------------
+
+``Rust support`` (``CONFIG_RUST``) needs to be enabled in the ``General setup``
+menu. The option is only shown if a suitable Rust toolchain is found (see
+above), as long as the other requirements are met. In turn, this will make
+visible the rest of options that depend on Rust.
+
+Afterwards, go to::
+
+ Kernel hacking
+ -> Sample kernel code
+ -> Rust samples
+
+And enable some sample modules either as built-in or as loadable.
+
+
+Building
+--------
+
+Building a kernel with a complete LLVM toolchain is the best supported setup
+at the moment. That is::
+
+ make LLVM=1
+
+For architectures that do not support a full LLVM toolchain, use::
+
+ make CC=clang
+
+Using GCC also works for some configurations, but it is very experimental at
+the moment.
+
+
+Hacking
+-------
+
+To dive deeper, take a look at the source code of the samples
+at ``samples/rust/``, the Rust support code under ``rust/`` and
+the ``Rust hacking`` menu under ``Kernel hacking``.
+
+If GDB/Binutils is used and Rust symbols are not getting demangled, the reason
+is the toolchain does not support Rust's new v0 mangling scheme yet.
+There are a few ways out:
+
+ - Install a newer release (GDB >= 10.2, Binutils >= 2.36).
+
+ - Some versions of GDB (e.g. vanilla GDB 10.1) are able to use
+ the pre-demangled names embedded in the debug info (``CONFIG_DEBUG_INFO``).
--
2.37.1
Rust symbols can become quite long due to namespacing introduced
by modules, types, traits, generics, etc. For instance,
the following code:
pub mod my_module {
pub struct MyType;
pub struct MyGenericType<T>(T);
pub trait MyTrait {
fn my_method() -> u32;
}
impl MyTrait for MyGenericType<MyType> {
fn my_method() -> u32 {
42
}
}
}
generates a symbol of length 96 when using the upcoming v0 mangling scheme:
_RNvXNtCshGpAVYOtgW1_7example9my_moduleINtB2_13MyGenericTypeNtB2_6MyTypeENtB2_7MyTrait9my_method
At the moment, Rust symbols may reach up to 300 in length.
Setting 512 as the maximum seems like a reasonable choice to
keep some headroom.
Reviewed-by: Kees Cook <[email protected]>
Reviewed-by: Petr Mladek <[email protected]>
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Co-developed-by: Gary Guo <[email protected]>
Signed-off-by: Gary Guo <[email protected]>
Co-developed-by: Boqun Feng <[email protected]>
Signed-off-by: Boqun Feng <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
include/linux/kallsyms.h | 2 +-
kernel/livepatch/core.c | 4 ++--
scripts/kallsyms.c | 4 ++--
tools/include/linux/kallsyms.h | 2 +-
tools/lib/perf/include/perf/event.h | 2 +-
tools/lib/symbol/kallsyms.h | 2 +-
6 files changed, 8 insertions(+), 8 deletions(-)
diff --git a/include/linux/kallsyms.h b/include/linux/kallsyms.h
index ad39636e0c3f..649faac31ddb 100644
--- a/include/linux/kallsyms.h
+++ b/include/linux/kallsyms.h
@@ -15,7 +15,7 @@
#include <asm/sections.h>
-#define KSYM_NAME_LEN 128
+#define KSYM_NAME_LEN 512
#define KSYM_SYMBOL_LEN (sizeof("%s+%#lx/%#lx [%s %s]") + \
(KSYM_NAME_LEN - 1) + \
2*(BITS_PER_LONG*3/10) + (MODULE_NAME_LEN - 1) + \
diff --git a/kernel/livepatch/core.c b/kernel/livepatch/core.c
index bc475e62279d..ec06ce59d728 100644
--- a/kernel/livepatch/core.c
+++ b/kernel/livepatch/core.c
@@ -213,7 +213,7 @@ static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab,
* we use the smallest/strictest upper bound possible (56, based on
* the current definition of MODULE_NAME_LEN) to prevent overflows.
*/
- BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 128);
+ BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512);
relas = (Elf_Rela *) relasec->sh_addr;
/* For each rela in this klp relocation section */
@@ -227,7 +227,7 @@ static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab,
/* Format: .klp.sym.sym_objname.sym_name,sympos */
cnt = sscanf(strtab + sym->st_name,
- ".klp.sym.%55[^.].%127[^,],%lu",
+ ".klp.sym.%55[^.].%511[^,],%lu",
sym_objname, sym_name, &sympos);
if (cnt != 3) {
pr_err("symbol %s has an incorrectly formatted name\n",
diff --git a/scripts/kallsyms.c b/scripts/kallsyms.c
index 9da3b7767e9d..3b64dda7e4cc 100644
--- a/scripts/kallsyms.c
+++ b/scripts/kallsyms.c
@@ -30,10 +30,10 @@
#define _stringify_1(x) #x
#define _stringify(x) _stringify_1(x)
-#define KSYM_NAME_LEN 128
+#define KSYM_NAME_LEN 512
/* A substantially bigger size than the current maximum. */
-#define KSYM_NAME_LEN_BUFFER 512
+#define KSYM_NAME_LEN_BUFFER 2048
_Static_assert(
KSYM_NAME_LEN_BUFFER == KSYM_NAME_LEN * 4,
"Please keep KSYM_NAME_LEN_BUFFER in sync with KSYM_NAME_LEN"
diff --git a/tools/include/linux/kallsyms.h b/tools/include/linux/kallsyms.h
index efb6c3f5f2a9..5a37ccbec54f 100644
--- a/tools/include/linux/kallsyms.h
+++ b/tools/include/linux/kallsyms.h
@@ -6,7 +6,7 @@
#include <stdio.h>
#include <unistd.h>
-#define KSYM_NAME_LEN 128
+#define KSYM_NAME_LEN 512
struct module;
diff --git a/tools/lib/perf/include/perf/event.h b/tools/lib/perf/include/perf/event.h
index e7758707cadd..116a80c31675 100644
--- a/tools/lib/perf/include/perf/event.h
+++ b/tools/lib/perf/include/perf/event.h
@@ -95,7 +95,7 @@ struct perf_record_throttle {
};
#ifndef KSYM_NAME_LEN
-#define KSYM_NAME_LEN 256
+#define KSYM_NAME_LEN 512
#endif
struct perf_record_ksymbol {
diff --git a/tools/lib/symbol/kallsyms.h b/tools/lib/symbol/kallsyms.h
index 72ab9870454b..542f9b059c3b 100644
--- a/tools/lib/symbol/kallsyms.h
+++ b/tools/lib/symbol/kallsyms.h
@@ -7,7 +7,7 @@
#include <linux/types.h>
#ifndef KSYM_NAME_LEN
-#define KSYM_NAME_LEN 256
+#define KSYM_NAME_LEN 512
#endif
static inline u8 kallsyms2elf_binding(char type)
--
2.37.1
From: Wedson Almeida Filho <[email protected]>
This module contains the kernel APIs related to synchronisation that
have been ported or wrapped for usage by Rust code in the kernel and
is shared by all of them.
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Geoffrey Thomas <[email protected]>
Signed-off-by: Geoffrey Thomas <[email protected]>
Co-developed-by: Sven Van Asbroeck <[email protected]>
Signed-off-by: Sven Van Asbroeck <[email protected]>
Co-developed-by: Gary Guo <[email protected]>
Signed-off-by: Gary Guo <[email protected]>
Co-developed-by: Daniel Xu <[email protected]>
Signed-off-by: Daniel Xu <[email protected]>
Co-developed-by: Hsiang-Cheng Yang <[email protected]>
Signed-off-by: Hsiang-Cheng Yang <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Co-developed-by: Miguel Ojeda <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
rust/kernel/sync.rs | 161 ++++++++++
rust/kernel/sync/arc.rs | 582 ++++++++++++++++++++++++++++++++++
rust/kernel/sync/condvar.rs | 140 ++++++++
rust/kernel/sync/guard.rs | 159 ++++++++++
rust/kernel/sync/locked_by.rs | 111 +++++++
rust/kernel/sync/mutex.rs | 149 +++++++++
rust/kernel/sync/nowait.rs | 188 +++++++++++
rust/kernel/sync/rcu.rs | 52 +++
rust/kernel/sync/revocable.rs | 246 ++++++++++++++
rust/kernel/sync/rwsem.rs | 196 ++++++++++++
rust/kernel/sync/seqlock.rs | 201 ++++++++++++
rust/kernel/sync/smutex.rs | 290 +++++++++++++++++
rust/kernel/sync/spinlock.rs | 357 +++++++++++++++++++++
13 files changed, 2832 insertions(+)
create mode 100644 rust/kernel/sync.rs
create mode 100644 rust/kernel/sync/arc.rs
create mode 100644 rust/kernel/sync/condvar.rs
create mode 100644 rust/kernel/sync/guard.rs
create mode 100644 rust/kernel/sync/locked_by.rs
create mode 100644 rust/kernel/sync/mutex.rs
create mode 100644 rust/kernel/sync/nowait.rs
create mode 100644 rust/kernel/sync/rcu.rs
create mode 100644 rust/kernel/sync/revocable.rs
create mode 100644 rust/kernel/sync/rwsem.rs
create mode 100644 rust/kernel/sync/seqlock.rs
create mode 100644 rust/kernel/sync/smutex.rs
create mode 100644 rust/kernel/sync/spinlock.rs
diff --git a/rust/kernel/sync.rs b/rust/kernel/sync.rs
new file mode 100644
index 000000000000..dbf705d573e6
--- /dev/null
+++ b/rust/kernel/sync.rs
@@ -0,0 +1,161 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Synchronisation primitives.
+//!
+//! This module contains the kernel APIs related to synchronisation that have been ported or
+//! wrapped for usage by Rust code in the kernel and is shared by all of them.
+//!
+//! # Examples
+//!
+//! ```
+//! # use kernel::mutex_init;
+//! # use kernel::sync::Mutex;
+//! # use alloc::boxed::Box;
+//! # use core::pin::Pin;
+//! // SAFETY: `init` is called below.
+//! let mut data = Pin::from(Box::try_new(unsafe { Mutex::new(10) }).unwrap());
+//! mutex_init!(data.as_mut(), "test::data");
+//!
+//! assert_eq!(*data.lock(), 10);
+//! *data.lock() = 20;
+//! assert_eq!(*data.lock(), 20);
+//! ```
+
+use crate::{bindings, str::CStr};
+use core::pin::Pin;
+
+mod arc;
+mod condvar;
+mod guard;
+mod locked_by;
+mod mutex;
+mod nowait;
+mod revocable;
+mod rwsem;
+mod seqlock;
+pub mod smutex;
+mod spinlock;
+
+pub use arc::{Ref, RefBorrow, UniqueRef};
+pub use condvar::CondVar;
+pub use guard::{Guard, Lock, LockFactory, LockInfo, LockIniter, ReadLock, WriteLock};
+pub use locked_by::LockedBy;
+pub use mutex::{Mutex, RevocableMutex, RevocableMutexGuard};
+pub use nowait::{NoWaitLock, NoWaitLockGuard};
+pub use revocable::{Revocable, RevocableGuard};
+pub use rwsem::{RevocableRwSemaphore, RevocableRwSemaphoreGuard, RwSemaphore};
+pub use seqlock::{SeqLock, SeqLockReadGuard};
+pub use spinlock::{RawSpinLock, SpinLock};
+
+/// Safely initialises an object that has an `init` function that takes a name and a lock class as
+/// arguments, examples of these are [`Mutex`] and [`SpinLock`]. Each of them also provides a more
+/// specialised name that uses this macro.
+#[doc(hidden)]
+#[macro_export]
+macro_rules! init_with_lockdep {
+ ($obj:expr, $name:expr) => {{
+ static mut CLASS1: core::mem::MaybeUninit<$crate::bindings::lock_class_key> =
+ core::mem::MaybeUninit::uninit();
+ static mut CLASS2: core::mem::MaybeUninit<$crate::bindings::lock_class_key> =
+ core::mem::MaybeUninit::uninit();
+ let obj = $obj;
+ let name = $crate::c_str!($name);
+ // SAFETY: `CLASS1` and `CLASS2` are never used by Rust code directly; the C portion of the
+ // kernel may change it though.
+ #[allow(unused_unsafe)]
+ unsafe {
+ $crate::sync::NeedsLockClass::init(obj, name, CLASS1.as_mut_ptr(), CLASS2.as_mut_ptr())
+ };
+ }};
+}
+
+/// A trait for types that need a lock class during initialisation.
+///
+/// Implementers of this trait benefit from the [`init_with_lockdep`] macro that generates a new
+/// class for each initialisation call site.
+pub trait NeedsLockClass {
+ /// Initialises the type instance so that it can be safely used.
+ ///
+ /// Callers are encouraged to use the [`init_with_lockdep`] macro as it automatically creates a
+ /// new lock class on each usage.
+ ///
+ /// # Safety
+ ///
+ /// `key1` and `key2` must point to valid memory locations and remain valid until `self` is
+ /// dropped.
+ unsafe fn init(
+ self: Pin<&mut Self>,
+ name: &'static CStr,
+ key1: *mut bindings::lock_class_key,
+ key2: *mut bindings::lock_class_key,
+ );
+}
+
+/// Automatically initialises static instances of synchronisation primitives.
+///
+/// The syntax resembles that of regular static variables, except that the value assigned is that
+/// of the protected type (if one exists). In the examples below, all primitives except for
+/// [`CondVar`] require the inner value to be supplied.
+///
+/// # Examples
+///
+/// ```ignore
+/// # use kernel::{init_static_sync, sync::{CondVar, Mutex, RevocableMutex, SpinLock}};
+/// struct Test {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// init_static_sync! {
+/// static A: Mutex<Test> = Test { a: 10, b: 20 };
+///
+/// /// Documentation for `B`.
+/// pub static B: Mutex<u32> = 0;
+///
+/// pub(crate) static C: SpinLock<Test> = Test { a: 10, b: 20 };
+/// static D: CondVar;
+///
+/// static E: RevocableMutex<Test> = Test { a: 30, b: 40 };
+/// }
+/// ```
+#[macro_export]
+macro_rules! init_static_sync {
+ ($($(#[$outer:meta])* $v:vis static $id:ident : $t:ty $(= $value:expr)?;)*) => {
+ $(
+ $(#[$outer])*
+ $v static $id: $t = {
+ #[link_section = ".init_array"]
+ #[used]
+ static TMP: extern "C" fn() = {
+ extern "C" fn constructor() {
+ // SAFETY: This locally-defined function is only called from a constructor,
+ // which guarantees that `$id` is not accessible from other threads
+ // concurrently.
+ #[allow(clippy::cast_ref_to_mut)]
+ let mutable = unsafe { &mut *(&$id as *const _ as *mut $t) };
+ // SAFETY: It's a shared static, so it cannot move.
+ let pinned = unsafe { core::pin::Pin::new_unchecked(mutable) };
+ $crate::init_with_lockdep!(pinned, stringify!($id));
+ }
+ constructor
+ };
+ $crate::init_static_sync!(@call_new $t, $($value)?)
+ };
+ )*
+ };
+ (@call_new $t:ty, $value:expr) => {{
+ let v = $value;
+ // SAFETY: the initialisation function is called by the constructor above.
+ unsafe { <$t>::new(v) }
+ }};
+ (@call_new $t:ty,) => {
+ // SAFETY: the initialisation function is called by the constructor above.
+ unsafe { <$t>::new() }
+ };
+}
+
+/// Reschedules the caller's task if needed.
+pub fn cond_resched() -> bool {
+ // SAFETY: No arguments, reschedules `current` if needed.
+ unsafe { bindings::cond_resched() != 0 }
+}
diff --git a/rust/kernel/sync/arc.rs b/rust/kernel/sync/arc.rs
new file mode 100644
index 000000000000..daf4aba08672
--- /dev/null
+++ b/rust/kernel/sync/arc.rs
@@ -0,0 +1,582 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! A reference-counted pointer.
+//!
+//! This module implements a way for users to create reference-counted objects and pointers to
+//! them. Such a pointer automatically increments and decrements the count, and drops the
+//! underlying object when it reaches zero. It is also safe to use concurrently from multiple
+//! threads.
+//!
+//! It is different from the standard library's [`Arc`] in a few ways:
+//! 1. It is backed by the kernel's `refcount_t` type.
+//! 2. It does not support weak references, which allows it to be half the size.
+//! 3. It saturates the reference count instead of aborting when it goes over a threshold.
+//! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
+//!
+//! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
+
+use crate::{bindings, error::code::*, Error, Opaque, Result};
+use alloc::{
+ alloc::{alloc, dealloc},
+ vec::Vec,
+};
+use core::{
+ alloc::Layout,
+ convert::{AsRef, TryFrom},
+ marker::{PhantomData, Unsize},
+ mem::{ManuallyDrop, MaybeUninit},
+ ops::{Deref, DerefMut},
+ pin::Pin,
+ ptr::{self, NonNull},
+};
+
+/// A reference-counted pointer to an instance of `T`.
+///
+/// The reference count is incremented when new instances of [`Ref`] are created, and decremented
+/// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
+///
+/// # Invariants
+///
+/// The reference count on an instance of [`Ref`] is always non-zero.
+/// The object pointed to by [`Ref`] is always pinned.
+pub struct Ref<T: ?Sized> {
+ ptr: NonNull<RefInner<T>>,
+ _p: PhantomData<RefInner<T>>,
+}
+
+#[repr(C)]
+struct RefInner<T: ?Sized> {
+ refcount: Opaque<bindings::refcount_t>,
+ data: T,
+}
+
+// This is to allow [`Ref`] (and variants) to be used as the type of `self`.
+impl<T: ?Sized> core::ops::Receiver for Ref<T> {}
+
+// This is to allow [`RefBorrow`] (and variants) to be used as the type of `self`.
+impl<T: ?Sized> core::ops::Receiver for RefBorrow<'_, T> {}
+
+// This is to allow coercion from `Ref<T>` to `Ref<U>` if `T` can be converted to the
+// dynamically-sized type (DST) `U`.
+impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Ref<U>> for Ref<T> {}
+
+// This is to allow `Ref<U>` to be dispatched on when `Ref<T>` can be coerced into `Ref<U>`.
+impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Ref<U>> for Ref<T> {}
+
+// SAFETY: It is safe to send `Ref<T>` to another thread when the underlying `T` is `Sync` because
+// it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
+// `T` to be `Send` because any thread that has a `Ref<T>` may ultimately access `T` directly, for
+// example, when the reference count reaches zero and `T` is dropped.
+unsafe impl<T: ?Sized + Sync + Send> Send for Ref<T> {}
+
+// SAFETY: It is safe to send `&Ref<T>` to another thread when the underlying `T` is `Sync` for
+// the same reason as above. `T` needs to be `Send` as well because a thread can clone a `&Ref<T>`
+// into a `Ref<T>`, which may lead to `T` being accessed by the same reasoning as above.
+unsafe impl<T: ?Sized + Sync + Send> Sync for Ref<T> {}
+
+impl<T> Ref<T> {
+ /// Constructs a new reference counted instance of `T`.
+ pub fn try_new(contents: T) -> Result<Self> {
+ let layout = Layout::new::<RefInner<T>>();
+ // SAFETY: The layout size is guaranteed to be non-zero because `RefInner` contains the
+ // reference count.
+ let inner = NonNull::new(unsafe { alloc(layout) })
+ .ok_or(ENOMEM)?
+ .cast::<RefInner<T>>();
+
+ // INVARIANT: The refcount is initialised to a non-zero value.
+ let value = RefInner {
+ refcount: Opaque::new(new_refcount()),
+ data: contents,
+ };
+ // SAFETY: `inner` is writable and properly aligned.
+ unsafe { inner.as_ptr().write(value) };
+
+ // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
+ // `Ref` object.
+ Ok(unsafe { Self::from_inner(inner) })
+ }
+
+ /// Deconstructs a [`Ref`] object into a `usize`.
+ ///
+ /// It can be reconstructed once via [`Ref::from_usize`].
+ pub fn into_usize(obj: Self) -> usize {
+ ManuallyDrop::new(obj).ptr.as_ptr() as _
+ }
+
+ /// Borrows a [`Ref`] instance previously deconstructed via [`Ref::into_usize`].
+ ///
+ /// # Safety
+ ///
+ /// `encoded` must have been returned by a previous call to [`Ref::into_usize`]. Additionally,
+ /// [`Ref::from_usize`] can only be called after *all* instances of [`RefBorrow`] have been
+ /// dropped.
+ pub unsafe fn borrow_usize<'a>(encoded: usize) -> RefBorrow<'a, T> {
+ // SAFETY: By the safety requirement of this function, we know that `encoded` came from
+ // a previous call to `Ref::into_usize`.
+ let inner = NonNull::new(encoded as *mut RefInner<T>).unwrap();
+
+ // SAFETY: The safety requirements ensure that the object remains alive for the lifetime of
+ // the returned value. There is no way to create mutable references to the object.
+ unsafe { RefBorrow::new(inner) }
+ }
+
+ /// Recreates a [`Ref`] instance previously deconstructed via [`Ref::into_usize`].
+ ///
+ /// # Safety
+ ///
+ /// `encoded` must have been returned by a previous call to [`Ref::into_usize`]. Additionally,
+ /// it can only be called once for each previous call to [`Ref::into_usize`].
+ pub unsafe fn from_usize(encoded: usize) -> Self {
+ // SAFETY: By the safety invariants we know that `encoded` came from `Ref::into_usize`, so
+ // the reference count held then will be owned by the new `Ref` object.
+ unsafe { Self::from_inner(NonNull::new(encoded as _).unwrap()) }
+ }
+}
+
+impl<T: ?Sized> Ref<T> {
+ /// Constructs a new [`Ref`] from an existing [`RefInner`].
+ ///
+ /// # Safety
+ ///
+ /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
+ /// count, one of which will be owned by the new [`Ref`] instance.
+ unsafe fn from_inner(inner: NonNull<RefInner<T>>) -> Self {
+ // INVARIANT: By the safety requirements, the invariants hold.
+ Ref {
+ ptr: inner,
+ _p: PhantomData,
+ }
+ }
+
+ /// Determines if two reference-counted pointers point to the same underlying instance of `T`.
+ pub fn ptr_eq(a: &Self, b: &Self) -> bool {
+ ptr::eq(a.ptr.as_ptr(), b.ptr.as_ptr())
+ }
+
+ /// Deconstructs a [`Ref`] object into a raw pointer.
+ ///
+ /// It can be reconstructed once via [`Ref::from_raw`].
+ pub fn into_raw(obj: Self) -> *const T {
+ let ret = &*obj as *const T;
+ core::mem::forget(obj);
+ ret
+ }
+
+ /// Recreates a [`Ref`] instance previously deconstructed via [`Ref::into_raw`].
+ ///
+ /// This code relies on the `repr(C)` layout of structs as described in
+ /// <https://doc.rust-lang.org/reference/type-layout.html#reprc-structs>.
+ ///
+ /// # Safety
+ ///
+ /// `ptr` must have been returned by a previous call to [`Ref::into_raw`]. Additionally, it
+ /// can only be called once for each previous call to [`Ref::into_raw`].
+ pub unsafe fn from_raw(ptr: *const T) -> Self {
+ // SAFETY: The safety requirement ensures that the pointer is valid.
+ let align = core::mem::align_of_val(unsafe { &*ptr });
+ let offset = Layout::new::<RefInner<()>>()
+ .align_to(align)
+ .unwrap()
+ .pad_to_align()
+ .size();
+ // SAFETY: The pointer is in bounds because by the safety requirements `ptr` came from
+ // `Ref::into_raw`, so it is a pointer `offset` bytes from the beginning of the allocation.
+ let data = unsafe { (ptr as *const u8).sub(offset) };
+ let metadata = ptr::metadata(ptr as *const RefInner<T>);
+ let ptr = ptr::from_raw_parts_mut(data as _, metadata);
+ // SAFETY: By the safety requirements we know that `ptr` came from `Ref::into_raw`, so the
+ // reference count held then will be owned by the new `Ref` object.
+ unsafe { Self::from_inner(NonNull::new(ptr).unwrap()) }
+ }
+
+ /// Returns a [`RefBorrow`] from the given [`Ref`].
+ ///
+ /// This is useful when the argument of a function call is a [`RefBorrow`] (e.g., in a method
+ /// receiver), but we have a [`Ref`] instead. Getting a [`RefBorrow`] is free when optimised.
+ #[inline]
+ pub fn as_ref_borrow(&self) -> RefBorrow<'_, T> {
+ // SAFETY: The constraint that lifetime of the shared reference must outlive that of
+ // the returned `RefBorrow` ensures that the object remains alive.
+ unsafe { RefBorrow::new(self.ptr) }
+ }
+}
+
+impl<T: ?Sized> Deref for Ref<T> {
+ type Target = T;
+
+ fn deref(&self) -> &Self::Target {
+ // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
+ // safe to dereference it.
+ unsafe { &self.ptr.as_ref().data }
+ }
+}
+
+impl<T: ?Sized> Clone for Ref<T> {
+ fn clone(&self) -> Self {
+ // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
+ // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
+ // safe to increment the refcount.
+ unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) };
+
+ // SAFETY: We just incremented the refcount. This increment is now owned by the new `Ref`.
+ unsafe { Self::from_inner(self.ptr) }
+ }
+}
+
+impl<T: ?Sized> AsRef<T> for Ref<T> {
+ fn as_ref(&self) -> &T {
+ // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
+ // safe to dereference it.
+ unsafe { &self.ptr.as_ref().data }
+ }
+}
+
+impl<T: ?Sized> Drop for Ref<T> {
+ fn drop(&mut self) {
+ // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
+ // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
+ // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
+ // freed/invalid memory as long as it is never dereferenced.
+ let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
+
+ // INVARIANT: If the refcount reaches zero, there are no other instances of `Ref`, and
+ // this instance is being dropped, so the broken invariant is not observable.
+ // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
+ let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
+ if is_zero {
+ // The count reached zero, we must free the memory.
+
+ // SAFETY: This thread holds the only remaining reference to `self`, so it is safe to
+ // get a mutable reference to it.
+ let inner = unsafe { self.ptr.as_mut() };
+ let layout = Layout::for_value(inner);
+ // SAFETY: The value stored in inner is valid.
+ unsafe { core::ptr::drop_in_place(inner) };
+ // SAFETY: The pointer was initialised from the result of a call to `alloc`.
+ unsafe { dealloc(self.ptr.cast().as_ptr(), layout) };
+ }
+ }
+}
+
+impl<T> TryFrom<Vec<T>> for Ref<[T]> {
+ type Error = Error;
+
+ fn try_from(mut v: Vec<T>) -> Result<Self> {
+ let value_layout = Layout::array::<T>(v.len())?;
+ let layout = Layout::new::<RefInner<()>>()
+ .extend(value_layout)?
+ .0
+ .pad_to_align();
+ // SAFETY: The layout size is guaranteed to be non-zero because `RefInner` contains the
+ // reference count.
+ let ptr = NonNull::new(unsafe { alloc(layout) }).ok_or(ENOMEM)?;
+ let inner =
+ core::ptr::slice_from_raw_parts_mut(ptr.as_ptr() as _, v.len()) as *mut RefInner<[T]>;
+
+ // SAFETY: Just an FFI call that returns a `refcount_t` initialised to 1.
+ let count = Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) });
+ // SAFETY: `inner.refcount` is writable and properly aligned.
+ unsafe { core::ptr::addr_of_mut!((*inner).refcount).write(count) };
+ // SAFETY: The contents of `v` as readable and properly aligned; `inner.data` is writable
+ // and properly aligned. There is no overlap between the two because `inner` is a new
+ // allocation.
+ unsafe {
+ core::ptr::copy_nonoverlapping(
+ v.as_ptr(),
+ core::ptr::addr_of_mut!((*inner).data) as *mut [T] as *mut T,
+ v.len(),
+ )
+ };
+ // SAFETY: We're setting the new length to zero, so it is <= to capacity, and old_len..0 is
+ // an empty range (so satisfies vacuously the requirement of being initialised).
+ unsafe { v.set_len(0) };
+ // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
+ // `Ref` object.
+ Ok(unsafe { Self::from_inner(NonNull::new(inner).unwrap()) })
+ }
+}
+
+impl<T: ?Sized> From<UniqueRef<T>> for Ref<T> {
+ fn from(item: UniqueRef<T>) -> Self {
+ item.inner
+ }
+}
+
+impl<T: ?Sized> From<UniqueRef<T>> for Pin<UniqueRef<T>> {
+ fn from(obj: UniqueRef<T>) -> Self {
+ // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueRef<T>>` (unless `T`
+ // is `Unpin`), so it is ok to convert it to `Pin<UniqueRef<T>>`.
+ unsafe { Pin::new_unchecked(obj) }
+ }
+}
+
+impl<T: ?Sized> From<Pin<UniqueRef<T>>> for Ref<T> {
+ fn from(item: Pin<UniqueRef<T>>) -> Self {
+ // SAFETY: The type invariants of `Ref` guarantee that the data is pinned.
+ unsafe { Pin::into_inner_unchecked(item).inner }
+ }
+}
+
+/// A borrowed [`Ref`] with manually-managed lifetime.
+///
+/// # Invariants
+///
+/// There are no mutable references to the underlying [`Ref`], and it remains valid for the lifetime
+/// of the [`RefBorrow`] instance.
+pub struct RefBorrow<'a, T: ?Sized + 'a> {
+ inner: NonNull<RefInner<T>>,
+ _p: PhantomData<&'a ()>,
+}
+
+impl<T: ?Sized> Clone for RefBorrow<'_, T> {
+ fn clone(&self) -> Self {
+ *self
+ }
+}
+
+impl<T: ?Sized> Copy for RefBorrow<'_, T> {}
+
+impl<T: ?Sized> RefBorrow<'_, T> {
+ /// Creates a new [`RefBorrow`] instance.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure the following for the lifetime of the returned [`RefBorrow`] instance:
+ /// 1. That `obj` remains valid;
+ /// 2. That no mutable references to `obj` are created.
+ unsafe fn new(inner: NonNull<RefInner<T>>) -> Self {
+ // INVARIANT: The safety requirements guarantee the invariants.
+ Self {
+ inner,
+ _p: PhantomData,
+ }
+ }
+}
+
+impl<T: ?Sized> From<RefBorrow<'_, T>> for Ref<T> {
+ fn from(b: RefBorrow<'_, T>) -> Self {
+ // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
+ // guarantees that `drop` isn't called, so it's ok that the temporary `Ref` doesn't own the
+ // increment.
+ ManuallyDrop::new(unsafe { Ref::from_inner(b.inner) })
+ .deref()
+ .clone()
+ }
+}
+
+impl<T: ?Sized> Deref for RefBorrow<'_, T> {
+ type Target = T;
+
+ fn deref(&self) -> &Self::Target {
+ // SAFETY: By the type invariant, the underlying object is still alive with no mutable
+ // references to it, so it is safe to create a shared reference.
+ unsafe { &self.inner.as_ref().data }
+ }
+}
+
+/// A refcounted object that is known to have a refcount of 1.
+///
+/// It is mutable and can be converted to a [`Ref`] so that it can be shared.
+///
+/// # Invariants
+///
+/// `inner` always has a reference count of 1.
+///
+/// # Examples
+///
+/// In the following example, we make changes to the inner object before turning it into a
+/// `Ref<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
+/// cannot fail.
+///
+/// ```
+/// use kernel::sync::{Ref, UniqueRef};
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// fn test() -> Result<Ref<Example>> {
+/// let mut x = UniqueRef::try_new(Example { a: 10, b: 20 })?;
+/// x.a += 1;
+/// x.b += 1;
+/// Ok(x.into())
+/// }
+///
+/// # test();
+/// ```
+///
+/// In the following example we first allocate memory for a ref-counted `Example` but we don't
+/// initialise it on allocation. We do initialise it later with a call to [`UniqueRef::write`],
+/// followed by a conversion to `Ref<Example>`. This is particularly useful when allocation happens
+/// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
+///
+/// ```
+/// use kernel::sync::{Ref, UniqueRef};
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// fn test() -> Result<Ref<Example>> {
+/// let x = UniqueRef::try_new_uninit()?;
+/// Ok(x.write(Example { a: 10, b: 20 }).into())
+/// }
+///
+/// # test();
+/// ```
+///
+/// In the last example below, the caller gets a pinned instance of `Example` while converting to
+/// `Ref<Example>`; this is useful in scenarios where one needs a pinned reference during
+/// initialisation, for example, when initialising fields that are wrapped in locks.
+///
+/// ```
+/// use kernel::sync::{Ref, UniqueRef};
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// fn test() -> Result<Ref<Example>> {
+/// let mut pinned = Pin::from(UniqueRef::try_new(Example { a: 10, b: 20 })?);
+/// // We can modify `pinned` because it is `Unpin`.
+/// pinned.as_mut().a += 1;
+/// Ok(pinned.into())
+/// }
+///
+/// # test();
+/// ```
+pub struct UniqueRef<T: ?Sized> {
+ inner: Ref<T>,
+}
+
+impl<T> UniqueRef<T> {
+ /// Tries to allocate a new [`UniqueRef`] instance.
+ pub fn try_new(value: T) -> Result<Self> {
+ Ok(Self {
+ // INVARIANT: The newly-created object has a ref-count of 1.
+ inner: Ref::try_new(value)?,
+ })
+ }
+
+ /// Tries to allocate a new [`UniqueRef`] instance whose contents are not initialised yet.
+ pub fn try_new_uninit() -> Result<UniqueRef<MaybeUninit<T>>> {
+ Ok(UniqueRef::<MaybeUninit<T>> {
+ // INVARIANT: The newly-created object has a ref-count of 1.
+ inner: Ref::try_new(MaybeUninit::uninit())?,
+ })
+ }
+}
+
+impl<T> UniqueRef<MaybeUninit<T>> {
+ /// Converts a `UniqueRef<MaybeUninit<T>>` into a `UniqueRef<T>` by writing a value into it.
+ pub fn write(mut self, value: T) -> UniqueRef<T> {
+ self.deref_mut().write(value);
+ let inner = ManuallyDrop::new(self).inner.ptr;
+ UniqueRef {
+ // SAFETY: The new `Ref` is taking over `ptr` from `self.inner` (which won't be
+ // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
+ inner: unsafe { Ref::from_inner(inner.cast()) },
+ }
+ }
+}
+
+impl<T: ?Sized> Deref for UniqueRef<T> {
+ type Target = T;
+
+ fn deref(&self) -> &Self::Target {
+ self.inner.deref()
+ }
+}
+
+impl<T: ?Sized> DerefMut for UniqueRef<T> {
+ fn deref_mut(&mut self) -> &mut Self::Target {
+ // SAFETY: By the `Ref` type invariant, there is necessarily a reference to the object, so
+ // it is safe to dereference it. Additionally, we know there is only one reference when
+ // it's inside a `UniqueRef`, so it is safe to get a mutable reference.
+ unsafe { &mut self.inner.ptr.as_mut().data }
+ }
+}
+
+/// Allows the creation of "reference-counted" globals.
+///
+/// This is achieved by biasing the refcount with +1, which ensures that the count never drops back
+/// to zero (unless buggy unsafe code incorrectly decrements without owning an increment) and
+/// therefore also ensures that `drop` is never called.
+///
+/// # Examples
+///
+/// ```
+/// use kernel::sync::{Ref, RefBorrow, StaticRef};
+///
+/// const VALUE: u32 = 10;
+/// static SR: StaticRef<u32> = StaticRef::new(VALUE);
+///
+/// fn takes_ref_borrow(v: RefBorrow<'_, u32>) {
+/// assert_eq!(*v, VALUE);
+/// }
+///
+/// fn takes_ref(v: Ref<u32>) {
+/// assert_eq!(*v, VALUE);
+/// }
+///
+/// takes_ref_borrow(SR.as_ref_borrow());
+/// takes_ref(SR.as_ref_borrow().into());
+/// ```
+pub struct StaticRef<T: ?Sized> {
+ inner: RefInner<T>,
+}
+
+// SAFETY: A `StaticRef<T>` is a `Ref<T>` declared statically, so we just use the same criteria for
+// making it `Sync`.
+unsafe impl<T: ?Sized + Sync + Send> Sync for StaticRef<T> {}
+
+impl<T> StaticRef<T> {
+ /// Creates a new instance of a static "ref-counted" object.
+ pub const fn new(data: T) -> Self {
+ // INVARIANT: The refcount is initialised to a non-zero value.
+ Self {
+ inner: RefInner {
+ refcount: Opaque::new(new_refcount()),
+ data,
+ },
+ }
+ }
+}
+
+impl<T: ?Sized> StaticRef<T> {
+ /// Creates a [`RefBorrow`] instance from the given static object.
+ ///
+ /// This requires a `'static` lifetime so that it can guarantee that the underlyling object
+ /// remains valid and is effectively pinned.
+ pub fn as_ref_borrow(&'static self) -> RefBorrow<'static, T> {
+ // SAFETY: The static lifetime guarantees that the object remains valid. And the shared
+ // reference guarantees that no mutable references exist.
+ unsafe { RefBorrow::new(NonNull::from(&self.inner)) }
+ }
+}
+
+/// Creates, from a const context, a new instance of `struct refcount_struct` with a refcount of 1.
+///
+/// ```
+/// # // The test below is meant to ensure that `new_refcount` (which is const) mimics
+/// # // `REFCOUNT_INIT`, which is written in C and thus can't be used in a const context.
+/// # // TODO: Once `#[test]` is working, move this to a test and make `new_refcount` private.
+/// # use kernel::bindings;
+/// # // SAFETY: Just an FFI call that returns a `refcount_t` initialised to 1.
+/// # let bindings::refcount_struct {
+/// # refs: bindings::atomic_t { counter: a },
+/// # } = unsafe { bindings::REFCOUNT_INIT(1) };
+/// # let bindings::refcount_struct {
+/// # refs: bindings::atomic_t { counter: b },
+/// # } = kernel::sync::new_refcount();
+/// # assert_eq!(a, b);
+/// ```
+pub const fn new_refcount() -> bindings::refcount_struct {
+ bindings::refcount_struct {
+ refs: bindings::atomic_t { counter: 1 },
+ }
+}
diff --git a/rust/kernel/sync/condvar.rs b/rust/kernel/sync/condvar.rs
new file mode 100644
index 000000000000..b6102906fb3c
--- /dev/null
+++ b/rust/kernel/sync/condvar.rs
@@ -0,0 +1,140 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! A condition variable.
+//!
+//! This module allows Rust code to use the kernel's [`struct wait_queue_head`] as a condition
+//! variable.
+
+use super::{Guard, Lock, LockClassKey, LockInfo, NeedsLockClass};
+use crate::{bindings, str::CStr, task::Task, Opaque};
+use core::{marker::PhantomPinned, pin::Pin};
+
+/// Safely initialises a [`CondVar`] with the given name, generating a new lock class.
+#[macro_export]
+macro_rules! condvar_init {
+ ($condvar:expr, $name:literal) => {
+ $crate::init_with_lockdep!($condvar, $name)
+ };
+}
+
+// TODO: `bindgen` is not generating this constant. Figure out why.
+const POLLFREE: u32 = 0x4000;
+
+/// Exposes the kernel's [`struct wait_queue_head`] as a condition variable. It allows the caller to
+/// atomically release the given lock and go to sleep. It reacquires the lock when it wakes up. And
+/// it wakes up when notified by another thread (via [`CondVar::notify_one`] or
+/// [`CondVar::notify_all`]) or because the thread received a signal.
+///
+/// [`struct wait_queue_head`]: ../../../include/linux/wait.h
+pub struct CondVar {
+ pub(crate) wait_list: Opaque<bindings::wait_queue_head>,
+
+ /// A condvar needs to be pinned because it contains a [`struct list_head`] that is
+ /// self-referential, so it cannot be safely moved once it is initialised.
+ _pin: PhantomPinned,
+}
+
+// SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on any thread.
+#[allow(clippy::non_send_fields_in_send_ty)]
+unsafe impl Send for CondVar {}
+
+// SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on multiple threads
+// concurrently.
+unsafe impl Sync for CondVar {}
+
+impl CondVar {
+ /// Constructs a new conditional variable.
+ ///
+ /// # Safety
+ ///
+ /// The caller must call `CondVar::init` before using the conditional variable.
+ pub const unsafe fn new() -> Self {
+ Self {
+ wait_list: Opaque::uninit(),
+ _pin: PhantomPinned,
+ }
+ }
+
+ /// Atomically releases the given lock (whose ownership is proven by the guard) and puts the
+ /// thread to sleep. It wakes up when notified by [`CondVar::notify_one`] or
+ /// [`CondVar::notify_all`], or when the thread receives a signal.
+ ///
+ /// Returns whether there is a signal pending.
+ #[must_use = "wait returns if a signal is pending, so the caller must check the return value"]
+ pub fn wait<L: Lock<I>, I: LockInfo>(&self, guard: &mut Guard<'_, L, I>) -> bool {
+ let lock = guard.lock;
+ let wait = Opaque::<bindings::wait_queue_entry>::uninit();
+
+ // SAFETY: `wait` points to valid memory.
+ unsafe { bindings::init_wait(wait.get()) };
+
+ // SAFETY: Both `wait` and `wait_list` point to valid memory.
+ unsafe {
+ bindings::prepare_to_wait_exclusive(
+ self.wait_list.get(),
+ wait.get(),
+ bindings::TASK_INTERRUPTIBLE as _,
+ )
+ };
+
+ // SAFETY: The guard is evidence that the caller owns the lock.
+ unsafe { lock.unlock(&mut guard.context) };
+
+ // SAFETY: No arguments, switches to another thread.
+ unsafe { bindings::schedule() };
+
+ guard.context = lock.lock_noguard();
+
+ // SAFETY: Both `wait` and `wait_list` point to valid memory.
+ unsafe { bindings::finish_wait(self.wait_list.get(), wait.get()) };
+
+ Task::current().signal_pending()
+ }
+
+ /// Calls the kernel function to notify the appropriate number of threads with the given flags.
+ fn notify(&self, count: i32, flags: u32) {
+ // SAFETY: `wait_list` points to valid memory.
+ unsafe {
+ bindings::__wake_up(
+ self.wait_list.get(),
+ bindings::TASK_NORMAL,
+ count,
+ flags as _,
+ )
+ };
+ }
+
+ /// Wakes a single waiter up, if any. This is not 'sticky' in the sense that if no thread is
+ /// waiting, the notification is lost completely (as opposed to automatically waking up the
+ /// next waiter).
+ pub fn notify_one(&self) {
+ self.notify(1, 0);
+ }
+
+ /// Wakes all waiters up, if any. This is not 'sticky' in the sense that if no thread is
+ /// waiting, the notification is lost completely (as opposed to automatically waking up the
+ /// next waiter).
+ pub fn notify_all(&self) {
+ self.notify(0, 0);
+ }
+
+ /// Wakes all waiters up. If they were added by `epoll`, they are also removed from the list of
+ /// waiters. This is useful when cleaning up a condition variable that may be waited on by
+ /// threads that use `epoll`.
+ pub fn free_waiters(&self) {
+ self.notify(1, bindings::POLLHUP | POLLFREE);
+ }
+}
+
+impl NeedsLockClass for CondVar {
+ fn init(
+ self: Pin<&mut Self>,
+ name: &'static CStr,
+ key: &'static LockClassKey,
+ _: &'static LockClassKey,
+ ) {
+ unsafe {
+ bindings::__init_waitqueue_head(self.wait_list.get(), name.as_char_ptr(), key.get())
+ };
+ }
+}
diff --git a/rust/kernel/sync/guard.rs b/rust/kernel/sync/guard.rs
new file mode 100644
index 000000000000..757d85eac7af
--- /dev/null
+++ b/rust/kernel/sync/guard.rs
@@ -0,0 +1,159 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! A generic lock guard and trait.
+//!
+//! This module contains a lock guard that can be used with any locking primitive that implements
+//! the ([`Lock`]) trait. It also contains the definition of the trait, which can be leveraged by
+//! other constructs to work on generic locking primitives.
+
+use super::{LockClassKey, NeedsLockClass};
+use crate::{str::CStr, Bool, False, True};
+use core::pin::Pin;
+
+/// Allows mutual exclusion primitives that implement the [`Lock`] trait to automatically unlock
+/// when a guard goes out of scope. It also provides a safe and convenient way to access the data
+/// protected by the lock.
+#[must_use = "the lock unlocks immediately when the guard is unused"]
+pub struct Guard<'a, L: Lock<I> + ?Sized, I: LockInfo = WriteLock> {
+ pub(crate) lock: &'a L,
+ pub(crate) context: L::GuardContext,
+}
+
+// SAFETY: `Guard` is sync when the data protected by the lock is also sync. This is more
+// conservative than the default compiler implementation; more details can be found on
+// <https://github.com/rust-lang/rust/issues/41622> -- it refers to `MutexGuard` from the standard
+// library.
+unsafe impl<L, I> Sync for Guard<'_, L, I>
+where
+ L: Lock<I> + ?Sized,
+ L::Inner: Sync,
+ I: LockInfo,
+{
+}
+
+impl<L: Lock<I> + ?Sized, I: LockInfo> core::ops::Deref for Guard<'_, L, I> {
+ type Target = L::Inner;
+
+ fn deref(&self) -> &Self::Target {
+ // SAFETY: The caller owns the lock, so it is safe to deref the protected data.
+ unsafe { &*self.lock.locked_data().get() }
+ }
+}
+
+impl<L: Lock<I> + ?Sized, I: LockInfo<Writable = True>> core::ops::DerefMut for Guard<'_, L, I> {
+ fn deref_mut(&mut self) -> &mut Self::Target {
+ // SAFETY: The caller owns the lock, so it is safe to deref the protected data.
+ unsafe { &mut *self.lock.locked_data().get() }
+ }
+}
+
+impl<L: Lock<I> + ?Sized, I: LockInfo> Drop for Guard<'_, L, I> {
+ fn drop(&mut self) {
+ // SAFETY: The caller owns the lock, so it is safe to unlock it.
+ unsafe { self.lock.unlock(&mut self.context) };
+ }
+}
+
+impl<'a, L: Lock<I> + ?Sized, I: LockInfo> Guard<'a, L, I> {
+ /// Constructs a new immutable lock guard.
+ ///
+ /// # Safety
+ ///
+ /// The caller must ensure that it owns the lock.
+ pub(crate) unsafe fn new(lock: &'a L, context: L::GuardContext) -> Self {
+ Self { lock, context }
+ }
+}
+
+/// Specifies properties of a lock.
+pub trait LockInfo {
+ /// Determines if the data protected by a lock is writable.
+ type Writable: Bool;
+}
+
+/// A marker for locks that only allow reading.
+pub struct ReadLock;
+impl LockInfo for ReadLock {
+ type Writable = False;
+}
+
+/// A marker for locks that allow reading and writing.
+pub struct WriteLock;
+impl LockInfo for WriteLock {
+ type Writable = True;
+}
+
+/// A generic mutual exclusion primitive.
+///
+/// [`Guard`] is written such that any mutual exclusion primitive that can implement this trait can
+/// also benefit from having an automatic way to unlock itself.
+///
+/// # Safety
+///
+/// - Implementers of this trait with the [`WriteLock`] marker must ensure that only one thread/CPU
+/// may access the protected data once the lock is held, that is, between calls to `lock_noguard`
+/// and `unlock`.
+/// - Implementers of all other markers must ensure that a mutable reference to the protected data
+/// is not active in any thread/CPU because at least one shared reference is active between calls
+/// to `lock_noguard` and `unlock`.
+pub unsafe trait Lock<I: LockInfo = WriteLock> {
+ /// The type of the data protected by the lock.
+ type Inner: ?Sized;
+
+ /// The type of context, if any, that needs to be stored in the guard.
+ type GuardContext;
+
+ /// Acquires the lock, making the caller its owner.
+ #[must_use]
+ fn lock_noguard(&self) -> Self::GuardContext;
+
+ /// Reacquires the lock, making the caller its owner.
+ ///
+ /// The guard context before the last unlock is passed in.
+ ///
+ /// Locks that don't require this state on relock can simply use the default implementation
+ /// that calls [`Lock::lock_noguard`].
+ fn relock(&self, ctx: &mut Self::GuardContext) {
+ *ctx = self.lock_noguard();
+ }
+
+ /// Releases the lock, giving up ownership of the lock.
+ ///
+ /// # Safety
+ ///
+ /// It must only be called by the current owner of the lock.
+ unsafe fn unlock(&self, context: &mut Self::GuardContext);
+
+ /// Returns the data protected by the lock.
+ fn locked_data(&self) -> &core::cell::UnsafeCell<Self::Inner>;
+}
+
+/// A creator of instances of a mutual exclusion (lock) primitive.
+pub trait LockFactory {
+ /// The parametrised type of the mutual exclusion primitive that can be created by this factory.
+ type LockedType<T>;
+
+ /// Constructs a new instance of the mutual exclusion primitive.
+ ///
+ /// # Safety
+ ///
+ /// The caller must call [`LockIniter::init_lock`] before using the lock.
+ unsafe fn new_lock<T>(data: T) -> Self::LockedType<T>;
+}
+
+/// A lock that can be initialised with a single lock class key.
+pub trait LockIniter {
+ /// Initialises the lock instance so that it can be safely used.
+ fn init_lock(self: Pin<&mut Self>, name: &'static CStr, key: &'static LockClassKey);
+}
+
+impl<L: LockIniter> NeedsLockClass for L {
+ fn init(
+ self: Pin<&mut Self>,
+ name: &'static CStr,
+ key: &'static LockClassKey,
+ _: &'static LockClassKey,
+ ) {
+ self.init_lock(name, key);
+ }
+}
diff --git a/rust/kernel/sync/locked_by.rs b/rust/kernel/sync/locked_by.rs
new file mode 100644
index 000000000000..2dc6e3a77420
--- /dev/null
+++ b/rust/kernel/sync/locked_by.rs
@@ -0,0 +1,111 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! A wrapper for data protected by a lock that does not wrap it.
+
+use super::{Guard, Lock};
+use core::{cell::UnsafeCell, ops::Deref, ptr};
+
+/// Allows access to some data to be serialised by a lock that does not wrap it.
+///
+/// In most cases, data protected by a lock is wrapped by the appropriate lock type, e.g.,
+/// [`super::Mutex`] or [`super::SpinLock`]. [`LockedBy`] is meant for cases when this is not
+/// possible. For example, if a container has a lock and some data in the contained elements needs
+/// to be protected by the same lock.
+///
+/// [`LockedBy`] wraps the data in lieu of another locking primitive, and only allows access to it
+/// when the caller shows evidence that 'external' lock is locked.
+///
+/// # Examples
+///
+/// The following is an example for illustrative purposes: `InnerDirectory::bytes_used` is an
+/// aggregate of all `InnerFile::bytes_used` and must be kept consistent; so we wrap `InnerFile` in
+/// a `LockedBy` so that it shares a lock with `InnerDirectory`. This allows us to enforce at
+/// compile-time that access to `InnerFile` is only granted when an `InnerDirectory` is also
+/// locked; we enforce at run time that the right `InnerDirectory` is locked.
+///
+/// ```
+/// use kernel::sync::{LockedBy, Mutex};
+///
+/// struct InnerFile {
+/// bytes_used: u64,
+/// }
+///
+/// struct File {
+/// name: String,
+/// inner: LockedBy<InnerFile, Mutex<InnerDirectory>>,
+/// }
+///
+/// struct InnerDirectory {
+/// /// The sum of the bytes used by all files.
+/// bytes_used: u64,
+/// files: Vec<File>,
+/// }
+///
+/// struct Directory {
+/// name: String,
+/// inner: Mutex<InnerDirectory>,
+/// }
+/// ```
+pub struct LockedBy<T: ?Sized, L: Lock + ?Sized> {
+ owner: *const L::Inner,
+ data: UnsafeCell<T>,
+}
+
+// SAFETY: `LockedBy` can be transferred across thread boundaries iff the data it protects can.
+unsafe impl<T: ?Sized + Send, L: Lock + ?Sized> Send for LockedBy<T, L> {}
+
+// SAFETY: `LockedBy` serialises the interior mutability it provides, so it is `Sync` as long as the
+// data it protects is `Send`.
+unsafe impl<T: ?Sized + Send, L: Lock + ?Sized> Sync for LockedBy<T, L> {}
+
+impl<T, L: Lock + ?Sized> LockedBy<T, L> {
+ /// Constructs a new instance of [`LockedBy`].
+ ///
+ /// It stores a raw pointer to the owner that is never dereferenced. It is only used to ensure
+ /// that the right owner is being used to access the protected data. If the owner is freed, the
+ /// data becomes inaccessible; if another instance of the owner is allocated *on the same
+ /// memory location*, the data becomes accessible again: none of this affects memory safety
+ /// because in any case at most one thread (or CPU) can access the protected data at a time.
+ pub fn new(owner: &L, data: T) -> Self {
+ Self {
+ owner: owner.locked_data().get(),
+ data: UnsafeCell::new(data),
+ }
+ }
+}
+
+impl<T: ?Sized, L: Lock + ?Sized> LockedBy<T, L> {
+ /// Returns a reference to the protected data when the caller provides evidence (via a
+ /// [`Guard`]) that the owner is locked.
+ pub fn access<'a>(&'a self, guard: &'a Guard<'_, L>) -> &'a T {
+ if !ptr::eq(guard.deref(), self.owner) {
+ panic!("guard does not match owner");
+ }
+
+ // SAFETY: `guard` is evidence that the owner is locked.
+ unsafe { &mut *self.data.get() }
+ }
+
+ /// Returns a mutable reference to the protected data when the caller provides evidence (via a
+ /// mutable [`Guard`]) that the owner is locked mutably.
+ pub fn access_mut<'a>(&'a self, guard: &'a mut Guard<'_, L>) -> &'a mut T {
+ if !ptr::eq(guard.deref().deref(), self.owner) {
+ panic!("guard does not match owner");
+ }
+
+ // SAFETY: `guard` is evidence that the owner is locked.
+ unsafe { &mut *self.data.get() }
+ }
+
+ /// Returns a mutable reference to the protected data when the caller provides evidence (via a
+ /// mutable owner) that the owner is locked mutably. Showing a mutable reference to the owner
+ /// is sufficient because we know no other references can exist to it.
+ pub fn access_from_mut<'a>(&'a self, owner: &'a mut L::Inner) -> &'a mut T {
+ if !ptr::eq(owner, self.owner) {
+ panic!("mismatched owners");
+ }
+
+ // SAFETY: `owner` is evidence that there is only one reference to the owner.
+ unsafe { &mut *self.data.get() }
+ }
+}
diff --git a/rust/kernel/sync/mutex.rs b/rust/kernel/sync/mutex.rs
new file mode 100644
index 000000000000..c51ae5e3a8a0
--- /dev/null
+++ b/rust/kernel/sync/mutex.rs
@@ -0,0 +1,149 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! A kernel mutex.
+//!
+//! This module allows Rust code to use the kernel's [`struct mutex`].
+
+use super::{Guard, Lock, LockClassKey, LockFactory, LockIniter, WriteLock};
+use crate::{bindings, str::CStr, Opaque};
+use core::{cell::UnsafeCell, marker::PhantomPinned, pin::Pin};
+
+/// Safely initialises a [`Mutex`] with the given name, generating a new lock class.
+#[macro_export]
+macro_rules! mutex_init {
+ ($mutex:expr, $name:literal) => {
+ $crate::init_with_lockdep!($mutex, $name)
+ };
+}
+
+/// Exposes the kernel's [`struct mutex`]. When multiple threads attempt to lock the same mutex,
+/// only one at a time is allowed to progress, the others will block (sleep) until the mutex is
+/// unlocked, at which point another thread will be allowed to wake up and make progress.
+///
+/// A [`Mutex`] must first be initialised with a call to [`Mutex::init_lock`] before it can be
+/// used. The [`mutex_init`] macro is provided to automatically assign a new lock class to a mutex
+/// instance.
+///
+/// Since it may block, [`Mutex`] needs to be used with care in atomic contexts.
+///
+/// [`struct mutex`]: ../../../include/linux/mutex.h
+pub struct Mutex<T: ?Sized> {
+ /// The kernel `struct mutex` object.
+ mutex: Opaque<bindings::mutex>,
+
+ /// A mutex needs to be pinned because it contains a [`struct list_head`] that is
+ /// self-referential, so it cannot be safely moved once it is initialised.
+ _pin: PhantomPinned,
+
+ /// The data protected by the mutex.
+ data: UnsafeCell<T>,
+}
+
+// SAFETY: `Mutex` can be transferred across thread boundaries iff the data it protects can.
+#[allow(clippy::non_send_fields_in_send_ty)]
+unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}
+
+// SAFETY: `Mutex` serialises the interior mutability it provides, so it is `Sync` as long as the
+// data it protects is `Send`.
+unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}
+
+impl<T> Mutex<T> {
+ /// Constructs a new mutex.
+ ///
+ /// # Safety
+ ///
+ /// The caller must call [`Mutex::init_lock`] before using the mutex.
+ pub const unsafe fn new(t: T) -> Self {
+ Self {
+ mutex: Opaque::uninit(),
+ data: UnsafeCell::new(t),
+ _pin: PhantomPinned,
+ }
+ }
+}
+
+impl<T: ?Sized> Mutex<T> {
+ /// Locks the mutex and gives the caller access to the data protected by it. Only one thread at
+ /// a time is allowed to access the protected data.
+ pub fn lock(&self) -> Guard<'_, Self> {
+ let ctx = self.lock_noguard();
+ // SAFETY: The mutex was just acquired.
+ unsafe { Guard::new(self, ctx) }
+ }
+}
+
+impl<T> LockFactory for Mutex<T> {
+ type LockedType<U> = Mutex<U>;
+
+ unsafe fn new_lock<U>(data: U) -> Mutex<U> {
+ // SAFETY: The safety requirements of `new_lock` also require that `init_lock` be called.
+ unsafe { Mutex::new(data) }
+ }
+}
+
+impl<T> LockIniter for Mutex<T> {
+ fn init_lock(self: Pin<&mut Self>, name: &'static CStr, key: &'static LockClassKey) {
+ unsafe { bindings::__mutex_init(self.mutex.get(), name.as_char_ptr(), key.get()) };
+ }
+}
+
+pub struct EmptyGuardContext;
+
+// SAFETY: The underlying kernel `struct mutex` object ensures mutual exclusion.
+unsafe impl<T: ?Sized> Lock for Mutex<T> {
+ type Inner = T;
+ type GuardContext = EmptyGuardContext;
+
+ fn lock_noguard(&self) -> EmptyGuardContext {
+ // SAFETY: `mutex` points to valid memory.
+ unsafe { bindings::mutex_lock(self.mutex.get()) };
+ EmptyGuardContext
+ }
+
+ unsafe fn unlock(&self, _: &mut EmptyGuardContext) {
+ // SAFETY: The safety requirements of the function ensure that the mutex is owned by the
+ // caller.
+ unsafe { bindings::mutex_unlock(self.mutex.get()) };
+ }
+
+ fn locked_data(&self) -> &UnsafeCell<T> {
+ &self.data
+ }
+}
+
+/// A revocable mutex.
+///
+/// That is, a mutex to which access can be revoked at runtime. It is a specialisation of the more
+/// generic [`super::revocable::Revocable`].
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::sync::RevocableMutex;
+/// # use kernel::revocable_init;
+/// # use core::pin::Pin;
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// fn read_sum(v: &RevocableMutex<Example>) -> Option<u32> {
+/// let guard = v.try_write()?;
+/// Some(guard.a + guard.b)
+/// }
+///
+/// // SAFETY: We call `revocable_init` immediately below.
+/// let mut v = unsafe { RevocableMutex::new(Example { a: 10, b: 20 }) };
+/// // SAFETY: We never move out of `v`.
+/// let pinned = unsafe { Pin::new_unchecked(&mut v) };
+/// revocable_init!(pinned, "example::v");
+/// assert_eq!(read_sum(&v), Some(30));
+/// v.revoke();
+/// assert_eq!(read_sum(&v), None);
+/// ```
+pub type RevocableMutex<T> = super::revocable::Revocable<Mutex<()>, T>;
+
+/// A guard for a revocable mutex.
+pub type RevocableMutexGuard<'a, T, I = WriteLock> =
+ super::revocable::RevocableGuard<'a, Mutex<()>, T, I>;
diff --git a/rust/kernel/sync/nowait.rs b/rust/kernel/sync/nowait.rs
new file mode 100644
index 000000000000..09852d71aeb2
--- /dev/null
+++ b/rust/kernel/sync/nowait.rs
@@ -0,0 +1,188 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! A lock that never waits.
+
+use core::cell::UnsafeCell;
+use core::sync::atomic::{AtomicU8, Ordering};
+
+const LOCKED: u8 = 1;
+const CONTENDED: u8 = 2;
+
+/// A lock that only offers a [`try_lock`](NoWaitLock::try_lock) method.
+///
+/// That is, on contention it doesn't offer a way for the caller to block waiting for the current
+/// owner to release the lock. This is useful for best-effort kind of scenarios where waiting is
+/// never needed: in such cases, users don't need a full-featured mutex or spinlock.
+///
+/// When the lock is released via call to [`NoWaitLockGuard::unlock`], it indicates to the caller
+/// whether there was contention (i.e., if another thread tried and failed to acquire this lock).
+/// If the return value is `false`, there was definitely no contention but if it is `true`, it's
+/// possible that the contention was when attempting to acquire the lock.
+///
+/// # Examples
+///
+/// ```
+/// use kernel::sync::NoWaitLock;
+///
+/// #[derive(PartialEq)]
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// let x = NoWaitLock::new(Example { a: 10, b: 20 });
+///
+/// // Modifying the protected value.
+/// {
+/// let mut guard = x.try_lock().unwrap();
+/// assert_eq!(guard.a, 10);
+/// assert_eq!(guard.b, 20);
+/// guard.a += 20;
+/// guard.b += 20;
+/// assert_eq!(guard.a, 30);
+/// assert_eq!(guard.b, 40);
+/// }
+///
+/// // Reading the protected value.
+/// {
+/// let guard = x.try_lock().unwrap();
+/// assert_eq!(guard.a, 30);
+/// assert_eq!(guard.b, 40);
+/// }
+///
+/// // Second acquire fails, but succeeds after the guard is dropped.
+/// {
+/// let guard = x.try_lock().unwrap();
+/// assert!(x.try_lock().is_none());
+///
+/// drop(guard);
+/// assert!(x.try_lock().is_some());
+/// }
+/// ```
+///
+/// The following examples use the [`NoWaitLockGuard::unlock`] to release the lock and check for
+/// contention.
+///
+/// ```
+/// use kernel::sync::NoWaitLock;
+///
+/// #[derive(PartialEq)]
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// let x = NoWaitLock::new(Example { a: 10, b: 20 });
+///
+/// // No contention when lock is released.
+/// let guard = x.try_lock().unwrap();
+/// assert_eq!(guard.unlock(), false);
+///
+/// // Contention detected.
+/// let guard = x.try_lock().unwrap();
+/// assert!(x.try_lock().is_none());
+/// assert_eq!(guard.unlock(), true);
+///
+/// // No contention again.
+/// let guard = x.try_lock().unwrap();
+/// assert_eq!(guard.a, 10);
+/// assert_eq!(guard.b, 20);
+/// assert_eq!(guard.unlock(), false);
+/// ```
+pub struct NoWaitLock<T: ?Sized> {
+ state: AtomicU8,
+ data: UnsafeCell<T>,
+}
+
+// SAFETY: `NoWaitLock` can be transferred across thread boundaries iff the data it protects can.
+unsafe impl<T: ?Sized + Send> Send for NoWaitLock<T> {}
+
+// SAFETY: `NoWaitLock` only allows a single thread at a time to access the interior mutability it
+// provides, so it is `Sync` as long as the data it protects is `Send`.
+unsafe impl<T: ?Sized + Send> Sync for NoWaitLock<T> {}
+
+impl<T> NoWaitLock<T> {
+ /// Creates a new instance of the no-wait lock.
+ pub fn new(data: T) -> Self {
+ Self {
+ state: AtomicU8::new(0),
+ data: UnsafeCell::new(data),
+ }
+ }
+}
+
+impl<T: ?Sized> NoWaitLock<T> {
+ /// Tries to acquire the lock.
+ ///
+ /// If no other thread/CPU currently owns the lock, it returns a guard that can be used to
+ /// access the protected data. Otherwise (i.e., the lock is already owned), it returns `None`.
+ pub fn try_lock(&self) -> Option<NoWaitLockGuard<'_, T>> {
+ // Fast path -- just set the LOCKED bit.
+ //
+ // Acquire ordering matches the release in `NoWaitLockGuard::drop` or
+ // `NoWaitLockGuard::unlock`.
+ if self.state.fetch_or(LOCKED, Ordering::Acquire) & LOCKED == 0 {
+ // INVARIANTS: The thread that manages to set the `LOCKED` bit becomes the owner.
+ return Some(NoWaitLockGuard { lock: self });
+ }
+
+ // Set the `CONTENDED` bit.
+ //
+ // If the `LOCKED` bit has since been reset, the lock was released and the caller becomes
+ // the owner of the lock. It will see the `CONTENDED` bit when it releases the lock even if
+ // there was no additional contention but this is allowed by the interface.
+ if self.state.fetch_or(CONTENDED | LOCKED, Ordering::Relaxed) & LOCKED == 0 {
+ // INVARIANTS: The thread that manages to set the `LOCKED` bit becomes the owner.
+ Some(NoWaitLockGuard { lock: self })
+ } else {
+ None
+ }
+ }
+}
+
+/// A guard for the holder of the no-wait lock.
+///
+/// # Invariants
+///
+/// Only the current owner can have an instance of [`NoWaitLockGuard`].
+pub struct NoWaitLockGuard<'a, T: ?Sized> {
+ lock: &'a NoWaitLock<T>,
+}
+
+impl<T: ?Sized> NoWaitLockGuard<'_, T> {
+ /// Unlocks the no-wait lock.
+ ///
+ /// The return value indicates whether there was contention while the lock was held, that is,
+ /// whether another thread tried (and failed) to acquire the lock.
+ pub fn unlock(self) -> bool {
+ // Matches the acquire in `NoWaitLock::try_lock`.
+ let contention = self.lock.state.swap(0, Ordering::Release) & CONTENDED != 0;
+ core::mem::forget(self);
+ contention
+ }
+}
+
+impl<T: ?Sized> core::ops::Deref for NoWaitLockGuard<'_, T> {
+ type Target = T;
+
+ fn deref(&self) -> &Self::Target {
+ // SAFETY: The type invariant guarantees that only the owner has an instance of the guard,
+ // so the owner is the only one that can call this function.
+ unsafe { &*self.lock.data.get() }
+ }
+}
+
+impl<T: ?Sized> core::ops::DerefMut for NoWaitLockGuard<'_, T> {
+ fn deref_mut(&mut self) -> &mut Self::Target {
+ // SAFETY: The type invariant guarantees that only the owner has an instance of the guard,
+ // so the owner is the only one that can call this function.
+ unsafe { &mut *self.lock.data.get() }
+ }
+}
+
+impl<T: ?Sized> Drop for NoWaitLockGuard<'_, T> {
+ fn drop(&mut self) {
+ // Matches the acquire in `NoWaitLock::try_lock`.
+ self.lock.state.store(0, Ordering::Release);
+ }
+}
diff --git a/rust/kernel/sync/rcu.rs b/rust/kernel/sync/rcu.rs
new file mode 100644
index 000000000000..1a1c8ea49359
--- /dev/null
+++ b/rust/kernel/sync/rcu.rs
@@ -0,0 +1,52 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! RCU support.
+//!
+//! C header: [`include/linux/rcupdate.h`](../../../../include/linux/rcupdate.h)
+
+use crate::bindings;
+use core::marker::PhantomData;
+
+/// Evidence that the RCU read side lock is held on the current thread/CPU.
+///
+/// The type is explicitly not `Send` because this property is per-thread/CPU.
+///
+/// # Invariants
+///
+/// The RCU read side lock is actually held while instances of this guard exist.
+pub struct Guard {
+ _not_send: PhantomData<*mut ()>,
+}
+
+impl Guard {
+ /// Acquires the RCU read side lock and returns a guard.
+ pub fn new() -> Self {
+ // SAFETY: An FFI call with no additional requirements.
+ unsafe { bindings::rcu_read_lock() };
+ // INVARIANT: The RCU read side lock was just acquired above.
+ Self {
+ _not_send: PhantomData,
+ }
+ }
+
+ /// Explicitly releases the RCU read side lock.
+ pub fn unlock(self) {}
+}
+
+impl Default for Guard {
+ fn default() -> Self {
+ Self::new()
+ }
+}
+
+impl Drop for Guard {
+ fn drop(&mut self) {
+ // SAFETY: By the type invariants, the rcu read side is locked, so it is ok to unlock it.
+ unsafe { bindings::rcu_read_unlock() };
+ }
+}
+
+/// Acquires the RCU read side lock.
+pub fn read_lock() -> Guard {
+ Guard::new()
+}
diff --git a/rust/kernel/sync/revocable.rs b/rust/kernel/sync/revocable.rs
new file mode 100644
index 000000000000..8fd7f07f2a65
--- /dev/null
+++ b/rust/kernel/sync/revocable.rs
@@ -0,0 +1,246 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Synchronisation primitives where access to their contents can be revoked at runtime.
+
+use crate::{
+ str::CStr,
+ sync::{Guard, Lock, LockClassKey, LockFactory, LockInfo, NeedsLockClass, ReadLock, WriteLock},
+ True,
+};
+use core::{
+ mem::MaybeUninit,
+ ops::{Deref, DerefMut},
+ pin::Pin,
+};
+
+/// The state within the revocable synchronisation primitive.
+///
+/// We don't use simply `Option<T>` because we need to drop in-place because the contents are
+/// implicitly pinned.
+///
+/// # Invariants
+///
+/// The `is_available` field determines if `data` is initialised.
+pub struct Inner<T> {
+ is_available: bool,
+ data: MaybeUninit<T>,
+}
+
+impl<T> Inner<T> {
+ fn new(data: T) -> Self {
+ // INVARIANT: `data` is initialised and `is_available` is `true`, so the state matches.
+ Self {
+ is_available: true,
+ data: MaybeUninit::new(data),
+ }
+ }
+
+ fn drop_in_place(&mut self) {
+ if !self.is_available {
+ // Already dropped.
+ return;
+ }
+
+ // INVARIANT: `data` is being dropped and `is_available` is set to `false`, so the state
+ // matches.
+ self.is_available = false;
+
+ // SAFETY: By the type invariants, `data` is valid because `is_available` was true.
+ unsafe { self.data.assume_init_drop() };
+ }
+}
+
+impl<T> Drop for Inner<T> {
+ fn drop(&mut self) {
+ self.drop_in_place();
+ }
+}
+
+/// Revocable synchronisation primitive.
+///
+/// That is, it wraps synchronisation primitives so that access to their contents can be revoked at
+/// runtime, rendering them inacessible.
+///
+/// Once access is revoked and all concurrent users complete (i.e., all existing instances of
+/// [`RevocableGuard`] are dropped), the wrapped object is also dropped.
+///
+/// For better ergonomics, we advise the use of specialisations of this struct, for example,
+/// [`super::RevocableMutex`] and [`super::RevocableRwSemaphore`]. Callers that do not need to
+/// sleep while holding on to a guard should use [`crate::revocable::Revocable`] instead, which is
+/// more efficient as it uses RCU to keep objects alive.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::sync::{Mutex, Revocable};
+/// # use kernel::revocable_init;
+/// # use core::pin::Pin;
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// fn add_two(v: &Revocable<Mutex<()>, Example>) -> Option<u32> {
+/// let mut guard = v.try_write()?;
+/// guard.a += 2;
+/// guard.b += 2;
+/// Some(guard.a + guard.b)
+/// }
+///
+/// // SAFETY: We call `revocable_init` immediately below.
+/// let mut v = unsafe { Revocable::<Mutex<()>, Example>::new(Example { a: 10, b: 20 }) };
+/// // SAFETY: We never move out of `v`.
+/// let pinned = unsafe { Pin::new_unchecked(&mut v) };
+/// revocable_init!(pinned, "example::v");
+/// assert_eq!(add_two(&v), Some(34));
+/// v.revoke();
+/// assert_eq!(add_two(&v), None);
+/// ```
+pub struct Revocable<F: LockFactory, T> {
+ inner: F::LockedType<Inner<T>>,
+}
+
+/// Safely initialises a [`Revocable`] instance with the given name, generating a new lock class.
+#[macro_export]
+macro_rules! revocable_init {
+ ($mutex:expr, $name:literal) => {
+ $crate::init_with_lockdep!($mutex, $name)
+ };
+}
+
+impl<F: LockFactory, T> Revocable<F, T> {
+ /// Creates a new revocable instance of the given lock.
+ ///
+ /// # Safety
+ ///
+ /// The caller must call [`Revocable::init`] before using the revocable synch primitive.
+ pub unsafe fn new(data: T) -> Self {
+ Self {
+ // SAFETY: The safety requirements of this function require that `Revocable::init`
+ // be called before the returned object can be used. Lock initialisation is called
+ // from `Revocable::init`.
+ inner: unsafe { F::new_lock(Inner::new(data)) },
+ }
+ }
+}
+
+impl<F: LockFactory, T> NeedsLockClass for Revocable<F, T>
+where
+ F::LockedType<Inner<T>>: NeedsLockClass,
+{
+ fn init(
+ self: Pin<&mut Self>,
+ name: &'static CStr,
+ key1: &'static LockClassKey,
+ key2: &'static LockClassKey,
+ ) {
+ // SAFETY: `inner` is pinned when `self` is.
+ let inner = unsafe { self.map_unchecked_mut(|r| &mut r.inner) };
+ inner.init(name, key1, key2);
+ }
+}
+
+impl<F: LockFactory, T> Revocable<F, T>
+where
+ F::LockedType<Inner<T>>: Lock<Inner = Inner<T>>,
+{
+ /// Revokes access to and drops the wrapped object.
+ ///
+ /// Revocation and dropping happen after ongoing accessors complete.
+ pub fn revoke(&self) {
+ self.lock().drop_in_place();
+ }
+
+ /// Tries to lock the \[revocable\] wrapped object in write (exclusive) mode.
+ ///
+ /// Returns `None` if the object has been revoked and is therefore no longer accessible.
+ ///
+ /// Returns a guard that gives access to the object otherwise; the object is guaranteed to
+ /// remain accessible while the guard is alive. Callers are allowed to sleep while holding on
+ /// to the returned guard.
+ pub fn try_write(&self) -> Option<RevocableGuard<'_, F, T, WriteLock>> {
+ let inner = self.lock();
+ if !inner.is_available {
+ return None;
+ }
+ Some(RevocableGuard::new(inner))
+ }
+
+ fn lock(&self) -> Guard<'_, F::LockedType<Inner<T>>> {
+ let ctx = self.inner.lock_noguard();
+ // SAFETY: The lock was acquired in the call above.
+ unsafe { Guard::new(&self.inner, ctx) }
+ }
+}
+
+impl<F: LockFactory, T> Revocable<F, T>
+where
+ F::LockedType<Inner<T>>: Lock<ReadLock, Inner = Inner<T>>,
+{
+ /// Tries to lock the \[revocable\] wrapped object in read (shared) mode.
+ ///
+ /// Returns `None` if the object has been revoked and is therefore no longer accessible.
+ ///
+ /// Returns a guard that gives access to the object otherwise; the object is guaranteed to
+ /// remain accessible while the guard is alive. Callers are allowed to sleep while holding on
+ /// to the returned guard.
+ pub fn try_read(&self) -> Option<RevocableGuard<'_, F, T, ReadLock>> {
+ let ctx = self.inner.lock_noguard();
+ // SAFETY: The lock was acquired in the call above.
+ let inner = unsafe { Guard::new(&self.inner, ctx) };
+ if !inner.is_available {
+ return None;
+ }
+ Some(RevocableGuard::new(inner))
+ }
+}
+
+/// A guard that allows access to a revocable object and keeps it alive.
+pub struct RevocableGuard<'a, F: LockFactory, T, I: LockInfo>
+where
+ F::LockedType<Inner<T>>: Lock<I, Inner = Inner<T>>,
+{
+ guard: Guard<'a, F::LockedType<Inner<T>>, I>,
+}
+
+impl<'a, F: LockFactory, T, I: LockInfo> RevocableGuard<'a, F, T, I>
+where
+ F::LockedType<Inner<T>>: Lock<I, Inner = Inner<T>>,
+{
+ fn new(guard: Guard<'a, F::LockedType<Inner<T>>, I>) -> Self {
+ Self { guard }
+ }
+}
+
+impl<F: LockFactory, T, I: LockInfo<Writable = True>> RevocableGuard<'_, F, T, I>
+where
+ F::LockedType<Inner<T>>: Lock<I, Inner = Inner<T>>,
+{
+ /// Returns a pinned mutable reference to the wrapped object.
+ pub fn as_pinned_mut(&mut self) -> Pin<&mut T> {
+ // SAFETY: Revocable mutexes must be pinned, so we choose to always project the data as
+ // pinned as well (i.e., we guarantee we never move it).
+ unsafe { Pin::new_unchecked(&mut *self) }
+ }
+}
+
+impl<F: LockFactory, T, I: LockInfo> Deref for RevocableGuard<'_, F, T, I>
+where
+ F::LockedType<Inner<T>>: Lock<I, Inner = Inner<T>>,
+{
+ type Target = T;
+
+ fn deref(&self) -> &Self::Target {
+ unsafe { &*self.guard.data.as_ptr() }
+ }
+}
+
+impl<F: LockFactory, T, I: LockInfo<Writable = True>> DerefMut for RevocableGuard<'_, F, T, I>
+where
+ F::LockedType<Inner<T>>: Lock<I, Inner = Inner<T>>,
+{
+ fn deref_mut(&mut self) -> &mut Self::Target {
+ unsafe { &mut *self.guard.data.as_mut_ptr() }
+ }
+}
diff --git a/rust/kernel/sync/rwsem.rs b/rust/kernel/sync/rwsem.rs
new file mode 100644
index 000000000000..6556d7d30d36
--- /dev/null
+++ b/rust/kernel/sync/rwsem.rs
@@ -0,0 +1,196 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! A kernel read/write mutex.
+//!
+//! This module allows Rust code to use the kernel's [`struct rw_semaphore`].
+//!
+//! C header: [`include/linux/rwsem.h`](../../../../include/linux/rwsem.h)
+
+use super::{
+ mutex::EmptyGuardContext, Guard, Lock, LockClassKey, LockFactory, LockIniter, ReadLock,
+ WriteLock,
+};
+use crate::{bindings, str::CStr, Opaque};
+use core::{cell::UnsafeCell, marker::PhantomPinned, pin::Pin};
+
+/// Safely initialises a [`RwSemaphore`] with the given name, generating a new lock class.
+#[macro_export]
+macro_rules! rwsemaphore_init {
+ ($rwsem:expr, $name:literal) => {
+ $crate::init_with_lockdep!($rwsem, $name)
+ };
+}
+
+/// Exposes the kernel's [`struct rw_semaphore`].
+///
+/// It's a read/write mutex. That is, it allows multiple readers to acquire it concurrently, but
+/// only one writer at a time. On contention, waiters sleep.
+///
+/// A [`RwSemaphore`] must first be initialised with a call to [`RwSemaphore::init_lock`] before it
+/// can be used. The [`rwsemaphore_init`] macro is provided to automatically assign a new lock
+/// class to an [`RwSemaphore`] instance.
+///
+/// Since it may block, [`RwSemaphore`] needs to be used with care in atomic contexts.
+///
+/// [`struct rw_semaphore`]: ../../../include/linux/rwsem.h
+pub struct RwSemaphore<T: ?Sized> {
+ /// The kernel `struct rw_semaphore` object.
+ rwsem: Opaque<bindings::rw_semaphore>,
+
+ /// An rwsem needs to be pinned because it contains a [`struct list_head`] that is
+ /// self-referential, so it cannot be safely moved once it is initialised.
+ _pin: PhantomPinned,
+
+ /// The data protected by the rwsem.
+ data: UnsafeCell<T>,
+}
+
+// SAFETY: `RwSemaphore` can be transferred across thread boundaries iff the data it protects can.
+#[allow(clippy::non_send_fields_in_send_ty)]
+unsafe impl<T: ?Sized + Send> Send for RwSemaphore<T> {}
+
+// SAFETY: `RwSemaphore` requires that the protected type be `Sync` for it to be `Sync` as well
+// because the read mode allows multiple threads to access the protected data concurrently. It
+// requires `Send` because the write lock allows a `&mut T` to be accessible from an arbitrary
+// thread.
+unsafe impl<T: ?Sized + Send + Sync> Sync for RwSemaphore<T> {}
+
+impl<T> RwSemaphore<T> {
+ /// Constructs a new rw semaphore.
+ ///
+ /// # Safety
+ ///
+ /// The caller must call [`RwSemaphore::init_lock`] before using the rw semaphore.
+ pub unsafe fn new(t: T) -> Self {
+ Self {
+ rwsem: Opaque::uninit(),
+ data: UnsafeCell::new(t),
+ _pin: PhantomPinned,
+ }
+ }
+}
+
+impl<T: ?Sized> RwSemaphore<T> {
+ /// Locks the rw semaphore in write (exclusive) mode and gives the caller access to the data
+ /// protected by it. Only one thread at a time is allowed to access the protected data.
+ pub fn write(&self) -> Guard<'_, Self> {
+ let ctx = <Self as Lock>::lock_noguard(self);
+ // SAFETY: The rw semaphore was just acquired in write mode.
+ unsafe { Guard::new(self, ctx) }
+ }
+
+ /// Locks the rw semaphore in read (shared) mode and gives the caller access to the data
+ /// protected by it. Only one thread at a time is allowed to access the protected data.
+ pub fn read(&self) -> Guard<'_, Self, ReadLock> {
+ let ctx = <Self as Lock<ReadLock>>::lock_noguard(self);
+ // SAFETY: The rw semaphore was just acquired in read mode.
+ unsafe { Guard::new(self, ctx) }
+ }
+}
+
+impl<T> LockFactory for RwSemaphore<T> {
+ type LockedType<U> = RwSemaphore<U>;
+
+ unsafe fn new_lock<U>(data: U) -> RwSemaphore<U> {
+ // SAFETY: The safety requirements of `new_lock` also require that `init_lock` be called.
+ unsafe { RwSemaphore::new(data) }
+ }
+}
+
+impl<T> LockIniter for RwSemaphore<T> {
+ fn init_lock(self: Pin<&mut Self>, name: &'static CStr, key: &'static LockClassKey) {
+ unsafe { bindings::__init_rwsem(self.rwsem.get(), name.as_char_ptr(), key.get()) };
+ }
+}
+
+// SAFETY: The underlying kernel `struct rw_semaphore` object ensures mutual exclusion because it's
+// acquired in write mode.
+unsafe impl<T: ?Sized> Lock for RwSemaphore<T> {
+ type Inner = T;
+ type GuardContext = EmptyGuardContext;
+
+ fn lock_noguard(&self) -> EmptyGuardContext {
+ // SAFETY: `rwsem` points to valid memory.
+ unsafe { bindings::down_write(self.rwsem.get()) };
+ EmptyGuardContext
+ }
+
+ unsafe fn unlock(&self, _: &mut EmptyGuardContext) {
+ // SAFETY: The safety requirements of the function ensure that the rw semaphore is owned by
+ // the caller.
+ unsafe { bindings::up_write(self.rwsem.get()) };
+ }
+
+ fn locked_data(&self) -> &UnsafeCell<T> {
+ &self.data
+ }
+}
+
+// SAFETY: The underlying kernel `struct rw_semaphore` object ensures that only shared references
+// are accessible from other threads because it's acquired in read mode.
+unsafe impl<T: ?Sized> Lock<ReadLock> for RwSemaphore<T> {
+ type Inner = T;
+ type GuardContext = EmptyGuardContext;
+
+ fn lock_noguard(&self) -> EmptyGuardContext {
+ // SAFETY: `rwsem` points to valid memory.
+ unsafe { bindings::down_read(self.rwsem.get()) };
+ EmptyGuardContext
+ }
+
+ unsafe fn unlock(&self, _: &mut EmptyGuardContext) {
+ // SAFETY: The safety requirements of the function ensure that the rw semaphore is owned by
+ // the caller.
+ unsafe { bindings::up_read(self.rwsem.get()) };
+ }
+
+ fn locked_data(&self) -> &UnsafeCell<T> {
+ &self.data
+ }
+}
+
+/// A revocable rw semaphore.
+///
+/// That is, a read/write semaphore to which access can be revoked at runtime. It is a
+/// specialisation of the more generic [`super::revocable::Revocable`].
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::sync::RevocableRwSemaphore;
+/// # use kernel::revocable_init;
+/// # use core::pin::Pin;
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// fn read_sum(v: &RevocableRwSemaphore<Example>) -> Option<u32> {
+/// let guard = v.try_read()?;
+/// Some(guard.a + guard.b)
+/// }
+///
+/// fn add_two(v: &RevocableRwSemaphore<Example>) -> Option<u32> {
+/// let mut guard = v.try_write()?;
+/// guard.a += 2;
+/// guard.b += 2;
+/// Some(guard.a + guard.b)
+/// }
+///
+/// // SAFETY: We call `revocable_init` immediately below.
+/// let mut v = unsafe { RevocableRwSemaphore::new(Example { a: 10, b: 20 }) };
+/// // SAFETY: We never move out of `v`.
+/// let pinned = unsafe { Pin::new_unchecked(&mut v) };
+/// revocable_init!(pinned, "example::v");
+/// assert_eq!(read_sum(&v), Some(30));
+/// assert_eq!(add_two(&v), Some(34));
+/// v.revoke();
+/// assert_eq!(read_sum(&v), None);
+/// assert_eq!(add_two(&v), None);
+/// ```
+pub type RevocableRwSemaphore<T> = super::revocable::Revocable<RwSemaphore<()>, T>;
+
+/// A guard for a revocable rw semaphore..
+pub type RevocableRwSemaphoreGuard<'a, T, I = WriteLock> =
+ super::revocable::RevocableGuard<'a, RwSemaphore<()>, T, I>;
diff --git a/rust/kernel/sync/seqlock.rs b/rust/kernel/sync/seqlock.rs
new file mode 100644
index 000000000000..5014e70621f6
--- /dev/null
+++ b/rust/kernel/sync/seqlock.rs
@@ -0,0 +1,201 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! A kernel sequential lock (seqlock).
+//!
+//! This module allows Rust code to use the sequential locks based on the kernel's `seqcount_t` and
+//! any locks implementing the [`LockFactory`] trait.
+//!
+//! See <https://www.kernel.org/doc/Documentation/locking/seqlock.rst>.
+
+use super::{Guard, Lock, LockClassKey, LockFactory, LockIniter, NeedsLockClass, ReadLock};
+use crate::{bindings, str::CStr, Opaque};
+use core::{cell::UnsafeCell, marker::PhantomPinned, ops::Deref, pin::Pin};
+
+/// Exposes sequential locks backed by the kernel's `seqcount_t`.
+///
+/// The write-side critical section is protected by a lock implementing the [`LockFactory`] trait.
+///
+/// # Examples
+///
+/// ```
+/// use core::sync::atomic::{AtomicU32, Ordering};
+/// use kernel::sync::{SeqLock, SpinLock};
+///
+/// struct Example {
+/// a: AtomicU32,
+/// b: AtomicU32,
+/// }
+///
+/// fn get_sum(v: &SeqLock<SpinLock<Example>>) -> u32 {
+/// // Use `access` to access the fields of `Example`.
+/// v.access(|e| e.a.load(Ordering::Relaxed) + e.b.load(Ordering::Relaxed))
+/// }
+///
+/// fn get_sum_with_guard(v: &SeqLock<SpinLock<Example>>) -> u32 {
+/// // Use `read` and `need_retry` in a loop to access the fields of `Example`.
+/// loop {
+/// let guard = v.read();
+/// let sum = guard.a.load(Ordering::Relaxed) + guard.b.load(Ordering::Relaxed);
+/// if !guard.need_retry() {
+/// break sum;
+/// }
+/// }
+/// }
+///
+/// fn inc_each(v: &SeqLock<SpinLock<Example>>) {
+/// // Use a write-side guard to access the fields of `Example`.
+/// let guard = v.write();
+/// let a = guard.a.load(Ordering::Relaxed);
+/// guard.a.store(a + 1, Ordering::Relaxed);
+/// let b = guard.b.load(Ordering::Relaxed);
+/// guard.b.store(b + 1, Ordering::Relaxed);
+/// }
+/// ```
+pub struct SeqLock<L: Lock + ?Sized> {
+ _p: PhantomPinned,
+ count: Opaque<bindings::seqcount>,
+ write_lock: L,
+}
+
+// SAFETY: `SeqLock` can be transferred across thread boundaries iff the data it protects and the
+// underlying lock can.
+#[allow(clippy::non_send_fields_in_send_ty)]
+unsafe impl<L: Lock + Send> Send for SeqLock<L> where L::Inner: Send {}
+
+// SAFETY: `SeqLock` allows concurrent access to the data it protects by both readers and writers,
+// so it requires that the data it protects be `Sync`, as well as the underlying lock.
+unsafe impl<L: Lock + Sync> Sync for SeqLock<L> where L::Inner: Sync {}
+
+impl<L: Lock> SeqLock<L> {
+ /// Constructs a new instance of [`SeqLock`].
+ ///
+ /// # Safety
+ ///
+ /// The caller must call [`SeqLock::init`] before using the seqlock.
+ pub unsafe fn new(data: L::Inner) -> Self
+ where
+ L: LockFactory<LockedType<L::Inner> = L>,
+ L::Inner: Sized,
+ {
+ Self {
+ _p: PhantomPinned,
+ count: Opaque::uninit(),
+ // SAFETY: `L::init_lock` is called from `SeqLock::init`, which is required to be
+ // called by the function's safety requirements.
+ write_lock: unsafe { L::new_lock(data) },
+ }
+ }
+}
+
+impl<L: Lock + ?Sized> SeqLock<L> {
+ /// Accesses the protected data in read mode.
+ ///
+ /// Readers and writers are allowed to run concurrently, so callers must check if they need to
+ /// refetch the values before they are used (e.g., because a writer changed them concurrently,
+ /// rendering them potentially inconsistent). The check is performed via calls to
+ /// [`SeqLockReadGuard::need_retry`].
+ pub fn read(&self) -> SeqLockReadGuard<'_, L> {
+ SeqLockReadGuard {
+ lock: self,
+ // SAFETY: `count` contains valid memory.
+ start_count: unsafe { bindings::read_seqcount_begin(self.count.get()) },
+ }
+ }
+
+ /// Accesses the protected data in read mode.
+ ///
+ /// The provided closure is called repeatedly if it may have accessed inconsistent data (e.g.,
+ /// because a concurrent writer modified it). This is a wrapper around [`SeqLock::read`] and
+ /// [`SeqLockReadGuard::need_retry`] in a loop.
+ pub fn access<F: Fn(&L::Inner) -> R, R>(&self, cb: F) -> R {
+ loop {
+ let guard = self.read();
+ let ret = cb(&guard);
+ if !guard.need_retry() {
+ return ret;
+ }
+ }
+ }
+
+ /// Locks the underlying lock and returns a guard that allows access to the protected data.
+ ///
+ /// The guard is not mutable though because readers are still allowed to concurrently access
+ /// the data. The protected data structure needs to provide interior mutability itself (e.g.,
+ /// via atomic types) for the individual fields that can be mutated.
+ pub fn write(&self) -> Guard<'_, Self, ReadLock> {
+ let ctx = self.lock_noguard();
+ // SAFETY: The seqlock was just acquired.
+ unsafe { Guard::new(self, ctx) }
+ }
+}
+
+impl<L: LockIniter + Lock + ?Sized> NeedsLockClass for SeqLock<L> {
+ fn init(
+ mut self: Pin<&mut Self>,
+ name: &'static CStr,
+ key1: &'static LockClassKey,
+ key2: &'static LockClassKey,
+ ) {
+ // SAFETY: `write_lock` is pinned when `self` is.
+ let pinned = unsafe { self.as_mut().map_unchecked_mut(|s| &mut s.write_lock) };
+ pinned.init_lock(name, key1);
+ // SAFETY: `key2` is valid as it has a static lifetime.
+ unsafe { bindings::__seqcount_init(self.count.get(), name.as_char_ptr(), key2.get()) };
+ }
+}
+
+// SAFETY: The underlying lock ensures mutual exclusion.
+unsafe impl<L: Lock + ?Sized> Lock<ReadLock> for SeqLock<L> {
+ type Inner = L::Inner;
+ type GuardContext = L::GuardContext;
+
+ fn lock_noguard(&self) -> L::GuardContext {
+ let ctx = self.write_lock.lock_noguard();
+ // SAFETY: `count` contains valid memory.
+ unsafe { bindings::write_seqcount_begin(self.count.get()) };
+ ctx
+ }
+
+ fn relock(&self, ctx: &mut L::GuardContext) {
+ self.write_lock.relock(ctx);
+ // SAFETY: `count` contains valid memory.
+ unsafe { bindings::write_seqcount_begin(self.count.get()) };
+ }
+
+ unsafe fn unlock(&self, ctx: &mut L::GuardContext) {
+ // SAFETY: The safety requirements of the function ensure that lock is owned by the caller.
+ unsafe { bindings::write_seqcount_end(self.count.get()) };
+ // SAFETY: The safety requirements of the function ensure that lock is owned by the caller.
+ unsafe { self.write_lock.unlock(ctx) };
+ }
+
+ fn locked_data(&self) -> &UnsafeCell<L::Inner> {
+ self.write_lock.locked_data()
+ }
+}
+
+/// Allows read-side access to data protected by a sequential lock.
+pub struct SeqLockReadGuard<'a, L: Lock + ?Sized> {
+ lock: &'a SeqLock<L>,
+ start_count: u32,
+}
+
+impl<L: Lock + ?Sized> SeqLockReadGuard<'_, L> {
+ /// Determine if the callers needs to retry reading values.
+ ///
+ /// It returns `true` when a concurrent writer ran between the guard being created and
+ /// [`Self::need_retry`] being called.
+ pub fn need_retry(&self) -> bool {
+ // SAFETY: `count` is valid because the guard guarantees that the lock remains alive.
+ unsafe { bindings::read_seqcount_retry(self.lock.count.get(), self.start_count) != 0 }
+ }
+}
+
+impl<L: Lock + ?Sized> Deref for SeqLockReadGuard<'_, L> {
+ type Target = L::Inner;
+
+ fn deref(&self) -> &Self::Target {
+ // SAFETY: We only ever allow shared access to the protected data.
+ unsafe { &*self.lock.locked_data().get() }
+ }
+}
diff --git a/rust/kernel/sync/smutex.rs b/rust/kernel/sync/smutex.rs
new file mode 100644
index 000000000000..e19dd966640a
--- /dev/null
+++ b/rust/kernel/sync/smutex.rs
@@ -0,0 +1,290 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! A simple mutex implementation.
+//!
+//! Differently from [`super::Mutex`], this implementation does not require pinning, so the
+//! ergonomics are much improved, though the implementation is not as feature-rich as the C-based
+//! one. The main advantage is that it doesn't impose unsafe blocks on callers.
+//!
+//! The mutex is made up of 2 words in addition to the data it protects. The first one is accessed
+//! concurrently by threads trying to acquire and release the mutex, it contains a "stack" of
+//! waiters and a "locked" bit; the second one is only accessible by the thread holding the mutex,
+//! it contains a queue of waiters. Waiters are moved from the stack to the queue when the mutex is
+//! next unlocked while the stack is non-empty and the queue is empty. A single waiter is popped
+//! from the wait queue when the owner of the mutex unlocks it.
+//!
+//! The initial state of the mutex is `<locked=0, stack=[], queue=[]>`, meaning that it isn't
+//! locked and both the waiter stack and queue are empty.
+//!
+//! A lock operation transitions the mutex to state `<locked=1, stack=[], queue=[]>`.
+//!
+//! An unlock operation transitions the mutex back to the initial state, however, an attempt to
+//! lock the mutex while it's already locked results in a waiter being created (on the stack) and
+//! pushed onto the stack, so the state is `<locked=1, stack=[W1], queue=[]>`.
+//!
+//! Another thread trying to lock the mutex results in another waiter being pushed onto the stack,
+//! so the state becomes `<locked=1, stack=[W2, W1], queue=[]>`.
+//!
+//! In such states (queue is empty but stack is non-empty), the unlock operation is performed in
+//! three steps:
+//! 1. The stack is popped (but the mutex remains locked), so the state is:
+//! `<locked=1, stack=[], queue=[]>`
+//! 2. The stack is turned into a queue by reversing it, so the state is:
+//! `<locked=1, stack=[], queue=[W1, W2]>
+//! 3. Finally, the lock is released, and the first waiter is awakened, so the state is:
+//! `<locked=0, stack=[], queue=[W2]>`
+//!
+//! The mutex remains accessible to any threads attempting to lock it in any of the intermediate
+//! states above. For example, while it is locked, other threads may add waiters to the stack
+//! (which is ok because we want to release the ones on the queue first); another example is that
+//! another thread may acquire the mutex before waiter W1 in the example above, this makes the
+//! mutex unfair but this is desirable because the thread is running already and may in fact
+//! release the lock before W1 manages to get scheduled -- it also mitigates the lock convoy
+//! problem when the releasing thread wants to immediately acquire the lock again: it will be
+//! allowed to do so (as long as W1 doesn't get to it first).
+//!
+//! When the waiter queue is non-empty, unlocking the mutex always results in the first waiter being
+//! popped form the queue and awakened.
+
+use super::{mutex::EmptyGuardContext, Guard, Lock, LockClassKey, LockFactory, LockIniter};
+use crate::{bindings, str::CStr, Opaque};
+use core::sync::atomic::{AtomicUsize, Ordering};
+use core::{cell::UnsafeCell, pin::Pin};
+
+/// The value that is OR'd into the [`Mutex::waiter_stack`] when the mutex is locked.
+const LOCKED: usize = 1;
+
+/// A simple mutex.
+///
+/// This is mutual-exclusion primitive. It guarantees that only one thread at a time may access the
+/// data it protects. When multiple threads attempt to lock the same mutex, only one at a time is
+/// allowed to progress, the others will block (sleep) until the mutex is unlocked, at which point
+/// another thread will be allowed to wake up and make progress.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::{Result, sync::Ref, sync::smutex::Mutex};
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// static EXAMPLE: Mutex<Example> = Mutex::new(Example { a: 10, b: 20 });
+///
+/// fn inc_a(example: &Mutex<Example>) {
+/// let mut guard = example.lock();
+/// guard.a += 1;
+/// }
+///
+/// fn sum(example: &Mutex<Example>) -> u32 {
+/// let guard = example.lock();
+/// guard.a + guard.b
+/// }
+///
+/// fn try_new(a: u32, b: u32) -> Result<Ref<Mutex<Example>>> {
+/// Ref::try_new(Mutex::new(Example { a, b }))
+/// }
+///
+/// assert_eq!(EXAMPLE.lock().a, 10);
+/// assert_eq!(sum(&EXAMPLE), 30);
+///
+/// inc_a(&EXAMPLE);
+///
+/// assert_eq!(EXAMPLE.lock().a, 11);
+/// assert_eq!(sum(&EXAMPLE), 31);
+///
+/// # try_new(42, 43);
+/// ```
+pub struct Mutex<T: ?Sized> {
+ /// A stack of waiters.
+ ///
+ /// It is accessed atomically by threads lock/unlocking the mutex. Additionally, the
+ /// least-significant bit is used to indicate whether the mutex is locked or not.
+ waiter_stack: AtomicUsize,
+
+ /// A queue of waiters.
+ ///
+ /// This is only accessible to the holder of the mutex. When the owner of the mutex is
+ /// unlocking it, it will move waiters from the stack to the queue when the queue is empty and
+ /// the stack non-empty.
+ waiter_queue: UnsafeCell<*mut Waiter>,
+
+ /// The data protected by the mutex.
+ data: UnsafeCell<T>,
+}
+
+// SAFETY: `Mutex` can be transferred across thread boundaries iff the data it protects can.
+#[allow(clippy::non_send_fields_in_send_ty)]
+unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}
+
+// SAFETY: `Mutex` serialises the interior mutability it provides, so it is `Sync` as long as the
+// data it protects is `Send`.
+unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}
+
+impl<T> Mutex<T> {
+ /// Creates a new instance of the mutex.
+ pub const fn new(data: T) -> Self {
+ Self {
+ waiter_stack: AtomicUsize::new(0),
+ waiter_queue: UnsafeCell::new(core::ptr::null_mut()),
+ data: UnsafeCell::new(data),
+ }
+ }
+}
+
+impl<T: ?Sized> Mutex<T> {
+ /// Locks the mutex and gives the caller access to the data protected by it. Only one thread at
+ /// a time is allowed to access the protected data.
+ pub fn lock(&self) -> Guard<'_, Self> {
+ let ctx = self.lock_noguard();
+ // SAFETY: The mutex was just acquired.
+ unsafe { Guard::new(self, ctx) }
+ }
+}
+
+impl<T> LockFactory for Mutex<T> {
+ type LockedType<U> = Mutex<U>;
+
+ unsafe fn new_lock<U>(data: U) -> Mutex<U> {
+ Mutex::new(data)
+ }
+}
+
+impl<T> LockIniter for Mutex<T> {
+ fn init_lock(self: Pin<&mut Self>, _name: &'static CStr, _key: &'static LockClassKey) {}
+}
+
+// SAFETY: The mutex implementation ensures mutual exclusion.
+unsafe impl<T: ?Sized> Lock for Mutex<T> {
+ type Inner = T;
+ type GuardContext = EmptyGuardContext;
+
+ fn lock_noguard(&self) -> EmptyGuardContext {
+ loop {
+ // Try the fast path: the caller owns the mutex if we manage to set the `LOCKED` bit.
+ //
+ // The `acquire` order matches with one of the `release` ones in `unlock`.
+ if self.waiter_stack.fetch_or(LOCKED, Ordering::Acquire) & LOCKED == 0 {
+ return EmptyGuardContext;
+ }
+
+ // Slow path: we'll likely need to wait, so initialise a local waiter struct.
+ let mut waiter = Waiter {
+ completion: Opaque::uninit(),
+ next: core::ptr::null_mut(),
+ };
+
+ // SAFETY: The completion object was just allocated on the stack and is valid for
+ // writes.
+ unsafe { bindings::init_completion(waiter.completion.get()) };
+
+ // Try to enqueue the waiter by pushing into onto the waiter stack. We want to do it
+ // only while the mutex is locked by another thread.
+ loop {
+ // We use relaxed here because we're just reading the value we'll CAS later (which
+ // has a stronger ordering on success).
+ let mut v = self.waiter_stack.load(Ordering::Relaxed);
+ if v & LOCKED == 0 {
+ // The mutex was released by another thread, so try to acquire it.
+ //
+ // The `acquire` order matches with one of the `release` ones in `unlock`.
+ v = self.waiter_stack.fetch_or(LOCKED, Ordering::Acquire);
+ if v & LOCKED == 0 {
+ return EmptyGuardContext;
+ }
+ }
+
+ waiter.next = (v & !LOCKED) as _;
+
+ // The `release` order matches with `acquire` in `unlock` when the stack is swapped
+ // out. We use release order here to ensure that the other thread can see our
+ // waiter fully initialised.
+ if self
+ .waiter_stack
+ .compare_exchange(
+ v,
+ (&mut waiter as *mut _ as usize) | LOCKED,
+ Ordering::Release,
+ Ordering::Relaxed,
+ )
+ .is_ok()
+ {
+ break;
+ }
+ }
+
+ // Wait for the owner to lock to wake this thread up.
+ //
+ // SAFETY: Completion object was previously initialised with `init_completion` and
+ // remains valid.
+ unsafe { bindings::wait_for_completion(waiter.completion.get()) };
+ }
+ }
+
+ unsafe fn unlock(&self, _: &mut EmptyGuardContext) {
+ // SAFETY: The caller owns the mutex, so it is safe to manipulate the local wait queue.
+ let mut waiter = unsafe { *self.waiter_queue.get() };
+ loop {
+ // If we have a non-empty local queue of waiters, pop the first one, release the mutex,
+ // and wake it up (the popped waiter).
+ if !waiter.is_null() {
+ // SAFETY: The caller owns the mutex, so it is safe to manipulate the local wait
+ // queue.
+ unsafe { *self.waiter_queue.get() = (*waiter).next };
+
+ // The `release` order matches with one of the `acquire` ones in `lock_noguard`.
+ self.waiter_stack.fetch_and(!LOCKED, Ordering::Release);
+
+ // Wake up the first waiter.
+ //
+ // SAFETY: The completion object was initialised before being added to the wait
+ // stack and is only removed above, when called completed. So it is safe for
+ // writes.
+ unsafe { bindings::complete_all((*waiter).completion.get()) };
+ return;
+ }
+
+ // Try the fast path when there are no local waiters.
+ //
+ // The `release` order matches with one of the `acquire` ones in `lock_noguard`.
+ if self
+ .waiter_stack
+ .compare_exchange(LOCKED, 0, Ordering::Release, Ordering::Relaxed)
+ .is_ok()
+ {
+ return;
+ }
+
+ // We don't have a local queue, so pull the whole stack off, reverse it, and use it as a
+ // local queue. Since we're manipulating this queue, we need to keep ownership of the
+ // mutex.
+ //
+ // The `acquire` order matches with the `release` one in `lock_noguard` where a waiter
+ // is pushed onto the stack. It ensures that we see the fully-initialised waiter.
+ let mut stack =
+ (self.waiter_stack.swap(LOCKED, Ordering::Acquire) & !LOCKED) as *mut Waiter;
+ while !stack.is_null() {
+ // SAFETY: The caller still owns the mutex, so it is safe to manipulate the
+ // elements of the wait queue, which will soon become that wait queue.
+ let next = unsafe { (*stack).next };
+
+ // SAFETY: Same as above.
+ unsafe { (*stack).next = waiter };
+
+ waiter = stack;
+ stack = next;
+ }
+ }
+ }
+
+ fn locked_data(&self) -> &UnsafeCell<T> {
+ &self.data
+ }
+}
+
+struct Waiter {
+ completion: Opaque<bindings::completion>,
+ next: *mut Waiter,
+}
diff --git a/rust/kernel/sync/spinlock.rs b/rust/kernel/sync/spinlock.rs
new file mode 100644
index 000000000000..b326af4196bb
--- /dev/null
+++ b/rust/kernel/sync/spinlock.rs
@@ -0,0 +1,357 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! A kernel spinlock.
+//!
+//! This module allows Rust code to use the kernel's [`struct spinlock`].
+//!
+//! See <https://www.kernel.org/doc/Documentation/locking/spinlocks.txt>.
+
+use super::{
+ mutex::EmptyGuardContext, Guard, Lock, LockClassKey, LockFactory, LockInfo, LockIniter,
+ WriteLock,
+};
+use crate::{bindings, str::CStr, Opaque, True};
+use core::{cell::UnsafeCell, marker::PhantomPinned, pin::Pin};
+
+/// Safely initialises a [`SpinLock`] with the given name, generating a new lock class.
+#[macro_export]
+macro_rules! spinlock_init {
+ ($spinlock:expr, $name:literal) => {
+ $crate::init_with_lockdep!($spinlock, $name)
+ };
+}
+
+/// Exposes the kernel's [`spinlock_t`]. When multiple CPUs attempt to lock the same spinlock, only
+/// one at a time is allowed to progress, the others will block (spinning) until the spinlock is
+/// unlocked, at which point another CPU will be allowed to make progress.
+///
+/// A [`SpinLock`] must first be initialised with a call to [`SpinLock::init_lock`] before it can be
+/// used. The [`spinlock_init`] macro is provided to automatically assign a new lock class to a
+/// spinlock instance.
+///
+/// There are two ways to acquire the lock:
+/// - [`SpinLock::lock`], which doesn't manage interrupt state, so it should be used in only two
+/// cases: (a) when the caller knows that interrupts are disabled, or (b) when callers never use
+/// it in atomic context (e.g., interrupt handlers), in which case it is ok for interrupts to be
+/// enabled.
+/// - [`SpinLock::lock_irqdisable`], which disables interrupts if they are enabled before
+/// acquiring the lock. When the lock is released, the interrupt state is automatically returned
+/// to its value before [`SpinLock::lock_irqdisable`] was called.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::sync::SpinLock;
+/// # use core::pin::Pin;
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// // Function that acquires spinlock without changing interrupt state.
+/// fn lock_example(value: &SpinLock<Example>) {
+/// let mut guard = value.lock();
+/// guard.a = 10;
+/// guard.b = 20;
+/// }
+///
+/// // Function that acquires spinlock and disables interrupts while holding it.
+/// fn lock_irqdisable_example(value: &SpinLock<Example>) {
+/// let mut guard = value.lock_irqdisable();
+/// guard.a = 30;
+/// guard.b = 40;
+/// }
+///
+/// // Initialises a spinlock.
+/// // SAFETY: `spinlock_init` is called below.
+/// let mut value = unsafe { SpinLock::new(Example { a: 1, b: 2 }) };
+/// // SAFETY: We don't move `value`.
+/// kernel::spinlock_init!(unsafe { Pin::new_unchecked(&mut value) }, "value");
+///
+/// // Calls the example functions.
+/// assert_eq!(value.lock().a, 1);
+/// lock_example(&value);
+/// assert_eq!(value.lock().a, 10);
+/// lock_irqdisable_example(&value);
+/// assert_eq!(value.lock().a, 30);
+/// ```
+///
+/// [`spinlock_t`]: ../../../include/linux/spinlock.h
+pub struct SpinLock<T: ?Sized> {
+ spin_lock: Opaque<bindings::spinlock>,
+
+ /// Spinlocks are architecture-defined. So we conservatively require them to be pinned in case
+ /// some architecture uses self-references now or in the future.
+ _pin: PhantomPinned,
+
+ data: UnsafeCell<T>,
+}
+
+// SAFETY: `SpinLock` can be transferred across thread boundaries iff the data it protects can.
+unsafe impl<T: ?Sized + Send> Send for SpinLock<T> {}
+
+// SAFETY: `SpinLock` serialises the interior mutability it provides, so it is `Sync` as long as the
+// data it protects is `Send`.
+unsafe impl<T: ?Sized + Send> Sync for SpinLock<T> {}
+
+impl<T> SpinLock<T> {
+ /// Constructs a new spinlock.
+ ///
+ /// # Safety
+ ///
+ /// The caller must call [`SpinLock::init_lock`] before using the spinlock.
+ pub const unsafe fn new(t: T) -> Self {
+ Self {
+ spin_lock: Opaque::uninit(),
+ data: UnsafeCell::new(t),
+ _pin: PhantomPinned,
+ }
+ }
+}
+
+impl<T: ?Sized> SpinLock<T> {
+ /// Locks the spinlock and gives the caller access to the data protected by it. Only one thread
+ /// at a time is allowed to access the protected data.
+ pub fn lock(&self) -> Guard<'_, Self, WriteLock> {
+ let ctx = <Self as Lock<WriteLock>>::lock_noguard(self);
+ // SAFETY: The spinlock was just acquired.
+ unsafe { Guard::new(self, ctx) }
+ }
+
+ /// Locks the spinlock and gives the caller access to the data protected by it. Additionally it
+ /// disables interrupts (if they are enabled).
+ ///
+ /// When the lock in unlocked, the interrupt state (enabled/disabled) is restored.
+ pub fn lock_irqdisable(&self) -> Guard<'_, Self, DisabledInterrupts> {
+ let ctx = <Self as Lock<DisabledInterrupts>>::lock_noguard(self);
+ // SAFETY: The spinlock was just acquired.
+ unsafe { Guard::new(self, ctx) }
+ }
+}
+
+impl<T> LockFactory for SpinLock<T> {
+ type LockedType<U> = SpinLock<U>;
+
+ unsafe fn new_lock<U>(data: U) -> SpinLock<U> {
+ // SAFETY: The safety requirements of `new_lock` also require that `init_lock` be called.
+ unsafe { SpinLock::new(data) }
+ }
+}
+
+impl<T> LockIniter for SpinLock<T> {
+ fn init_lock(self: Pin<&mut Self>, name: &'static CStr, key: &'static LockClassKey) {
+ unsafe { bindings::__spin_lock_init(self.spin_lock.get(), name.as_char_ptr(), key.get()) };
+ }
+}
+
+/// A type state indicating that interrupts were disabled.
+pub struct DisabledInterrupts;
+impl LockInfo for DisabledInterrupts {
+ type Writable = True;
+}
+
+// SAFETY: The underlying kernel `spinlock_t` object ensures mutual exclusion.
+unsafe impl<T: ?Sized> Lock for SpinLock<T> {
+ type Inner = T;
+ type GuardContext = EmptyGuardContext;
+
+ fn lock_noguard(&self) -> EmptyGuardContext {
+ // SAFETY: `spin_lock` points to valid memory.
+ unsafe { bindings::spin_lock(self.spin_lock.get()) };
+ EmptyGuardContext
+ }
+
+ unsafe fn unlock(&self, _: &mut EmptyGuardContext) {
+ // SAFETY: The safety requirements of the function ensure that the spinlock is owned by
+ // the caller.
+ unsafe { bindings::spin_unlock(self.spin_lock.get()) }
+ }
+
+ fn locked_data(&self) -> &UnsafeCell<T> {
+ &self.data
+ }
+}
+
+// SAFETY: The underlying kernel `spinlock_t` object ensures mutual exclusion.
+unsafe impl<T: ?Sized> Lock<DisabledInterrupts> for SpinLock<T> {
+ type Inner = T;
+ type GuardContext = core::ffi::c_ulong;
+
+ fn lock_noguard(&self) -> core::ffi::c_ulong {
+ // SAFETY: `spin_lock` points to valid memory.
+ unsafe { bindings::spin_lock_irqsave(self.spin_lock.get()) }
+ }
+
+ unsafe fn unlock(&self, ctx: &mut core::ffi::c_ulong) {
+ // SAFETY: The safety requirements of the function ensure that the spinlock is owned by
+ // the caller.
+ unsafe { bindings::spin_unlock_irqrestore(self.spin_lock.get(), *ctx) }
+ }
+
+ fn locked_data(&self) -> &UnsafeCell<T> {
+ &self.data
+ }
+}
+
+/// Safely initialises a [`RawSpinLock`] with the given name, generating a new lock class.
+#[macro_export]
+macro_rules! rawspinlock_init {
+ ($spinlock:expr, $name:literal) => {
+ $crate::init_with_lockdep!($spinlock, $name)
+ };
+}
+
+/// Exposes the kernel's [`raw_spinlock_t`].
+///
+/// It is very similar to [`SpinLock`], except that it is guaranteed not to sleep even on RT
+/// variants of the kernel.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::sync::RawSpinLock;
+/// # use core::pin::Pin;
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// // Function that acquires the raw spinlock without changing interrupt state.
+/// fn lock_example(value: &RawSpinLock<Example>) {
+/// let mut guard = value.lock();
+/// guard.a = 10;
+/// guard.b = 20;
+/// }
+///
+/// // Function that acquires the raw spinlock and disables interrupts while holding it.
+/// fn lock_irqdisable_example(value: &RawSpinLock<Example>) {
+/// let mut guard = value.lock_irqdisable();
+/// guard.a = 30;
+/// guard.b = 40;
+/// }
+///
+/// // Initialises a raw spinlock and calls the example functions.
+/// fn spinlock_example() {
+/// // SAFETY: `rawspinlock_init` is called below.
+/// let mut value = unsafe { RawSpinLock::new(Example { a: 1, b: 2 }) };
+/// // SAFETY: We don't move `value`.
+/// kernel::rawspinlock_init!(unsafe { Pin::new_unchecked(&mut value) }, "value");
+/// lock_example(&value);
+/// lock_irqdisable_example(&value);
+/// }
+/// ```
+///
+/// [`raw_spinlock_t`]: ../../../include/linux/spinlock.h
+pub struct RawSpinLock<T: ?Sized> {
+ spin_lock: Opaque<bindings::raw_spinlock>,
+
+ // Spinlocks are architecture-defined. So we conservatively require them to be pinned in case
+ // some architecture uses self-references now or in the future.
+ _pin: PhantomPinned,
+
+ data: UnsafeCell<T>,
+}
+
+// SAFETY: `RawSpinLock` can be transferred across thread boundaries iff the data it protects can.
+unsafe impl<T: ?Sized + Send> Send for RawSpinLock<T> {}
+
+// SAFETY: `RawSpinLock` serialises the interior mutability it provides, so it is `Sync` as long as
+// the data it protects is `Send`.
+unsafe impl<T: ?Sized + Send> Sync for RawSpinLock<T> {}
+
+impl<T> RawSpinLock<T> {
+ /// Constructs a new raw spinlock.
+ ///
+ /// # Safety
+ ///
+ /// The caller must call [`RawSpinLock::init_lock`] before using the raw spinlock.
+ pub const unsafe fn new(t: T) -> Self {
+ Self {
+ spin_lock: Opaque::uninit(),
+ data: UnsafeCell::new(t),
+ _pin: PhantomPinned,
+ }
+ }
+}
+
+impl<T: ?Sized> RawSpinLock<T> {
+ /// Locks the raw spinlock and gives the caller access to the data protected by it. Only one
+ /// thread at a time is allowed to access the protected data.
+ pub fn lock(&self) -> Guard<'_, Self, WriteLock> {
+ let ctx = <Self as Lock<WriteLock>>::lock_noguard(self);
+ // SAFETY: The raw spinlock was just acquired.
+ unsafe { Guard::new(self, ctx) }
+ }
+
+ /// Locks the raw spinlock and gives the caller access to the data protected by it.
+ /// Additionally it disables interrupts (if they are enabled).
+ ///
+ /// When the lock in unlocked, the interrupt state (enabled/disabled) is restored.
+ pub fn lock_irqdisable(&self) -> Guard<'_, Self, DisabledInterrupts> {
+ let ctx = <Self as Lock<DisabledInterrupts>>::lock_noguard(self);
+ // SAFETY: The raw spinlock was just acquired.
+ unsafe { Guard::new(self, ctx) }
+ }
+}
+
+impl<T> LockFactory for RawSpinLock<T> {
+ type LockedType<U> = RawSpinLock<U>;
+
+ unsafe fn new_lock<U>(data: U) -> RawSpinLock<U> {
+ // SAFETY: The safety requirements of `new_lock` also require that `init_lock` be called.
+ unsafe { RawSpinLock::new(data) }
+ }
+}
+
+impl<T> LockIniter for RawSpinLock<T> {
+ fn init_lock(self: Pin<&mut Self>, name: &'static CStr, key: &'static LockClassKey) {
+ unsafe {
+ bindings::_raw_spin_lock_init(self.spin_lock.get(), name.as_char_ptr(), key.get())
+ };
+ }
+}
+
+// SAFETY: The underlying kernel `raw_spinlock_t` object ensures mutual exclusion.
+unsafe impl<T: ?Sized> Lock for RawSpinLock<T> {
+ type Inner = T;
+ type GuardContext = EmptyGuardContext;
+
+ fn lock_noguard(&self) -> EmptyGuardContext {
+ // SAFETY: `spin_lock` points to valid memory.
+ unsafe { bindings::raw_spin_lock(self.spin_lock.get()) };
+ EmptyGuardContext
+ }
+
+ unsafe fn unlock(&self, _: &mut EmptyGuardContext) {
+ // SAFETY: The safety requirements of the function ensure that the raw spinlock is owned by
+ // the caller.
+ unsafe { bindings::raw_spin_unlock(self.spin_lock.get()) };
+ }
+
+ fn locked_data(&self) -> &UnsafeCell<T> {
+ &self.data
+ }
+}
+
+// SAFETY: The underlying kernel `raw_spinlock_t` object ensures mutual exclusion.
+unsafe impl<T: ?Sized> Lock<DisabledInterrupts> for RawSpinLock<T> {
+ type Inner = T;
+ type GuardContext = core::ffi::c_ulong;
+
+ fn lock_noguard(&self) -> core::ffi::c_ulong {
+ // SAFETY: `spin_lock` points to valid memory.
+ unsafe { bindings::raw_spin_lock_irqsave(self.spin_lock.get()) }
+ }
+
+ unsafe fn unlock(&self, ctx: &mut core::ffi::c_ulong) {
+ // SAFETY: The safety requirements of the function ensure that the raw spinlock is owned by
+ // the caller.
+ unsafe { bindings::raw_spin_unlock_irqrestore(self.spin_lock.get(), *ctx) };
+ }
+
+ fn locked_data(&self) -> &UnsafeCell<T> {
+ &self.data
+ }
+}
--
2.37.1
This is a subset of the Rust standard library `alloc` crate,
version 1.62.0, licensed under "Apache-2.0 OR MIT", from:
https://github.com/rust-lang/rust/tree/1.62.0/library/alloc/src
The files are copied as-is, with no modifications whatsoever
(not even adding the SPDX identifiers).
For copyright details, please see:
https://github.com/rust-lang/rust/blob/1.62.0/COPYRIGHT
The next patch modifies these files as needed for use within
the kernel. This patch split allows reviewers to double-check
the import and to clearly see the differences introduced.
Vendoring `alloc`, at least for the moment, allows us to have fallible
allocations support (i.e. the `try_*` versions of methods which return
a `Result` instead of panicking) early on. It also gives a bit more
freedom to experiment with new interfaces and to iterate quickly.
Eventually, the goal is to have everything the kernel needs in
upstream `alloc` and drop it from the kernel tree.
For a summary of work on `alloc` happening upstream, please see:
https://github.com/Rust-for-Linux/linux/issues/408
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
rust/alloc/alloc.rs | 438 ++++
rust/alloc/borrow.rs | 496 +++++
rust/alloc/boxed.rs | 2024 +++++++++++++++++++
rust/alloc/boxed/thin.rs | 215 ++
rust/alloc/collections/mod.rs | 154 ++
rust/alloc/ffi/c_str.rs | 1201 +++++++++++
rust/alloc/ffi/mod.rs | 91 +
rust/alloc/fmt.rs | 612 ++++++
rust/alloc/lib.rs | 236 +++
rust/alloc/macros.rs | 126 ++
rust/alloc/raw_vec.rs | 518 +++++
rust/alloc/slice.rs | 1202 +++++++++++
rust/alloc/str.rs | 621 ++++++
rust/alloc/string.rs | 2942 +++++++++++++++++++++++++++
rust/alloc/vec/drain.rs | 184 ++
rust/alloc/vec/drain_filter.rs | 143 ++
rust/alloc/vec/into_iter.rs | 362 ++++
rust/alloc/vec/is_zero.rs | 118 ++
rust/alloc/vec/mod.rs | 3115 +++++++++++++++++++++++++++++
rust/alloc/vec/partial_eq.rs | 47 +
rust/alloc/vec/set_len_on_drop.rs | 28 +
rust/alloc/vec/spec_extend.rs | 87 +
22 files changed, 14960 insertions(+)
create mode 100644 rust/alloc/alloc.rs
create mode 100644 rust/alloc/borrow.rs
create mode 100644 rust/alloc/boxed.rs
create mode 100644 rust/alloc/boxed/thin.rs
create mode 100644 rust/alloc/collections/mod.rs
create mode 100644 rust/alloc/ffi/c_str.rs
create mode 100644 rust/alloc/ffi/mod.rs
create mode 100644 rust/alloc/fmt.rs
create mode 100644 rust/alloc/lib.rs
create mode 100644 rust/alloc/macros.rs
create mode 100644 rust/alloc/raw_vec.rs
create mode 100644 rust/alloc/slice.rs
create mode 100644 rust/alloc/str.rs
create mode 100644 rust/alloc/string.rs
create mode 100644 rust/alloc/vec/drain.rs
create mode 100644 rust/alloc/vec/drain_filter.rs
create mode 100644 rust/alloc/vec/into_iter.rs
create mode 100644 rust/alloc/vec/is_zero.rs
create mode 100644 rust/alloc/vec/mod.rs
create mode 100644 rust/alloc/vec/partial_eq.rs
create mode 100644 rust/alloc/vec/set_len_on_drop.rs
create mode 100644 rust/alloc/vec/spec_extend.rs
diff --git a/rust/alloc/alloc.rs b/rust/alloc/alloc.rs
new file mode 100644
index 000000000000..6162b5c6d4c9
--- /dev/null
+++ b/rust/alloc/alloc.rs
@@ -0,0 +1,438 @@
+//! Memory allocation APIs
+
+#![stable(feature = "alloc_module", since = "1.28.0")]
+
+#[cfg(not(test))]
+use core::intrinsics;
+use core::intrinsics::{min_align_of_val, size_of_val};
+
+use core::ptr::Unique;
+#[cfg(not(test))]
+use core::ptr::{self, NonNull};
+
+#[stable(feature = "alloc_module", since = "1.28.0")]
+#[doc(inline)]
+pub use core::alloc::*;
+
+use core::marker::Destruct;
+
+#[cfg(test)]
+mod tests;
+
+extern "Rust" {
+ // These are the magic symbols to call the global allocator. rustc generates
+ // them to call `__rg_alloc` etc. if there is a `#[global_allocator]` attribute
+ // (the code expanding that attribute macro generates those functions), or to call
+ // the default implementations in libstd (`__rdl_alloc` etc. in `library/std/src/alloc.rs`)
+ // otherwise.
+ // The rustc fork of LLVM also special-cases these function names to be able to optimize them
+ // like `malloc`, `realloc`, and `free`, respectively.
+ #[rustc_allocator]
+ #[rustc_allocator_nounwind]
+ fn __rust_alloc(size: usize, align: usize) -> *mut u8;
+ #[rustc_allocator_nounwind]
+ fn __rust_dealloc(ptr: *mut u8, size: usize, align: usize);
+ #[rustc_allocator_nounwind]
+ fn __rust_realloc(ptr: *mut u8, old_size: usize, align: usize, new_size: usize) -> *mut u8;
+ #[rustc_allocator_nounwind]
+ fn __rust_alloc_zeroed(size: usize, align: usize) -> *mut u8;
+}
+
+/// The global memory allocator.
+///
+/// This type implements the [`Allocator`] trait by forwarding calls
+/// to the allocator registered with the `#[global_allocator]` attribute
+/// if there is one, or the `std` crate’s default.
+///
+/// Note: while this type is unstable, the functionality it provides can be
+/// accessed through the [free functions in `alloc`](self#functions).
+#[unstable(feature = "allocator_api", issue = "32838")]
+#[derive(Copy, Clone, Default, Debug)]
+#[cfg(not(test))]
+pub struct Global;
+
+#[cfg(test)]
+pub use std::alloc::Global;
+
+/// Allocate memory with the global allocator.
+///
+/// This function forwards calls to the [`GlobalAlloc::alloc`] method
+/// of the allocator registered with the `#[global_allocator]` attribute
+/// if there is one, or the `std` crate’s default.
+///
+/// This function is expected to be deprecated in favor of the `alloc` method
+/// of the [`Global`] type when it and the [`Allocator`] trait become stable.
+///
+/// # Safety
+///
+/// See [`GlobalAlloc::alloc`].
+///
+/// # Examples
+///
+/// ```
+/// use std::alloc::{alloc, dealloc, Layout};
+///
+/// unsafe {
+/// let layout = Layout::new::<u16>();
+/// let ptr = alloc(layout);
+///
+/// *(ptr as *mut u16) = 42;
+/// assert_eq!(*(ptr as *mut u16), 42);
+///
+/// dealloc(ptr, layout);
+/// }
+/// ```
+#[stable(feature = "global_alloc", since = "1.28.0")]
+#[must_use = "losing the pointer will leak memory"]
+#[inline]
+pub unsafe fn alloc(layout: Layout) -> *mut u8 {
+ unsafe { __rust_alloc(layout.size(), layout.align()) }
+}
+
+/// Deallocate memory with the global allocator.
+///
+/// This function forwards calls to the [`GlobalAlloc::dealloc`] method
+/// of the allocator registered with the `#[global_allocator]` attribute
+/// if there is one, or the `std` crate’s default.
+///
+/// This function is expected to be deprecated in favor of the `dealloc` method
+/// of the [`Global`] type when it and the [`Allocator`] trait become stable.
+///
+/// # Safety
+///
+/// See [`GlobalAlloc::dealloc`].
+#[stable(feature = "global_alloc", since = "1.28.0")]
+#[inline]
+pub unsafe fn dealloc(ptr: *mut u8, layout: Layout) {
+ unsafe { __rust_dealloc(ptr, layout.size(), layout.align()) }
+}
+
+/// Reallocate memory with the global allocator.
+///
+/// This function forwards calls to the [`GlobalAlloc::realloc`] method
+/// of the allocator registered with the `#[global_allocator]` attribute
+/// if there is one, or the `std` crate’s default.
+///
+/// This function is expected to be deprecated in favor of the `realloc` method
+/// of the [`Global`] type when it and the [`Allocator`] trait become stable.
+///
+/// # Safety
+///
+/// See [`GlobalAlloc::realloc`].
+#[stable(feature = "global_alloc", since = "1.28.0")]
+#[must_use = "losing the pointer will leak memory"]
+#[inline]
+pub unsafe fn realloc(ptr: *mut u8, layout: Layout, new_size: usize) -> *mut u8 {
+ unsafe { __rust_realloc(ptr, layout.size(), layout.align(), new_size) }
+}
+
+/// Allocate zero-initialized memory with the global allocator.
+///
+/// This function forwards calls to the [`GlobalAlloc::alloc_zeroed`] method
+/// of the allocator registered with the `#[global_allocator]` attribute
+/// if there is one, or the `std` crate’s default.
+///
+/// This function is expected to be deprecated in favor of the `alloc_zeroed` method
+/// of the [`Global`] type when it and the [`Allocator`] trait become stable.
+///
+/// # Safety
+///
+/// See [`GlobalAlloc::alloc_zeroed`].
+///
+/// # Examples
+///
+/// ```
+/// use std::alloc::{alloc_zeroed, dealloc, Layout};
+///
+/// unsafe {
+/// let layout = Layout::new::<u16>();
+/// let ptr = alloc_zeroed(layout);
+///
+/// assert_eq!(*(ptr as *mut u16), 0);
+///
+/// dealloc(ptr, layout);
+/// }
+/// ```
+#[stable(feature = "global_alloc", since = "1.28.0")]
+#[must_use = "losing the pointer will leak memory"]
+#[inline]
+pub unsafe fn alloc_zeroed(layout: Layout) -> *mut u8 {
+ unsafe { __rust_alloc_zeroed(layout.size(), layout.align()) }
+}
+
+#[cfg(not(test))]
+impl Global {
+ #[inline]
+ fn alloc_impl(&self, layout: Layout, zeroed: bool) -> Result<NonNull<[u8]>, AllocError> {
+ match layout.size() {
+ 0 => Ok(NonNull::slice_from_raw_parts(layout.dangling(), 0)),
+ // SAFETY: `layout` is non-zero in size,
+ size => unsafe {
+ let raw_ptr = if zeroed { alloc_zeroed(layout) } else { alloc(layout) };
+ let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
+ Ok(NonNull::slice_from_raw_parts(ptr, size))
+ },
+ }
+ }
+
+ // SAFETY: Same as `Allocator::grow`
+ #[inline]
+ unsafe fn grow_impl(
+ &self,
+ ptr: NonNull<u8>,
+ old_layout: Layout,
+ new_layout: Layout,
+ zeroed: bool,
+ ) -> Result<NonNull<[u8]>, AllocError> {
+ debug_assert!(
+ new_layout.size() >= old_layout.size(),
+ "`new_layout.size()` must be greater than or equal to `old_layout.size()`"
+ );
+
+ match old_layout.size() {
+ 0 => self.alloc_impl(new_layout, zeroed),
+
+ // SAFETY: `new_size` is non-zero as `old_size` is greater than or equal to `new_size`
+ // as required by safety conditions. Other conditions must be upheld by the caller
+ old_size if old_layout.align() == new_layout.align() => unsafe {
+ let new_size = new_layout.size();
+
+ // `realloc` probably checks for `new_size >= old_layout.size()` or something similar.
+ intrinsics::assume(new_size >= old_layout.size());
+
+ let raw_ptr = realloc(ptr.as_ptr(), old_layout, new_size);
+ let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
+ if zeroed {
+ raw_ptr.add(old_size).write_bytes(0, new_size - old_size);
+ }
+ Ok(NonNull::slice_from_raw_parts(ptr, new_size))
+ },
+
+ // SAFETY: because `new_layout.size()` must be greater than or equal to `old_size`,
+ // both the old and new memory allocation are valid for reads and writes for `old_size`
+ // bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap
+ // `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract
+ // for `dealloc` must be upheld by the caller.
+ old_size => unsafe {
+ let new_ptr = self.alloc_impl(new_layout, zeroed)?;
+ ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_mut_ptr(), old_size);
+ self.deallocate(ptr, old_layout);
+ Ok(new_ptr)
+ },
+ }
+ }
+}
+
+#[unstable(feature = "allocator_api", issue = "32838")]
+#[cfg(not(test))]
+unsafe impl Allocator for Global {
+ #[inline]
+ fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
+ self.alloc_impl(layout, false)
+ }
+
+ #[inline]
+ fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
+ self.alloc_impl(layout, true)
+ }
+
+ #[inline]
+ unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
+ if layout.size() != 0 {
+ // SAFETY: `layout` is non-zero in size,
+ // other conditions must be upheld by the caller
+ unsafe { dealloc(ptr.as_ptr(), layout) }
+ }
+ }
+
+ #[inline]
+ unsafe fn grow(
+ &self,
+ ptr: NonNull<u8>,
+ old_layout: Layout,
+ new_layout: Layout,
+ ) -> Result<NonNull<[u8]>, AllocError> {
+ // SAFETY: all conditions must be upheld by the caller
+ unsafe { self.grow_impl(ptr, old_layout, new_layout, false) }
+ }
+
+ #[inline]
+ unsafe fn grow_zeroed(
+ &self,
+ ptr: NonNull<u8>,
+ old_layout: Layout,
+ new_layout: Layout,
+ ) -> Result<NonNull<[u8]>, AllocError> {
+ // SAFETY: all conditions must be upheld by the caller
+ unsafe { self.grow_impl(ptr, old_layout, new_layout, true) }
+ }
+
+ #[inline]
+ unsafe fn shrink(
+ &self,
+ ptr: NonNull<u8>,
+ old_layout: Layout,
+ new_layout: Layout,
+ ) -> Result<NonNull<[u8]>, AllocError> {
+ debug_assert!(
+ new_layout.size() <= old_layout.size(),
+ "`new_layout.size()` must be smaller than or equal to `old_layout.size()`"
+ );
+
+ match new_layout.size() {
+ // SAFETY: conditions must be upheld by the caller
+ 0 => unsafe {
+ self.deallocate(ptr, old_layout);
+ Ok(NonNull::slice_from_raw_parts(new_layout.dangling(), 0))
+ },
+
+ // SAFETY: `new_size` is non-zero. Other conditions must be upheld by the caller
+ new_size if old_layout.align() == new_layout.align() => unsafe {
+ // `realloc` probably checks for `new_size <= old_layout.size()` or something similar.
+ intrinsics::assume(new_size <= old_layout.size());
+
+ let raw_ptr = realloc(ptr.as_ptr(), old_layout, new_size);
+ let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
+ Ok(NonNull::slice_from_raw_parts(ptr, new_size))
+ },
+
+ // SAFETY: because `new_size` must be smaller than or equal to `old_layout.size()`,
+ // both the old and new memory allocation are valid for reads and writes for `new_size`
+ // bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap
+ // `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract
+ // for `dealloc` must be upheld by the caller.
+ new_size => unsafe {
+ let new_ptr = self.allocate(new_layout)?;
+ ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_mut_ptr(), new_size);
+ self.deallocate(ptr, old_layout);
+ Ok(new_ptr)
+ },
+ }
+ }
+}
+
+/// The allocator for unique pointers.
+#[cfg(all(not(no_global_oom_handling), not(test)))]
+#[lang = "exchange_malloc"]
+#[inline]
+unsafe fn exchange_malloc(size: usize, align: usize) -> *mut u8 {
+ let layout = unsafe { Layout::from_size_align_unchecked(size, align) };
+ match Global.allocate(layout) {
+ Ok(ptr) => ptr.as_mut_ptr(),
+ Err(_) => handle_alloc_error(layout),
+ }
+}
+
+#[cfg_attr(not(test), lang = "box_free")]
+#[inline]
+#[rustc_const_unstable(feature = "const_box", issue = "92521")]
+// This signature has to be the same as `Box`, otherwise an ICE will happen.
+// When an additional parameter to `Box` is added (like `A: Allocator`), this has to be added here as
+// well.
+// For example if `Box` is changed to `struct Box<T: ?Sized, A: Allocator>(Unique<T>, A)`,
+// this function has to be changed to `fn box_free<T: ?Sized, A: Allocator>(Unique<T>, A)` as well.
+pub(crate) const unsafe fn box_free<T: ?Sized, A: ~const Allocator + ~const Destruct>(
+ ptr: Unique<T>,
+ alloc: A,
+) {
+ unsafe {
+ let size = size_of_val(ptr.as_ref());
+ let align = min_align_of_val(ptr.as_ref());
+ let layout = Layout::from_size_align_unchecked(size, align);
+ alloc.deallocate(From::from(ptr.cast()), layout)
+ }
+}
+
+// # Allocation error handler
+
+#[cfg(not(no_global_oom_handling))]
+extern "Rust" {
+ // This is the magic symbol to call the global alloc error handler. rustc generates
+ // it to call `__rg_oom` if there is a `#[alloc_error_handler]`, or to call the
+ // default implementations below (`__rdl_oom`) otherwise.
+ fn __rust_alloc_error_handler(size: usize, align: usize) -> !;
+}
+
+/// Abort on memory allocation error or failure.
+///
+/// Callers of memory allocation APIs wishing to abort computation
+/// in response to an allocation error are encouraged to call this function,
+/// rather than directly invoking `panic!` or similar.
+///
+/// The default behavior of this function is to print a message to standard error
+/// and abort the process.
+/// It can be replaced with [`set_alloc_error_hook`] and [`take_alloc_error_hook`].
+///
+/// [`set_alloc_error_hook`]: ../../std/alloc/fn.set_alloc_error_hook.html
+/// [`take_alloc_error_hook`]: ../../std/alloc/fn.take_alloc_error_hook.html
+#[stable(feature = "global_alloc", since = "1.28.0")]
+#[rustc_const_unstable(feature = "const_alloc_error", issue = "92523")]
+#[cfg(all(not(no_global_oom_handling), not(test)))]
+#[cold]
+pub const fn handle_alloc_error(layout: Layout) -> ! {
+ const fn ct_error(_: Layout) -> ! {
+ panic!("allocation failed");
+ }
+
+ fn rt_error(layout: Layout) -> ! {
+ unsafe {
+ __rust_alloc_error_handler(layout.size(), layout.align());
+ }
+ }
+
+ unsafe { core::intrinsics::const_eval_select((layout,), ct_error, rt_error) }
+}
+
+// For alloc test `std::alloc::handle_alloc_error` can be used directly.
+#[cfg(all(not(no_global_oom_handling), test))]
+pub use std::alloc::handle_alloc_error;
+
+#[cfg(all(not(no_global_oom_handling), not(test)))]
+#[doc(hidden)]
+#[allow(unused_attributes)]
+#[unstable(feature = "alloc_internals", issue = "none")]
+pub mod __alloc_error_handler {
+ use crate::alloc::Layout;
+
+ // called via generated `__rust_alloc_error_handler`
+
+ // if there is no `#[alloc_error_handler]`
+ #[rustc_std_internal_symbol]
+ pub unsafe extern "C-unwind" fn __rdl_oom(size: usize, _align: usize) -> ! {
+ panic!("memory allocation of {size} bytes failed")
+ }
+
+ // if there is an `#[alloc_error_handler]`
+ #[rustc_std_internal_symbol]
+ pub unsafe extern "C-unwind" fn __rg_oom(size: usize, align: usize) -> ! {
+ let layout = unsafe { Layout::from_size_align_unchecked(size, align) };
+ extern "Rust" {
+ #[lang = "oom"]
+ fn oom_impl(layout: Layout) -> !;
+ }
+ unsafe { oom_impl(layout) }
+ }
+}
+
+/// Specialize clones into pre-allocated, uninitialized memory.
+/// Used by `Box::clone` and `Rc`/`Arc::make_mut`.
+pub(crate) trait WriteCloneIntoRaw: Sized {
+ unsafe fn write_clone_into_raw(&self, target: *mut Self);
+}
+
+impl<T: Clone> WriteCloneIntoRaw for T {
+ #[inline]
+ default unsafe fn write_clone_into_raw(&self, target: *mut Self) {
+ // Having allocated *first* may allow the optimizer to create
+ // the cloned value in-place, skipping the local and move.
+ unsafe { target.write(self.clone()) };
+ }
+}
+
+impl<T: Copy> WriteCloneIntoRaw for T {
+ #[inline]
+ unsafe fn write_clone_into_raw(&self, target: *mut Self) {
+ // We can always copy in-place, without ever involving a local value.
+ unsafe { target.copy_from_nonoverlapping(self, 1) };
+ }
+}
diff --git a/rust/alloc/borrow.rs b/rust/alloc/borrow.rs
new file mode 100644
index 000000000000..cb4e438f8bea
--- /dev/null
+++ b/rust/alloc/borrow.rs
@@ -0,0 +1,496 @@
+//! A module for working with borrowed data.
+
+#![stable(feature = "rust1", since = "1.0.0")]
+
+use core::cmp::Ordering;
+use core::hash::{Hash, Hasher};
+use core::ops::Deref;
+#[cfg(not(no_global_oom_handling))]
+use core::ops::{Add, AddAssign};
+
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::borrow::{Borrow, BorrowMut};
+
+use crate::fmt;
+#[cfg(not(no_global_oom_handling))]
+use crate::string::String;
+
+use Cow::*;
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, B: ?Sized> Borrow<B> for Cow<'a, B>
+where
+ B: ToOwned,
+ <B as ToOwned>::Owned: 'a,
+{
+ fn borrow(&self) -> &B {
+ &**self
+ }
+}
+
+/// A generalization of `Clone` to borrowed data.
+///
+/// Some types make it possible to go from borrowed to owned, usually by
+/// implementing the `Clone` trait. But `Clone` works only for going from `&T`
+/// to `T`. The `ToOwned` trait generalizes `Clone` to construct owned data
+/// from any borrow of a given type.
+#[cfg_attr(not(test), rustc_diagnostic_item = "ToOwned")]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub trait ToOwned {
+ /// The resulting type after obtaining ownership.
+ #[stable(feature = "rust1", since = "1.0.0")]
+ type Owned: Borrow<Self>;
+
+ /// Creates owned data from borrowed data, usually by cloning.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s: &str = "a";
+ /// let ss: String = s.to_owned();
+ ///
+ /// let v: &[i32] = &[1, 2];
+ /// let vv: Vec<i32> = v.to_owned();
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[must_use = "cloning is often expensive and is not expected to have side effects"]
+ fn to_owned(&self) -> Self::Owned;
+
+ /// Uses borrowed data to replace owned data, usually by cloning.
+ ///
+ /// This is borrow-generalized version of `Clone::clone_from`.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// # #![feature(toowned_clone_into)]
+ /// let mut s: String = String::new();
+ /// "hello".clone_into(&mut s);
+ ///
+ /// let mut v: Vec<i32> = Vec::new();
+ /// [1, 2][..].clone_into(&mut v);
+ /// ```
+ #[unstable(feature = "toowned_clone_into", reason = "recently added", issue = "41263")]
+ fn clone_into(&self, target: &mut Self::Owned) {
+ *target = self.to_owned();
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> ToOwned for T
+where
+ T: Clone,
+{
+ type Owned = T;
+ fn to_owned(&self) -> T {
+ self.clone()
+ }
+
+ fn clone_into(&self, target: &mut T) {
+ target.clone_from(self);
+ }
+}
+
+/// A clone-on-write smart pointer.
+///
+/// The type `Cow` is a smart pointer providing clone-on-write functionality: it
+/// can enclose and provide immutable access to borrowed data, and clone the
+/// data lazily when mutation or ownership is required. The type is designed to
+/// work with general borrowed data via the `Borrow` trait.
+///
+/// `Cow` implements `Deref`, which means that you can call
+/// non-mutating methods directly on the data it encloses. If mutation
+/// is desired, `to_mut` will obtain a mutable reference to an owned
+/// value, cloning if necessary.
+///
+/// If you need reference-counting pointers, note that
+/// [`Rc::make_mut`][crate::rc::Rc::make_mut] and
+/// [`Arc::make_mut`][crate::sync::Arc::make_mut] can provide clone-on-write
+/// functionality as well.
+///
+/// # Examples
+///
+/// ```
+/// use std::borrow::Cow;
+///
+/// fn abs_all(input: &mut Cow<[i32]>) {
+/// for i in 0..input.len() {
+/// let v = input[i];
+/// if v < 0 {
+/// // Clones into a vector if not already owned.
+/// input.to_mut()[i] = -v;
+/// }
+/// }
+/// }
+///
+/// // No clone occurs because `input` doesn't need to be mutated.
+/// let slice = [0, 1, 2];
+/// let mut input = Cow::from(&slice[..]);
+/// abs_all(&mut input);
+///
+/// // Clone occurs because `input` needs to be mutated.
+/// let slice = [-1, 0, 1];
+/// let mut input = Cow::from(&slice[..]);
+/// abs_all(&mut input);
+///
+/// // No clone occurs because `input` is already owned.
+/// let mut input = Cow::from(vec![-1, 0, 1]);
+/// abs_all(&mut input);
+/// ```
+///
+/// Another example showing how to keep `Cow` in a struct:
+///
+/// ```
+/// use std::borrow::Cow;
+///
+/// struct Items<'a, X: 'a> where [X]: ToOwned<Owned = Vec<X>> {
+/// values: Cow<'a, [X]>,
+/// }
+///
+/// impl<'a, X: Clone + 'a> Items<'a, X> where [X]: ToOwned<Owned = Vec<X>> {
+/// fn new(v: Cow<'a, [X]>) -> Self {
+/// Items { values: v }
+/// }
+/// }
+///
+/// // Creates a container from borrowed values of a slice
+/// let readonly = [1, 2];
+/// let borrowed = Items::new((&readonly[..]).into());
+/// match borrowed {
+/// Items { values: Cow::Borrowed(b) } => println!("borrowed {b:?}"),
+/// _ => panic!("expect borrowed value"),
+/// }
+///
+/// let mut clone_on_write = borrowed;
+/// // Mutates the data from slice into owned vec and pushes a new value on top
+/// clone_on_write.values.to_mut().push(3);
+/// println!("clone_on_write = {:?}", clone_on_write.values);
+///
+/// // The data was mutated. Let's check it out.
+/// match clone_on_write {
+/// Items { values: Cow::Owned(_) } => println!("clone_on_write contains owned data"),
+/// _ => panic!("expect owned data"),
+/// }
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[cfg_attr(not(test), rustc_diagnostic_item = "Cow")]
+pub enum Cow<'a, B: ?Sized + 'a>
+where
+ B: ToOwned,
+{
+ /// Borrowed data.
+ #[stable(feature = "rust1", since = "1.0.0")]
+ Borrowed(#[stable(feature = "rust1", since = "1.0.0")] &'a B),
+
+ /// Owned data.
+ #[stable(feature = "rust1", since = "1.0.0")]
+ Owned(#[stable(feature = "rust1", since = "1.0.0")] <B as ToOwned>::Owned),
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<B: ?Sized + ToOwned> Clone for Cow<'_, B> {
+ fn clone(&self) -> Self {
+ match *self {
+ Borrowed(b) => Borrowed(b),
+ Owned(ref o) => {
+ let b: &B = o.borrow();
+ Owned(b.to_owned())
+ }
+ }
+ }
+
+ fn clone_from(&mut self, source: &Self) {
+ match (self, source) {
+ (&mut Owned(ref mut dest), &Owned(ref o)) => o.borrow().clone_into(dest),
+ (t, s) => *t = s.clone(),
+ }
+ }
+}
+
+impl<B: ?Sized + ToOwned> Cow<'_, B> {
+ /// Returns true if the data is borrowed, i.e. if `to_mut` would require additional work.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(cow_is_borrowed)]
+ /// use std::borrow::Cow;
+ ///
+ /// let cow = Cow::Borrowed("moo");
+ /// assert!(cow.is_borrowed());
+ ///
+ /// let bull: Cow<'_, str> = Cow::Owned("...moo?".to_string());
+ /// assert!(!bull.is_borrowed());
+ /// ```
+ #[unstable(feature = "cow_is_borrowed", issue = "65143")]
+ #[rustc_const_unstable(feature = "const_cow_is_borrowed", issue = "65143")]
+ pub const fn is_borrowed(&self) -> bool {
+ match *self {
+ Borrowed(_) => true,
+ Owned(_) => false,
+ }
+ }
+
+ /// Returns true if the data is owned, i.e. if `to_mut` would be a no-op.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(cow_is_borrowed)]
+ /// use std::borrow::Cow;
+ ///
+ /// let cow: Cow<'_, str> = Cow::Owned("moo".to_string());
+ /// assert!(cow.is_owned());
+ ///
+ /// let bull = Cow::Borrowed("...moo?");
+ /// assert!(!bull.is_owned());
+ /// ```
+ #[unstable(feature = "cow_is_borrowed", issue = "65143")]
+ #[rustc_const_unstable(feature = "const_cow_is_borrowed", issue = "65143")]
+ pub const fn is_owned(&self) -> bool {
+ !self.is_borrowed()
+ }
+
+ /// Acquires a mutable reference to the owned form of the data.
+ ///
+ /// Clones the data if it is not already owned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::borrow::Cow;
+ ///
+ /// let mut cow = Cow::Borrowed("foo");
+ /// cow.to_mut().make_ascii_uppercase();
+ ///
+ /// assert_eq!(
+ /// cow,
+ /// Cow::Owned(String::from("FOO")) as Cow<str>
+ /// );
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn to_mut(&mut self) -> &mut <B as ToOwned>::Owned {
+ match *self {
+ Borrowed(borrowed) => {
+ *self = Owned(borrowed.to_owned());
+ match *self {
+ Borrowed(..) => unreachable!(),
+ Owned(ref mut owned) => owned,
+ }
+ }
+ Owned(ref mut owned) => owned,
+ }
+ }
+
+ /// Extracts the owned data.
+ ///
+ /// Clones the data if it is not already owned.
+ ///
+ /// # Examples
+ ///
+ /// Calling `into_owned` on a `Cow::Borrowed` returns a clone of the borrowed data:
+ ///
+ /// ```
+ /// use std::borrow::Cow;
+ ///
+ /// let s = "Hello world!";
+ /// let cow = Cow::Borrowed(s);
+ ///
+ /// assert_eq!(
+ /// cow.into_owned(),
+ /// String::from(s)
+ /// );
+ /// ```
+ ///
+ /// Calling `into_owned` on a `Cow::Owned` returns the owned data. The data is moved out of the
+ /// `Cow` without being cloned.
+ ///
+ /// ```
+ /// use std::borrow::Cow;
+ ///
+ /// let s = "Hello world!";
+ /// let cow: Cow<str> = Cow::Owned(String::from(s));
+ ///
+ /// assert_eq!(
+ /// cow.into_owned(),
+ /// String::from(s)
+ /// );
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn into_owned(self) -> <B as ToOwned>::Owned {
+ match self {
+ Borrowed(borrowed) => borrowed.to_owned(),
+ Owned(owned) => owned,
+ }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+#[rustc_const_unstable(feature = "const_deref", issue = "88955")]
+impl<B: ?Sized + ToOwned> const Deref for Cow<'_, B>
+where
+ B::Owned: ~const Borrow<B>,
+{
+ type Target = B;
+
+ fn deref(&self) -> &B {
+ match *self {
+ Borrowed(borrowed) => borrowed,
+ Owned(ref owned) => owned.borrow(),
+ }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<B: ?Sized> Eq for Cow<'_, B> where B: Eq + ToOwned {}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<B: ?Sized> Ord for Cow<'_, B>
+where
+ B: Ord + ToOwned,
+{
+ #[inline]
+ fn cmp(&self, other: &Self) -> Ordering {
+ Ord::cmp(&**self, &**other)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, 'b, B: ?Sized, C: ?Sized> PartialEq<Cow<'b, C>> for Cow<'a, B>
+where
+ B: PartialEq<C> + ToOwned,
+ C: ToOwned,
+{
+ #[inline]
+ fn eq(&self, other: &Cow<'b, C>) -> bool {
+ PartialEq::eq(&**self, &**other)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, B: ?Sized> PartialOrd for Cow<'a, B>
+where
+ B: PartialOrd + ToOwned,
+{
+ #[inline]
+ fn partial_cmp(&self, other: &Cow<'a, B>) -> Option<Ordering> {
+ PartialOrd::partial_cmp(&**self, &**other)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<B: ?Sized> fmt::Debug for Cow<'_, B>
+where
+ B: fmt::Debug + ToOwned<Owned: fmt::Debug>,
+{
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ match *self {
+ Borrowed(ref b) => fmt::Debug::fmt(b, f),
+ Owned(ref o) => fmt::Debug::fmt(o, f),
+ }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<B: ?Sized> fmt::Display for Cow<'_, B>
+where
+ B: fmt::Display + ToOwned<Owned: fmt::Display>,
+{
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ match *self {
+ Borrowed(ref b) => fmt::Display::fmt(b, f),
+ Owned(ref o) => fmt::Display::fmt(o, f),
+ }
+ }
+}
+
+#[stable(feature = "default", since = "1.11.0")]
+impl<B: ?Sized> Default for Cow<'_, B>
+where
+ B: ToOwned<Owned: Default>,
+{
+ /// Creates an owned Cow<'a, B> with the default value for the contained owned value.
+ fn default() -> Self {
+ Owned(<B as ToOwned>::Owned::default())
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<B: ?Sized> Hash for Cow<'_, B>
+where
+ B: Hash + ToOwned,
+{
+ #[inline]
+ fn hash<H: Hasher>(&self, state: &mut H) {
+ Hash::hash(&**self, state)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + ToOwned> AsRef<T> for Cow<'_, T> {
+ fn as_ref(&self) -> &T {
+ self
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "cow_add", since = "1.14.0")]
+impl<'a> Add<&'a str> for Cow<'a, str> {
+ type Output = Cow<'a, str>;
+
+ #[inline]
+ fn add(mut self, rhs: &'a str) -> Self::Output {
+ self += rhs;
+ self
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "cow_add", since = "1.14.0")]
+impl<'a> Add<Cow<'a, str>> for Cow<'a, str> {
+ type Output = Cow<'a, str>;
+
+ #[inline]
+ fn add(mut self, rhs: Cow<'a, str>) -> Self::Output {
+ self += rhs;
+ self
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "cow_add", since = "1.14.0")]
+impl<'a> AddAssign<&'a str> for Cow<'a, str> {
+ fn add_assign(&mut self, rhs: &'a str) {
+ if self.is_empty() {
+ *self = Cow::Borrowed(rhs)
+ } else if !rhs.is_empty() {
+ if let Cow::Borrowed(lhs) = *self {
+ let mut s = String::with_capacity(lhs.len() + rhs.len());
+ s.push_str(lhs);
+ *self = Cow::Owned(s);
+ }
+ self.to_mut().push_str(rhs);
+ }
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "cow_add", since = "1.14.0")]
+impl<'a> AddAssign<Cow<'a, str>> for Cow<'a, str> {
+ fn add_assign(&mut self, rhs: Cow<'a, str>) {
+ if self.is_empty() {
+ *self = rhs
+ } else if !rhs.is_empty() {
+ if let Cow::Borrowed(lhs) = *self {
+ let mut s = String::with_capacity(lhs.len() + rhs.len());
+ s.push_str(lhs);
+ *self = Cow::Owned(s);
+ }
+ self.to_mut().push_str(&rhs);
+ }
+ }
+}
diff --git a/rust/alloc/boxed.rs b/rust/alloc/boxed.rs
new file mode 100644
index 000000000000..c07536f0d0ce
--- /dev/null
+++ b/rust/alloc/boxed.rs
@@ -0,0 +1,2024 @@
+//! A pointer type for heap allocation.
+//!
+//! [`Box<T>`], casually referred to as a 'box', provides the simplest form of
+//! heap allocation in Rust. Boxes provide ownership for this allocation, and
+//! drop their contents when they go out of scope. Boxes also ensure that they
+//! never allocate more than `isize::MAX` bytes.
+//!
+//! # Examples
+//!
+//! Move a value from the stack to the heap by creating a [`Box`]:
+//!
+//! ```
+//! let val: u8 = 5;
+//! let boxed: Box<u8> = Box::new(val);
+//! ```
+//!
+//! Move a value from a [`Box`] back to the stack by [dereferencing]:
+//!
+//! ```
+//! let boxed: Box<u8> = Box::new(5);
+//! let val: u8 = *boxed;
+//! ```
+//!
+//! Creating a recursive data structure:
+//!
+//! ```
+//! #[derive(Debug)]
+//! enum List<T> {
+//! Cons(T, Box<List<T>>),
+//! Nil,
+//! }
+//!
+//! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
+//! println!("{list:?}");
+//! ```
+//!
+//! This will print `Cons(1, Cons(2, Nil))`.
+//!
+//! Recursive structures must be boxed, because if the definition of `Cons`
+//! looked like this:
+//!
+//! ```compile_fail,E0072
+//! # enum List<T> {
+//! Cons(T, List<T>),
+//! # }
+//! ```
+//!
+//! It wouldn't work. This is because the size of a `List` depends on how many
+//! elements are in the list, and so we don't know how much memory to allocate
+//! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how
+//! big `Cons` needs to be.
+//!
+//! # Memory layout
+//!
+//! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for
+//! its allocation. It is valid to convert both ways between a [`Box`] and a
+//! raw pointer allocated with the [`Global`] allocator, given that the
+//! [`Layout`] used with the allocator is correct for the type. More precisely,
+//! a `value: *mut T` that has been allocated with the [`Global`] allocator
+//! with `Layout::for_value(&*value)` may be converted into a box using
+//! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut
+//! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the
+//! [`Global`] allocator with [`Layout::for_value(&*value)`].
+//!
+//! For zero-sized values, the `Box` pointer still has to be [valid] for reads
+//! and writes and sufficiently aligned. In particular, casting any aligned
+//! non-zero integer literal to a raw pointer produces a valid pointer, but a
+//! pointer pointing into previously allocated memory that since got freed is
+//! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot
+//! be used is to use [`ptr::NonNull::dangling`].
+//!
+//! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented
+//! as a single pointer and is also ABI-compatible with C pointers
+//! (i.e. the C type `T*`). This means that if you have extern "C"
+//! Rust functions that will be called from C, you can define those
+//! Rust functions using `Box<T>` types, and use `T*` as corresponding
+//! type on the C side. As an example, consider this C header which
+//! declares functions that create and destroy some kind of `Foo`
+//! value:
+//!
+//! ```c
+//! /* C header */
+//!
+//! /* Returns ownership to the caller */
+//! struct Foo* foo_new(void);
+//!
+//! /* Takes ownership from the caller; no-op when invoked with null */
+//! void foo_delete(struct Foo*);
+//! ```
+//!
+//! These two functions might be implemented in Rust as follows. Here, the
+//! `struct Foo*` type from C is translated to `Box<Foo>`, which captures
+//! the ownership constraints. Note also that the nullable argument to
+//! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>`
+//! cannot be null.
+//!
+//! ```
+//! #[repr(C)]
+//! pub struct Foo;
+//!
+//! #[no_mangle]
+//! pub extern "C" fn foo_new() -> Box<Foo> {
+//! Box::new(Foo)
+//! }
+//!
+//! #[no_mangle]
+//! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {}
+//! ```
+//!
+//! Even though `Box<T>` has the same representation and C ABI as a C pointer,
+//! this does not mean that you can convert an arbitrary `T*` into a `Box<T>`
+//! and expect things to work. `Box<T>` values will always be fully aligned,
+//! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to
+//! free the value with the global allocator. In general, the best practice
+//! is to only use `Box<T>` for pointers that originated from the global
+//! allocator.
+//!
+//! **Important.** At least at present, you should avoid using
+//! `Box<T>` types for functions that are defined in C but invoked
+//! from Rust. In those cases, you should directly mirror the C types
+//! as closely as possible. Using types like `Box<T>` where the C
+//! definition is just using `T*` can lead to undefined behavior, as
+//! described in [rust-lang/unsafe-code-guidelines#198][ucg#198].
+//!
+//! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198
+//! [dereferencing]: core::ops::Deref
+//! [`Box::<T>::from_raw(value)`]: Box::from_raw
+//! [`Global`]: crate::alloc::Global
+//! [`Layout`]: crate::alloc::Layout
+//! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value
+//! [valid]: ptr#safety
+
+#![stable(feature = "rust1", since = "1.0.0")]
+
+use core::any::Any;
+use core::async_iter::AsyncIterator;
+use core::borrow;
+use core::cmp::Ordering;
+use core::convert::{From, TryFrom};
+use core::fmt;
+use core::future::Future;
+use core::hash::{Hash, Hasher};
+#[cfg(not(no_global_oom_handling))]
+use core::iter::FromIterator;
+use core::iter::{FusedIterator, Iterator};
+use core::marker::{Destruct, Unpin, Unsize};
+use core::mem;
+use core::ops::{
+ CoerceUnsized, Deref, DerefMut, DispatchFromDyn, Generator, GeneratorState, Receiver,
+};
+use core::pin::Pin;
+use core::ptr::{self, Unique};
+use core::task::{Context, Poll};
+
+#[cfg(not(no_global_oom_handling))]
+use crate::alloc::{handle_alloc_error, WriteCloneIntoRaw};
+use crate::alloc::{AllocError, Allocator, Global, Layout};
+#[cfg(not(no_global_oom_handling))]
+use crate::borrow::Cow;
+use crate::raw_vec::RawVec;
+#[cfg(not(no_global_oom_handling))]
+use crate::str::from_boxed_utf8_unchecked;
+#[cfg(not(no_global_oom_handling))]
+use crate::vec::Vec;
+
+#[unstable(feature = "thin_box", issue = "92791")]
+pub use thin::ThinBox;
+
+mod thin;
+
+/// A pointer type for heap allocation.
+///
+/// See the [module-level documentation](../../std/boxed/index.html) for more.
+#[lang = "owned_box"]
+#[fundamental]
+#[stable(feature = "rust1", since = "1.0.0")]
+// The declaration of the `Box` struct must be kept in sync with the
+// `alloc::alloc::box_free` function or ICEs will happen. See the comment
+// on `box_free` for more details.
+pub struct Box<
+ T: ?Sized,
+ #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
+>(Unique<T>, A);
+
+impl<T> Box<T> {
+ /// Allocates memory on the heap and then places `x` into it.
+ ///
+ /// This doesn't actually allocate if `T` is zero-sized.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let five = Box::new(5);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline(always)]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[must_use]
+ pub fn new(x: T) -> Self {
+ box x
+ }
+
+ /// Constructs a new box with uninitialized contents.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(new_uninit)]
+ ///
+ /// let mut five = Box::<u32>::new_uninit();
+ ///
+ /// let five = unsafe {
+ /// // Deferred initialization:
+ /// five.as_mut_ptr().write(5);
+ ///
+ /// five.assume_init()
+ /// };
+ ///
+ /// assert_eq!(*five, 5)
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[unstable(feature = "new_uninit", issue = "63291")]
+ #[must_use]
+ #[inline]
+ pub fn new_uninit() -> Box<mem::MaybeUninit<T>> {
+ Self::new_uninit_in(Global)
+ }
+
+ /// Constructs a new `Box` with uninitialized contents, with the memory
+ /// being filled with `0` bytes.
+ ///
+ /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
+ /// of this method.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(new_uninit)]
+ ///
+ /// let zero = Box::<u32>::new_zeroed();
+ /// let zero = unsafe { zero.assume_init() };
+ ///
+ /// assert_eq!(*zero, 0)
+ /// ```
+ ///
+ /// [zeroed]: mem::MaybeUninit::zeroed
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[unstable(feature = "new_uninit", issue = "63291")]
+ #[must_use]
+ pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> {
+ Self::new_zeroed_in(Global)
+ }
+
+ /// Constructs a new `Pin<Box<T>>`. If `T` does not implement `Unpin`, then
+ /// `x` will be pinned in memory and unable to be moved.
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "pin", since = "1.33.0")]
+ #[must_use]
+ #[inline(always)]
+ pub fn pin(x: T) -> Pin<Box<T>> {
+ (box x).into()
+ }
+
+ /// Allocates memory on the heap then places `x` into it,
+ /// returning an error if the allocation fails
+ ///
+ /// This doesn't actually allocate if `T` is zero-sized.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api)]
+ ///
+ /// let five = Box::try_new(5)?;
+ /// # Ok::<(), std::alloc::AllocError>(())
+ /// ```
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ #[inline]
+ pub fn try_new(x: T) -> Result<Self, AllocError> {
+ Self::try_new_in(x, Global)
+ }
+
+ /// Constructs a new box with uninitialized contents on the heap,
+ /// returning an error if the allocation fails
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api, new_uninit)]
+ ///
+ /// let mut five = Box::<u32>::try_new_uninit()?;
+ ///
+ /// let five = unsafe {
+ /// // Deferred initialization:
+ /// five.as_mut_ptr().write(5);
+ ///
+ /// five.assume_init()
+ /// };
+ ///
+ /// assert_eq!(*five, 5);
+ /// # Ok::<(), std::alloc::AllocError>(())
+ /// ```
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ // #[unstable(feature = "new_uninit", issue = "63291")]
+ #[inline]
+ pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
+ Box::try_new_uninit_in(Global)
+ }
+
+ /// Constructs a new `Box` with uninitialized contents, with the memory
+ /// being filled with `0` bytes on the heap
+ ///
+ /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
+ /// of this method.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api, new_uninit)]
+ ///
+ /// let zero = Box::<u32>::try_new_zeroed()?;
+ /// let zero = unsafe { zero.assume_init() };
+ ///
+ /// assert_eq!(*zero, 0);
+ /// # Ok::<(), std::alloc::AllocError>(())
+ /// ```
+ ///
+ /// [zeroed]: mem::MaybeUninit::zeroed
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ // #[unstable(feature = "new_uninit", issue = "63291")]
+ #[inline]
+ pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
+ Box::try_new_zeroed_in(Global)
+ }
+}
+
+impl<T, A: Allocator> Box<T, A> {
+ /// Allocates memory in the given allocator then places `x` into it.
+ ///
+ /// This doesn't actually allocate if `T` is zero-sized.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api)]
+ ///
+ /// use std::alloc::System;
+ ///
+ /// let five = Box::new_in(5, System);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ #[rustc_const_unstable(feature = "const_box", issue = "92521")]
+ #[must_use]
+ #[inline]
+ pub const fn new_in(x: T, alloc: A) -> Self
+ where
+ A: ~const Allocator + ~const Destruct,
+ {
+ let mut boxed = Self::new_uninit_in(alloc);
+ unsafe {
+ boxed.as_mut_ptr().write(x);
+ boxed.assume_init()
+ }
+ }
+
+ /// Allocates memory in the given allocator then places `x` into it,
+ /// returning an error if the allocation fails
+ ///
+ /// This doesn't actually allocate if `T` is zero-sized.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api)]
+ ///
+ /// use std::alloc::System;
+ ///
+ /// let five = Box::try_new_in(5, System)?;
+ /// # Ok::<(), std::alloc::AllocError>(())
+ /// ```
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ #[rustc_const_unstable(feature = "const_box", issue = "92521")]
+ #[inline]
+ pub const fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError>
+ where
+ T: ~const Destruct,
+ A: ~const Allocator + ~const Destruct,
+ {
+ let mut boxed = Self::try_new_uninit_in(alloc)?;
+ unsafe {
+ boxed.as_mut_ptr().write(x);
+ Ok(boxed.assume_init())
+ }
+ }
+
+ /// Constructs a new box with uninitialized contents in the provided allocator.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api, new_uninit)]
+ ///
+ /// use std::alloc::System;
+ ///
+ /// let mut five = Box::<u32, _>::new_uninit_in(System);
+ ///
+ /// let five = unsafe {
+ /// // Deferred initialization:
+ /// five.as_mut_ptr().write(5);
+ ///
+ /// five.assume_init()
+ /// };
+ ///
+ /// assert_eq!(*five, 5)
+ /// ```
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ #[rustc_const_unstable(feature = "const_box", issue = "92521")]
+ #[cfg(not(no_global_oom_handling))]
+ #[must_use]
+ // #[unstable(feature = "new_uninit", issue = "63291")]
+ pub const fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
+ where
+ A: ~const Allocator + ~const Destruct,
+ {
+ let layout = Layout::new::<mem::MaybeUninit<T>>();
+ // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
+ // That would make code size bigger.
+ match Box::try_new_uninit_in(alloc) {
+ Ok(m) => m,
+ Err(_) => handle_alloc_error(layout),
+ }
+ }
+
+ /// Constructs a new box with uninitialized contents in the provided allocator,
+ /// returning an error if the allocation fails
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api, new_uninit)]
+ ///
+ /// use std::alloc::System;
+ ///
+ /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?;
+ ///
+ /// let five = unsafe {
+ /// // Deferred initialization:
+ /// five.as_mut_ptr().write(5);
+ ///
+ /// five.assume_init()
+ /// };
+ ///
+ /// assert_eq!(*five, 5);
+ /// # Ok::<(), std::alloc::AllocError>(())
+ /// ```
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ // #[unstable(feature = "new_uninit", issue = "63291")]
+ #[rustc_const_unstable(feature = "const_box", issue = "92521")]
+ pub const fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
+ where
+ A: ~const Allocator + ~const Destruct,
+ {
+ let layout = Layout::new::<mem::MaybeUninit<T>>();
+ let ptr = alloc.allocate(layout)?.cast();
+ unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
+ }
+
+ /// Constructs a new `Box` with uninitialized contents, with the memory
+ /// being filled with `0` bytes in the provided allocator.
+ ///
+ /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
+ /// of this method.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api, new_uninit)]
+ ///
+ /// use std::alloc::System;
+ ///
+ /// let zero = Box::<u32, _>::new_zeroed_in(System);
+ /// let zero = unsafe { zero.assume_init() };
+ ///
+ /// assert_eq!(*zero, 0)
+ /// ```
+ ///
+ /// [zeroed]: mem::MaybeUninit::zeroed
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ #[rustc_const_unstable(feature = "const_box", issue = "92521")]
+ #[cfg(not(no_global_oom_handling))]
+ // #[unstable(feature = "new_uninit", issue = "63291")]
+ #[must_use]
+ pub const fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
+ where
+ A: ~const Allocator + ~const Destruct,
+ {
+ let layout = Layout::new::<mem::MaybeUninit<T>>();
+ // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
+ // That would make code size bigger.
+ match Box::try_new_zeroed_in(alloc) {
+ Ok(m) => m,
+ Err(_) => handle_alloc_error(layout),
+ }
+ }
+
+ /// Constructs a new `Box` with uninitialized contents, with the memory
+ /// being filled with `0` bytes in the provided allocator,
+ /// returning an error if the allocation fails,
+ ///
+ /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
+ /// of this method.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api, new_uninit)]
+ ///
+ /// use std::alloc::System;
+ ///
+ /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?;
+ /// let zero = unsafe { zero.assume_init() };
+ ///
+ /// assert_eq!(*zero, 0);
+ /// # Ok::<(), std::alloc::AllocError>(())
+ /// ```
+ ///
+ /// [zeroed]: mem::MaybeUninit::zeroed
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ // #[unstable(feature = "new_uninit", issue = "63291")]
+ #[rustc_const_unstable(feature = "const_box", issue = "92521")]
+ pub const fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
+ where
+ A: ~const Allocator + ~const Destruct,
+ {
+ let layout = Layout::new::<mem::MaybeUninit<T>>();
+ let ptr = alloc.allocate_zeroed(layout)?.cast();
+ unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
+ }
+
+ /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement `Unpin`, then
+ /// `x` will be pinned in memory and unable to be moved.
+ #[cfg(not(no_global_oom_handling))]
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ #[rustc_const_unstable(feature = "const_box", issue = "92521")]
+ #[must_use]
+ #[inline(always)]
+ pub const fn pin_in(x: T, alloc: A) -> Pin<Self>
+ where
+ A: 'static + ~const Allocator + ~const Destruct,
+ {
+ Self::into_pin(Self::new_in(x, alloc))
+ }
+
+ /// Converts a `Box<T>` into a `Box<[T]>`
+ ///
+ /// This conversion does not allocate on the heap and happens in place.
+ #[unstable(feature = "box_into_boxed_slice", issue = "71582")]
+ #[rustc_const_unstable(feature = "const_box", issue = "92521")]
+ pub const fn into_boxed_slice(boxed: Self) -> Box<[T], A> {
+ let (raw, alloc) = Box::into_raw_with_allocator(boxed);
+ unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) }
+ }
+
+ /// Consumes the `Box`, returning the wrapped value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(box_into_inner)]
+ ///
+ /// let c = Box::new(5);
+ ///
+ /// assert_eq!(Box::into_inner(c), 5);
+ /// ```
+ #[unstable(feature = "box_into_inner", issue = "80437")]
+ #[rustc_const_unstable(feature = "const_box", issue = "92521")]
+ #[inline]
+ pub const fn into_inner(boxed: Self) -> T
+ where
+ Self: ~const Destruct,
+ {
+ *boxed
+ }
+}
+
+impl<T> Box<[T]> {
+ /// Constructs a new boxed slice with uninitialized contents.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(new_uninit)]
+ ///
+ /// let mut values = Box::<[u32]>::new_uninit_slice(3);
+ ///
+ /// let values = unsafe {
+ /// // Deferred initialization:
+ /// values[0].as_mut_ptr().write(1);
+ /// values[1].as_mut_ptr().write(2);
+ /// values[2].as_mut_ptr().write(3);
+ ///
+ /// values.assume_init()
+ /// };
+ ///
+ /// assert_eq!(*values, [1, 2, 3])
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[unstable(feature = "new_uninit", issue = "63291")]
+ #[must_use]
+ pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
+ unsafe { RawVec::with_capacity(len).into_box(len) }
+ }
+
+ /// Constructs a new boxed slice with uninitialized contents, with the memory
+ /// being filled with `0` bytes.
+ ///
+ /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
+ /// of this method.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(new_uninit)]
+ ///
+ /// let values = Box::<[u32]>::new_zeroed_slice(3);
+ /// let values = unsafe { values.assume_init() };
+ ///
+ /// assert_eq!(*values, [0, 0, 0])
+ /// ```
+ ///
+ /// [zeroed]: mem::MaybeUninit::zeroed
+ #[cfg(not(no_global_oom_handling))]
+ #[unstable(feature = "new_uninit", issue = "63291")]
+ #[must_use]
+ pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
+ unsafe { RawVec::with_capacity_zeroed(len).into_box(len) }
+ }
+
+ /// Constructs a new boxed slice with uninitialized contents. Returns an error if
+ /// the allocation fails
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api, new_uninit)]
+ ///
+ /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?;
+ /// let values = unsafe {
+ /// // Deferred initialization:
+ /// values[0].as_mut_ptr().write(1);
+ /// values[1].as_mut_ptr().write(2);
+ /// values[2].as_mut_ptr().write(3);
+ /// values.assume_init()
+ /// };
+ ///
+ /// assert_eq!(*values, [1, 2, 3]);
+ /// # Ok::<(), std::alloc::AllocError>(())
+ /// ```
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ #[inline]
+ pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
+ unsafe {
+ let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
+ Ok(l) => l,
+ Err(_) => return Err(AllocError),
+ };
+ let ptr = Global.allocate(layout)?;
+ Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len))
+ }
+ }
+
+ /// Constructs a new boxed slice with uninitialized contents, with the memory
+ /// being filled with `0` bytes. Returns an error if the allocation fails
+ ///
+ /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
+ /// of this method.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api, new_uninit)]
+ ///
+ /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?;
+ /// let values = unsafe { values.assume_init() };
+ ///
+ /// assert_eq!(*values, [0, 0, 0]);
+ /// # Ok::<(), std::alloc::AllocError>(())
+ /// ```
+ ///
+ /// [zeroed]: mem::MaybeUninit::zeroed
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ #[inline]
+ pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
+ unsafe {
+ let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
+ Ok(l) => l,
+ Err(_) => return Err(AllocError),
+ };
+ let ptr = Global.allocate_zeroed(layout)?;
+ Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len))
+ }
+ }
+}
+
+impl<T, A: Allocator> Box<[T], A> {
+ /// Constructs a new boxed slice with uninitialized contents in the provided allocator.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api, new_uninit)]
+ ///
+ /// use std::alloc::System;
+ ///
+ /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System);
+ ///
+ /// let values = unsafe {
+ /// // Deferred initialization:
+ /// values[0].as_mut_ptr().write(1);
+ /// values[1].as_mut_ptr().write(2);
+ /// values[2].as_mut_ptr().write(3);
+ ///
+ /// values.assume_init()
+ /// };
+ ///
+ /// assert_eq!(*values, [1, 2, 3])
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ // #[unstable(feature = "new_uninit", issue = "63291")]
+ #[must_use]
+ pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
+ unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) }
+ }
+
+ /// Constructs a new boxed slice with uninitialized contents in the provided allocator,
+ /// with the memory being filled with `0` bytes.
+ ///
+ /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
+ /// of this method.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api, new_uninit)]
+ ///
+ /// use std::alloc::System;
+ ///
+ /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System);
+ /// let values = unsafe { values.assume_init() };
+ ///
+ /// assert_eq!(*values, [0, 0, 0])
+ /// ```
+ ///
+ /// [zeroed]: mem::MaybeUninit::zeroed
+ #[cfg(not(no_global_oom_handling))]
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ // #[unstable(feature = "new_uninit", issue = "63291")]
+ #[must_use]
+ pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
+ unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) }
+ }
+}
+
+impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> {
+ /// Converts to `Box<T, A>`.
+ ///
+ /// # Safety
+ ///
+ /// As with [`MaybeUninit::assume_init`],
+ /// it is up to the caller to guarantee that the value
+ /// really is in an initialized state.
+ /// Calling this when the content is not yet fully initialized
+ /// causes immediate undefined behavior.
+ ///
+ /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(new_uninit)]
+ ///
+ /// let mut five = Box::<u32>::new_uninit();
+ ///
+ /// let five: Box<u32> = unsafe {
+ /// // Deferred initialization:
+ /// five.as_mut_ptr().write(5);
+ ///
+ /// five.assume_init()
+ /// };
+ ///
+ /// assert_eq!(*five, 5)
+ /// ```
+ #[unstable(feature = "new_uninit", issue = "63291")]
+ #[rustc_const_unstable(feature = "const_box", issue = "92521")]
+ #[inline]
+ pub const unsafe fn assume_init(self) -> Box<T, A> {
+ let (raw, alloc) = Box::into_raw_with_allocator(self);
+ unsafe { Box::from_raw_in(raw as *mut T, alloc) }
+ }
+
+ /// Writes the value and converts to `Box<T, A>`.
+ ///
+ /// This method converts the box similarly to [`Box::assume_init`] but
+ /// writes `value` into it before conversion thus guaranteeing safety.
+ /// In some scenarios use of this method may improve performance because
+ /// the compiler may be able to optimize copying from stack.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(new_uninit)]
+ ///
+ /// let big_box = Box::<[usize; 1024]>::new_uninit();
+ ///
+ /// let mut array = [0; 1024];
+ /// for (i, place) in array.iter_mut().enumerate() {
+ /// *place = i;
+ /// }
+ ///
+ /// // The optimizer may be able to elide this copy, so previous code writes
+ /// // to heap directly.
+ /// let big_box = Box::write(big_box, array);
+ ///
+ /// for (i, x) in big_box.iter().enumerate() {
+ /// assert_eq!(*x, i);
+ /// }
+ /// ```
+ #[unstable(feature = "new_uninit", issue = "63291")]
+ #[rustc_const_unstable(feature = "const_box", issue = "92521")]
+ #[inline]
+ pub const fn write(mut boxed: Self, value: T) -> Box<T, A> {
+ unsafe {
+ (*boxed).write(value);
+ boxed.assume_init()
+ }
+ }
+}
+
+impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> {
+ /// Converts to `Box<[T], A>`.
+ ///
+ /// # Safety
+ ///
+ /// As with [`MaybeUninit::assume_init`],
+ /// it is up to the caller to guarantee that the values
+ /// really are in an initialized state.
+ /// Calling this when the content is not yet fully initialized
+ /// causes immediate undefined behavior.
+ ///
+ /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(new_uninit)]
+ ///
+ /// let mut values = Box::<[u32]>::new_uninit_slice(3);
+ ///
+ /// let values = unsafe {
+ /// // Deferred initialization:
+ /// values[0].as_mut_ptr().write(1);
+ /// values[1].as_mut_ptr().write(2);
+ /// values[2].as_mut_ptr().write(3);
+ ///
+ /// values.assume_init()
+ /// };
+ ///
+ /// assert_eq!(*values, [1, 2, 3])
+ /// ```
+ #[unstable(feature = "new_uninit", issue = "63291")]
+ #[inline]
+ pub unsafe fn assume_init(self) -> Box<[T], A> {
+ let (raw, alloc) = Box::into_raw_with_allocator(self);
+ unsafe { Box::from_raw_in(raw as *mut [T], alloc) }
+ }
+}
+
+impl<T: ?Sized> Box<T> {
+ /// Constructs a box from a raw pointer.
+ ///
+ /// After calling this function, the raw pointer is owned by the
+ /// resulting `Box`. Specifically, the `Box` destructor will call
+ /// the destructor of `T` and free the allocated memory. For this
+ /// to be safe, the memory must have been allocated in accordance
+ /// with the [memory layout] used by `Box` .
+ ///
+ /// # Safety
+ ///
+ /// This function is unsafe because improper use may lead to
+ /// memory problems. For example, a double-free may occur if the
+ /// function is called twice on the same raw pointer.
+ ///
+ /// The safety conditions are described in the [memory layout] section.
+ ///
+ /// # Examples
+ ///
+ /// Recreate a `Box` which was previously converted to a raw pointer
+ /// using [`Box::into_raw`]:
+ /// ```
+ /// let x = Box::new(5);
+ /// let ptr = Box::into_raw(x);
+ /// let x = unsafe { Box::from_raw(ptr) };
+ /// ```
+ /// Manually create a `Box` from scratch by using the global allocator:
+ /// ```
+ /// use std::alloc::{alloc, Layout};
+ ///
+ /// unsafe {
+ /// let ptr = alloc(Layout::new::<i32>()) as *mut i32;
+ /// // In general .write is required to avoid attempting to destruct
+ /// // the (uninitialized) previous contents of `ptr`, though for this
+ /// // simple example `*ptr = 5` would have worked as well.
+ /// ptr.write(5);
+ /// let x = Box::from_raw(ptr);
+ /// }
+ /// ```
+ ///
+ /// [memory layout]: self#memory-layout
+ /// [`Layout`]: crate::Layout
+ #[stable(feature = "box_raw", since = "1.4.0")]
+ #[inline]
+ pub unsafe fn from_raw(raw: *mut T) -> Self {
+ unsafe { Self::from_raw_in(raw, Global) }
+ }
+}
+
+impl<T: ?Sized, A: Allocator> Box<T, A> {
+ /// Constructs a box from a raw pointer in the given allocator.
+ ///
+ /// After calling this function, the raw pointer is owned by the
+ /// resulting `Box`. Specifically, the `Box` destructor will call
+ /// the destructor of `T` and free the allocated memory. For this
+ /// to be safe, the memory must have been allocated in accordance
+ /// with the [memory layout] used by `Box` .
+ ///
+ /// # Safety
+ ///
+ /// This function is unsafe because improper use may lead to
+ /// memory problems. For example, a double-free may occur if the
+ /// function is called twice on the same raw pointer.
+ ///
+ ///
+ /// # Examples
+ ///
+ /// Recreate a `Box` which was previously converted to a raw pointer
+ /// using [`Box::into_raw_with_allocator`]:
+ /// ```
+ /// #![feature(allocator_api)]
+ ///
+ /// use std::alloc::System;
+ ///
+ /// let x = Box::new_in(5, System);
+ /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
+ /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
+ /// ```
+ /// Manually create a `Box` from scratch by using the system allocator:
+ /// ```
+ /// #![feature(allocator_api, slice_ptr_get)]
+ ///
+ /// use std::alloc::{Allocator, Layout, System};
+ ///
+ /// unsafe {
+ /// let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32;
+ /// // In general .write is required to avoid attempting to destruct
+ /// // the (uninitialized) previous contents of `ptr`, though for this
+ /// // simple example `*ptr = 5` would have worked as well.
+ /// ptr.write(5);
+ /// let x = Box::from_raw_in(ptr, System);
+ /// }
+ /// # Ok::<(), std::alloc::AllocError>(())
+ /// ```
+ ///
+ /// [memory layout]: self#memory-layout
+ /// [`Layout`]: crate::Layout
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ #[rustc_const_unstable(feature = "const_box", issue = "92521")]
+ #[inline]
+ pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self {
+ Box(unsafe { Unique::new_unchecked(raw) }, alloc)
+ }
+
+ /// Consumes the `Box`, returning a wrapped raw pointer.
+ ///
+ /// The pointer will be properly aligned and non-null.
+ ///
+ /// After calling this function, the caller is responsible for the
+ /// memory previously managed by the `Box`. In particular, the
+ /// caller should properly destroy `T` and release the memory, taking
+ /// into account the [memory layout] used by `Box`. The easiest way to
+ /// do this is to convert the raw pointer back into a `Box` with the
+ /// [`Box::from_raw`] function, allowing the `Box` destructor to perform
+ /// the cleanup.
+ ///
+ /// Note: this is an associated function, which means that you have
+ /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
+ /// is so that there is no conflict with a method on the inner type.
+ ///
+ /// # Examples
+ /// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
+ /// for automatic cleanup:
+ /// ```
+ /// let x = Box::new(String::from("Hello"));
+ /// let ptr = Box::into_raw(x);
+ /// let x = unsafe { Box::from_raw(ptr) };
+ /// ```
+ /// Manual cleanup by explicitly running the destructor and deallocating
+ /// the memory:
+ /// ```
+ /// use std::alloc::{dealloc, Layout};
+ /// use std::ptr;
+ ///
+ /// let x = Box::new(String::from("Hello"));
+ /// let p = Box::into_raw(x);
+ /// unsafe {
+ /// ptr::drop_in_place(p);
+ /// dealloc(p as *mut u8, Layout::new::<String>());
+ /// }
+ /// ```
+ ///
+ /// [memory layout]: self#memory-layout
+ #[stable(feature = "box_raw", since = "1.4.0")]
+ #[inline]
+ pub fn into_raw(b: Self) -> *mut T {
+ Self::into_raw_with_allocator(b).0
+ }
+
+ /// Consumes the `Box`, returning a wrapped raw pointer and the allocator.
+ ///
+ /// The pointer will be properly aligned and non-null.
+ ///
+ /// After calling this function, the caller is responsible for the
+ /// memory previously managed by the `Box`. In particular, the
+ /// caller should properly destroy `T` and release the memory, taking
+ /// into account the [memory layout] used by `Box`. The easiest way to
+ /// do this is to convert the raw pointer back into a `Box` with the
+ /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform
+ /// the cleanup.
+ ///
+ /// Note: this is an associated function, which means that you have
+ /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This
+ /// is so that there is no conflict with a method on the inner type.
+ ///
+ /// # Examples
+ /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`]
+ /// for automatic cleanup:
+ /// ```
+ /// #![feature(allocator_api)]
+ ///
+ /// use std::alloc::System;
+ ///
+ /// let x = Box::new_in(String::from("Hello"), System);
+ /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
+ /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
+ /// ```
+ /// Manual cleanup by explicitly running the destructor and deallocating
+ /// the memory:
+ /// ```
+ /// #![feature(allocator_api)]
+ ///
+ /// use std::alloc::{Allocator, Layout, System};
+ /// use std::ptr::{self, NonNull};
+ ///
+ /// let x = Box::new_in(String::from("Hello"), System);
+ /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
+ /// unsafe {
+ /// ptr::drop_in_place(ptr);
+ /// let non_null = NonNull::new_unchecked(ptr);
+ /// alloc.deallocate(non_null.cast(), Layout::new::<String>());
+ /// }
+ /// ```
+ ///
+ /// [memory layout]: self#memory-layout
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ #[rustc_const_unstable(feature = "const_box", issue = "92521")]
+ #[inline]
+ pub const fn into_raw_with_allocator(b: Self) -> (*mut T, A) {
+ let (leaked, alloc) = Box::into_unique(b);
+ (leaked.as_ptr(), alloc)
+ }
+
+ #[unstable(
+ feature = "ptr_internals",
+ issue = "none",
+ reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead"
+ )]
+ #[rustc_const_unstable(feature = "const_box", issue = "92521")]
+ #[inline]
+ #[doc(hidden)]
+ pub const fn into_unique(b: Self) -> (Unique<T>, A) {
+ // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a
+ // raw pointer for the type system. Turning it directly into a raw pointer would not be
+ // recognized as "releasing" the unique pointer to permit aliased raw accesses,
+ // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer
+ // behaves correctly.
+ let alloc = unsafe { ptr::read(&b.1) };
+ (Unique::from(Box::leak(b)), alloc)
+ }
+
+ /// Returns a reference to the underlying allocator.
+ ///
+ /// Note: this is an associated function, which means that you have
+ /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This
+ /// is so that there is no conflict with a method on the inner type.
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ #[rustc_const_unstable(feature = "const_box", issue = "92521")]
+ #[inline]
+ pub const fn allocator(b: &Self) -> &A {
+ &b.1
+ }
+
+ /// Consumes and leaks the `Box`, returning a mutable reference,
+ /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
+ /// `'a`. If the type has only static references, or none at all, then this
+ /// may be chosen to be `'static`.
+ ///
+ /// This function is mainly useful for data that lives for the remainder of
+ /// the program's life. Dropping the returned reference will cause a memory
+ /// leak. If this is not acceptable, the reference should first be wrapped
+ /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
+ /// then be dropped which will properly destroy `T` and release the
+ /// allocated memory.
+ ///
+ /// Note: this is an associated function, which means that you have
+ /// to call it as `Box::leak(b)` instead of `b.leak()`. This
+ /// is so that there is no conflict with a method on the inner type.
+ ///
+ /// # Examples
+ ///
+ /// Simple usage:
+ ///
+ /// ```
+ /// let x = Box::new(41);
+ /// let static_ref: &'static mut usize = Box::leak(x);
+ /// *static_ref += 1;
+ /// assert_eq!(*static_ref, 42);
+ /// ```
+ ///
+ /// Unsized data:
+ ///
+ /// ```
+ /// let x = vec![1, 2, 3].into_boxed_slice();
+ /// let static_ref = Box::leak(x);
+ /// static_ref[0] = 4;
+ /// assert_eq!(*static_ref, [4, 2, 3]);
+ /// ```
+ #[stable(feature = "box_leak", since = "1.26.0")]
+ #[rustc_const_unstable(feature = "const_box", issue = "92521")]
+ #[inline]
+ pub const fn leak<'a>(b: Self) -> &'a mut T
+ where
+ A: 'a,
+ {
+ unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() }
+ }
+
+ /// Converts a `Box<T>` into a `Pin<Box<T>>`
+ ///
+ /// This conversion does not allocate on the heap and happens in place.
+ ///
+ /// This is also available via [`From`].
+ #[unstable(feature = "box_into_pin", issue = "62370")]
+ #[rustc_const_unstable(feature = "const_box", issue = "92521")]
+ pub const fn into_pin(boxed: Self) -> Pin<Self>
+ where
+ A: 'static,
+ {
+ // It's not possible to move or replace the insides of a `Pin<Box<T>>`
+ // when `T: !Unpin`, so it's safe to pin it directly without any
+ // additional requirements.
+ unsafe { Pin::new_unchecked(boxed) }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Box<T, A> {
+ fn drop(&mut self) {
+ // FIXME: Do nothing, drop is currently performed by compiler.
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Default> Default for Box<T> {
+ /// Creates a `Box<T>`, with the `Default` value for T.
+ fn default() -> Self {
+ box T::default()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
+impl<T> const Default for Box<[T]> {
+ fn default() -> Self {
+ let ptr: Unique<[T]> = Unique::<[T; 0]>::dangling();
+ Box(ptr, Global)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "default_box_extra", since = "1.17.0")]
+#[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
+impl const Default for Box<str> {
+ fn default() -> Self {
+ // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`.
+ let ptr: Unique<str> = unsafe {
+ let bytes: Unique<[u8]> = Unique::<[u8; 0]>::dangling();
+ Unique::new_unchecked(bytes.as_ptr() as *mut str)
+ };
+ Box(ptr, Global)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> {
+ /// Returns a new box with a `clone()` of this box's contents.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let x = Box::new(5);
+ /// let y = x.clone();
+ ///
+ /// // The value is the same
+ /// assert_eq!(x, y);
+ ///
+ /// // But they are unique objects
+ /// assert_ne!(&*x as *const i32, &*y as *const i32);
+ /// ```
+ #[inline]
+ fn clone(&self) -> Self {
+ // Pre-allocate memory to allow writing the cloned value directly.
+ let mut boxed = Self::new_uninit_in(self.1.clone());
+ unsafe {
+ (**self).write_clone_into_raw(boxed.as_mut_ptr());
+ boxed.assume_init()
+ }
+ }
+
+ /// Copies `source`'s contents into `self` without creating a new allocation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let x = Box::new(5);
+ /// let mut y = Box::new(10);
+ /// let yp: *const i32 = &*y;
+ ///
+ /// y.clone_from(&x);
+ ///
+ /// // The value is the same
+ /// assert_eq!(x, y);
+ ///
+ /// // And no allocation occurred
+ /// assert_eq!(yp, &*y);
+ /// ```
+ #[inline]
+ fn clone_from(&mut self, source: &Self) {
+ (**self).clone_from(&(**source));
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "box_slice_clone", since = "1.3.0")]
+impl Clone for Box<str> {
+ fn clone(&self) -> Self {
+ // this makes a copy of the data
+ let buf: Box<[u8]> = self.as_bytes().into();
+ unsafe { from_boxed_utf8_unchecked(buf) }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> {
+ #[inline]
+ fn eq(&self, other: &Self) -> bool {
+ PartialEq::eq(&**self, &**other)
+ }
+ #[inline]
+ fn ne(&self, other: &Self) -> bool {
+ PartialEq::ne(&**self, &**other)
+ }
+}
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> {
+ #[inline]
+ fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
+ PartialOrd::partial_cmp(&**self, &**other)
+ }
+ #[inline]
+ fn lt(&self, other: &Self) -> bool {
+ PartialOrd::lt(&**self, &**other)
+ }
+ #[inline]
+ fn le(&self, other: &Self) -> bool {
+ PartialOrd::le(&**self, &**other)
+ }
+ #[inline]
+ fn ge(&self, other: &Self) -> bool {
+ PartialOrd::ge(&**self, &**other)
+ }
+ #[inline]
+ fn gt(&self, other: &Self) -> bool {
+ PartialOrd::gt(&**self, &**other)
+ }
+}
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> {
+ #[inline]
+ fn cmp(&self, other: &Self) -> Ordering {
+ Ord::cmp(&**self, &**other)
+ }
+}
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> {
+ fn hash<H: Hasher>(&self, state: &mut H) {
+ (**self).hash(state);
+ }
+}
+
+#[stable(feature = "indirect_hasher_impl", since = "1.22.0")]
+impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> {
+ fn finish(&self) -> u64 {
+ (**self).finish()
+ }
+ fn write(&mut self, bytes: &[u8]) {
+ (**self).write(bytes)
+ }
+ fn write_u8(&mut self, i: u8) {
+ (**self).write_u8(i)
+ }
+ fn write_u16(&mut self, i: u16) {
+ (**self).write_u16(i)
+ }
+ fn write_u32(&mut self, i: u32) {
+ (**self).write_u32(i)
+ }
+ fn write_u64(&mut self, i: u64) {
+ (**self).write_u64(i)
+ }
+ fn write_u128(&mut self, i: u128) {
+ (**self).write_u128(i)
+ }
+ fn write_usize(&mut self, i: usize) {
+ (**self).write_usize(i)
+ }
+ fn write_i8(&mut self, i: i8) {
+ (**self).write_i8(i)
+ }
+ fn write_i16(&mut self, i: i16) {
+ (**self).write_i16(i)
+ }
+ fn write_i32(&mut self, i: i32) {
+ (**self).write_i32(i)
+ }
+ fn write_i64(&mut self, i: i64) {
+ (**self).write_i64(i)
+ }
+ fn write_i128(&mut self, i: i128) {
+ (**self).write_i128(i)
+ }
+ fn write_isize(&mut self, i: isize) {
+ (**self).write_isize(i)
+ }
+ fn write_length_prefix(&mut self, len: usize) {
+ (**self).write_length_prefix(len)
+ }
+ fn write_str(&mut self, s: &str) {
+ (**self).write_str(s)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "from_for_ptrs", since = "1.6.0")]
+impl<T> From<T> for Box<T> {
+ /// Converts a `T` into a `Box<T>`
+ ///
+ /// The conversion allocates on the heap and moves `t`
+ /// from the stack into it.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// let x = 5;
+ /// let boxed = Box::new(5);
+ ///
+ /// assert_eq!(Box::from(x), boxed);
+ /// ```
+ fn from(t: T) -> Self {
+ Box::new(t)
+ }
+}
+
+#[stable(feature = "pin", since = "1.33.0")]
+#[rustc_const_unstable(feature = "const_box", issue = "92521")]
+impl<T: ?Sized, A: Allocator> const From<Box<T, A>> for Pin<Box<T, A>>
+where
+ A: 'static,
+{
+ /// Converts a `Box<T>` into a `Pin<Box<T>>`
+ ///
+ /// This conversion does not allocate on the heap and happens in place.
+ fn from(boxed: Box<T, A>) -> Self {
+ Box::into_pin(boxed)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "box_from_slice", since = "1.17.0")]
+impl<T: Copy> From<&[T]> for Box<[T]> {
+ /// Converts a `&[T]` into a `Box<[T]>`
+ ///
+ /// This conversion allocates on the heap
+ /// and performs a copy of `slice`.
+ ///
+ /// # Examples
+ /// ```rust
+ /// // create a &[u8] which will be used to create a Box<[u8]>
+ /// let slice: &[u8] = &[104, 101, 108, 108, 111];
+ /// let boxed_slice: Box<[u8]> = Box::from(slice);
+ ///
+ /// println!("{boxed_slice:?}");
+ /// ```
+ fn from(slice: &[T]) -> Box<[T]> {
+ let len = slice.len();
+ let buf = RawVec::with_capacity(len);
+ unsafe {
+ ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len);
+ buf.into_box(slice.len()).assume_init()
+ }
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "box_from_cow", since = "1.45.0")]
+impl<T: Copy> From<Cow<'_, [T]>> for Box<[T]> {
+ /// Converts a `Cow<'_, [T]>` into a `Box<[T]>`
+ ///
+ /// When `cow` is the `Cow::Borrowed` variant, this
+ /// conversion allocates on the heap and copies the
+ /// underlying slice. Otherwise, it will try to reuse the owned
+ /// `Vec`'s allocation.
+ #[inline]
+ fn from(cow: Cow<'_, [T]>) -> Box<[T]> {
+ match cow {
+ Cow::Borrowed(slice) => Box::from(slice),
+ Cow::Owned(slice) => Box::from(slice),
+ }
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "box_from_slice", since = "1.17.0")]
+impl From<&str> for Box<str> {
+ /// Converts a `&str` into a `Box<str>`
+ ///
+ /// This conversion allocates on the heap
+ /// and performs a copy of `s`.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// let boxed: Box<str> = Box::from("hello");
+ /// println!("{boxed}");
+ /// ```
+ #[inline]
+ fn from(s: &str) -> Box<str> {
+ unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) }
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "box_from_cow", since = "1.45.0")]
+impl From<Cow<'_, str>> for Box<str> {
+ /// Converts a `Cow<'_, str>` into a `Box<str>`
+ ///
+ /// When `cow` is the `Cow::Borrowed` variant, this
+ /// conversion allocates on the heap and copies the
+ /// underlying `str`. Otherwise, it will try to reuse the owned
+ /// `String`'s allocation.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// use std::borrow::Cow;
+ ///
+ /// let unboxed = Cow::Borrowed("hello");
+ /// let boxed: Box<str> = Box::from(unboxed);
+ /// println!("{boxed}");
+ /// ```
+ ///
+ /// ```rust
+ /// # use std::borrow::Cow;
+ /// let unboxed = Cow::Owned("hello".to_string());
+ /// let boxed: Box<str> = Box::from(unboxed);
+ /// println!("{boxed}");
+ /// ```
+ #[inline]
+ fn from(cow: Cow<'_, str>) -> Box<str> {
+ match cow {
+ Cow::Borrowed(s) => Box::from(s),
+ Cow::Owned(s) => Box::from(s),
+ }
+ }
+}
+
+#[stable(feature = "boxed_str_conv", since = "1.19.0")]
+impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> {
+ /// Converts a `Box<str>` into a `Box<[u8]>`
+ ///
+ /// This conversion does not allocate on the heap and happens in place.
+ ///
+ /// # Examples
+ /// ```rust
+ /// // create a Box<str> which will be used to create a Box<[u8]>
+ /// let boxed: Box<str> = Box::from("hello");
+ /// let boxed_str: Box<[u8]> = Box::from(boxed);
+ ///
+ /// // create a &[u8] which will be used to create a Box<[u8]>
+ /// let slice: &[u8] = &[104, 101, 108, 108, 111];
+ /// let boxed_slice = Box::from(slice);
+ ///
+ /// assert_eq!(boxed_slice, boxed_str);
+ /// ```
+ #[inline]
+ fn from(s: Box<str, A>) -> Self {
+ let (raw, alloc) = Box::into_raw_with_allocator(s);
+ unsafe { Box::from_raw_in(raw as *mut [u8], alloc) }
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "box_from_array", since = "1.45.0")]
+impl<T, const N: usize> From<[T; N]> for Box<[T]> {
+ /// Converts a `[T; N]` into a `Box<[T]>`
+ ///
+ /// This conversion moves the array to newly heap-allocated memory.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// let boxed: Box<[u8]> = Box::from([4, 2]);
+ /// println!("{boxed:?}");
+ /// ```
+ fn from(array: [T; N]) -> Box<[T]> {
+ box array
+ }
+}
+
+#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
+impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]> {
+ type Error = Box<[T]>;
+
+ /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`.
+ ///
+ /// The conversion occurs in-place and does not require a
+ /// new memory allocation.
+ ///
+ /// # Errors
+ ///
+ /// Returns the old `Box<[T]>` in the `Err` variant if
+ /// `boxed_slice.len()` does not equal `N`.
+ fn try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error> {
+ if boxed_slice.len() == N {
+ Ok(unsafe { Box::from_raw(Box::into_raw(boxed_slice) as *mut [T; N]) })
+ } else {
+ Err(boxed_slice)
+ }
+ }
+}
+
+impl<A: Allocator> Box<dyn Any, A> {
+ /// Attempt to downcast the box to a concrete type.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::any::Any;
+ ///
+ /// fn print_if_string(value: Box<dyn Any>) {
+ /// if let Ok(string) = value.downcast::<String>() {
+ /// println!("String ({}): {}", string.len(), string);
+ /// }
+ /// }
+ ///
+ /// let my_string = "Hello World".to_string();
+ /// print_if_string(Box::new(my_string));
+ /// print_if_string(Box::new(0i8));
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
+ if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
+ }
+
+ /// Downcasts the box to a concrete type.
+ ///
+ /// For a safe alternative see [`downcast`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(downcast_unchecked)]
+ ///
+ /// use std::any::Any;
+ ///
+ /// let x: Box<dyn Any> = Box::new(1_usize);
+ ///
+ /// unsafe {
+ /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
+ /// }
+ /// ```
+ ///
+ /// # Safety
+ ///
+ /// The contained value must be of type `T`. Calling this method
+ /// with the incorrect type is *undefined behavior*.
+ ///
+ /// [`downcast`]: Self::downcast
+ #[inline]
+ #[unstable(feature = "downcast_unchecked", issue = "90850")]
+ pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
+ debug_assert!(self.is::<T>());
+ unsafe {
+ let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self);
+ Box::from_raw_in(raw as *mut T, alloc)
+ }
+ }
+}
+
+impl<A: Allocator> Box<dyn Any + Send, A> {
+ /// Attempt to downcast the box to a concrete type.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::any::Any;
+ ///
+ /// fn print_if_string(value: Box<dyn Any + Send>) {
+ /// if let Ok(string) = value.downcast::<String>() {
+ /// println!("String ({}): {}", string.len(), string);
+ /// }
+ /// }
+ ///
+ /// let my_string = "Hello World".to_string();
+ /// print_if_string(Box::new(my_string));
+ /// print_if_string(Box::new(0i8));
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
+ if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
+ }
+
+ /// Downcasts the box to a concrete type.
+ ///
+ /// For a safe alternative see [`downcast`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(downcast_unchecked)]
+ ///
+ /// use std::any::Any;
+ ///
+ /// let x: Box<dyn Any + Send> = Box::new(1_usize);
+ ///
+ /// unsafe {
+ /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
+ /// }
+ /// ```
+ ///
+ /// # Safety
+ ///
+ /// The contained value must be of type `T`. Calling this method
+ /// with the incorrect type is *undefined behavior*.
+ ///
+ /// [`downcast`]: Self::downcast
+ #[inline]
+ #[unstable(feature = "downcast_unchecked", issue = "90850")]
+ pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
+ debug_assert!(self.is::<T>());
+ unsafe {
+ let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self);
+ Box::from_raw_in(raw as *mut T, alloc)
+ }
+ }
+}
+
+impl<A: Allocator> Box<dyn Any + Send + Sync, A> {
+ /// Attempt to downcast the box to a concrete type.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::any::Any;
+ ///
+ /// fn print_if_string(value: Box<dyn Any + Send + Sync>) {
+ /// if let Ok(string) = value.downcast::<String>() {
+ /// println!("String ({}): {}", string.len(), string);
+ /// }
+ /// }
+ ///
+ /// let my_string = "Hello World".to_string();
+ /// print_if_string(Box::new(my_string));
+ /// print_if_string(Box::new(0i8));
+ /// ```
+ #[inline]
+ #[stable(feature = "box_send_sync_any_downcast", since = "1.51.0")]
+ pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
+ if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
+ }
+
+ /// Downcasts the box to a concrete type.
+ ///
+ /// For a safe alternative see [`downcast`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(downcast_unchecked)]
+ ///
+ /// use std::any::Any;
+ ///
+ /// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize);
+ ///
+ /// unsafe {
+ /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
+ /// }
+ /// ```
+ ///
+ /// # Safety
+ ///
+ /// The contained value must be of type `T`. Calling this method
+ /// with the incorrect type is *undefined behavior*.
+ ///
+ /// [`downcast`]: Self::downcast
+ #[inline]
+ #[unstable(feature = "downcast_unchecked", issue = "90850")]
+ pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
+ debug_assert!(self.is::<T>());
+ unsafe {
+ let (raw, alloc): (*mut (dyn Any + Send + Sync), _) =
+ Box::into_raw_with_allocator(self);
+ Box::from_raw_in(raw as *mut T, alloc)
+ }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Display::fmt(&**self, f)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Debug::fmt(&**self, f)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ // It's not possible to extract the inner Uniq directly from the Box,
+ // instead we cast it to a *const which aliases the Unique
+ let ptr: *const T = &**self;
+ fmt::Pointer::fmt(&ptr, f)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+#[rustc_const_unstable(feature = "const_box", issue = "92521")]
+impl<T: ?Sized, A: Allocator> const Deref for Box<T, A> {
+ type Target = T;
+
+ fn deref(&self) -> &T {
+ &**self
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+#[rustc_const_unstable(feature = "const_box", issue = "92521")]
+impl<T: ?Sized, A: Allocator> const DerefMut for Box<T, A> {
+ fn deref_mut(&mut self) -> &mut T {
+ &mut **self
+ }
+}
+
+#[unstable(feature = "receiver_trait", issue = "none")]
+impl<T: ?Sized, A: Allocator> Receiver for Box<T, A> {}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> {
+ type Item = I::Item;
+ fn next(&mut self) -> Option<I::Item> {
+ (**self).next()
+ }
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (**self).size_hint()
+ }
+ fn nth(&mut self, n: usize) -> Option<I::Item> {
+ (**self).nth(n)
+ }
+ fn last(self) -> Option<I::Item> {
+ BoxIter::last(self)
+ }
+}
+
+trait BoxIter {
+ type Item;
+ fn last(self) -> Option<Self::Item>;
+}
+
+impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> {
+ type Item = I::Item;
+ default fn last(self) -> Option<I::Item> {
+ #[inline]
+ fn some<T>(_: Option<T>, x: T) -> Option<T> {
+ Some(x)
+ }
+
+ self.fold(None, some)
+ }
+}
+
+/// Specialization for sized `I`s that uses `I`s implementation of `last()`
+/// instead of the default.
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<I: Iterator, A: Allocator> BoxIter for Box<I, A> {
+ fn last(self) -> Option<I::Item> {
+ (*self).last()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> {
+ fn next_back(&mut self) -> Option<I::Item> {
+ (**self).next_back()
+ }
+ fn nth_back(&mut self, n: usize) -> Option<I::Item> {
+ (**self).nth_back(n)
+ }
+}
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> {
+ fn len(&self) -> usize {
+ (**self).len()
+ }
+ fn is_empty(&self) -> bool {
+ (**self).is_empty()
+ }
+}
+
+#[stable(feature = "fused", since = "1.26.0")]
+impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {}
+
+#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
+impl<Args, F: FnOnce<Args> + ?Sized, A: Allocator> FnOnce<Args> for Box<F, A> {
+ type Output = <F as FnOnce<Args>>::Output;
+
+ extern "rust-call" fn call_once(self, args: Args) -> Self::Output {
+ <F as FnOnce<Args>>::call_once(*self, args)
+ }
+}
+
+#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
+impl<Args, F: FnMut<Args> + ?Sized, A: Allocator> FnMut<Args> for Box<F, A> {
+ extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output {
+ <F as FnMut<Args>>::call_mut(self, args)
+ }
+}
+
+#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
+impl<Args, F: Fn<Args> + ?Sized, A: Allocator> Fn<Args> for Box<F, A> {
+ extern "rust-call" fn call(&self, args: Args) -> Self::Output {
+ <F as Fn<Args>>::call(self, args)
+ }
+}
+
+#[unstable(feature = "coerce_unsized", issue = "27732")]
+impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A> {}
+
+#[unstable(feature = "dispatch_from_dyn", issue = "none")]
+impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T, Global> {}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "boxed_slice_from_iter", since = "1.32.0")]
+impl<I> FromIterator<I> for Box<[I]> {
+ fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self {
+ iter.into_iter().collect::<Vec<_>>().into_boxed_slice()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "box_slice_clone", since = "1.3.0")]
+impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> {
+ fn clone(&self) -> Self {
+ let alloc = Box::allocator(self).clone();
+ self.to_vec_in(alloc).into_boxed_slice()
+ }
+
+ fn clone_from(&mut self, other: &Self) {
+ if self.len() == other.len() {
+ self.clone_from_slice(&other);
+ } else {
+ *self = other.clone();
+ }
+ }
+}
+
+#[stable(feature = "box_borrow", since = "1.1.0")]
+impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> {
+ fn borrow(&self) -> &T {
+ &**self
+ }
+}
+
+#[stable(feature = "box_borrow", since = "1.1.0")]
+impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> {
+ fn borrow_mut(&mut self) -> &mut T {
+ &mut **self
+ }
+}
+
+#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
+impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> {
+ fn as_ref(&self) -> &T {
+ &**self
+ }
+}
+
+#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
+impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> {
+ fn as_mut(&mut self) -> &mut T {
+ &mut **self
+ }
+}
+
+/* Nota bene
+ *
+ * We could have chosen not to add this impl, and instead have written a
+ * function of Pin<Box<T>> to Pin<T>. Such a function would not be sound,
+ * because Box<T> implements Unpin even when T does not, as a result of
+ * this impl.
+ *
+ * We chose this API instead of the alternative for a few reasons:
+ * - Logically, it is helpful to understand pinning in regard to the
+ * memory region being pointed to. For this reason none of the
+ * standard library pointer types support projecting through a pin
+ * (Box<T> is the only pointer type in std for which this would be
+ * safe.)
+ * - It is in practice very useful to have Box<T> be unconditionally
+ * Unpin because of trait objects, for which the structural auto
+ * trait functionality does not apply (e.g., Box<dyn Foo> would
+ * otherwise not be Unpin).
+ *
+ * Another type with the same semantics as Box but only a conditional
+ * implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and
+ * could have a method to project a Pin<T> from it.
+ */
+#[stable(feature = "pin", since = "1.33.0")]
+#[rustc_const_unstable(feature = "const_box", issue = "92521")]
+impl<T: ?Sized, A: Allocator> const Unpin for Box<T, A> where A: 'static {}
+
+#[unstable(feature = "generator_trait", issue = "43122")]
+impl<G: ?Sized + Generator<R> + Unpin, R, A: Allocator> Generator<R> for Box<G, A>
+where
+ A: 'static,
+{
+ type Yield = G::Yield;
+ type Return = G::Return;
+
+ fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> {
+ G::resume(Pin::new(&mut *self), arg)
+ }
+}
+
+#[unstable(feature = "generator_trait", issue = "43122")]
+impl<G: ?Sized + Generator<R>, R, A: Allocator> Generator<R> for Pin<Box<G, A>>
+where
+ A: 'static,
+{
+ type Yield = G::Yield;
+ type Return = G::Return;
+
+ fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> {
+ G::resume((*self).as_mut(), arg)
+ }
+}
+
+#[stable(feature = "futures_api", since = "1.36.0")]
+impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A>
+where
+ A: 'static,
+{
+ type Output = F::Output;
+
+ fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
+ F::poll(Pin::new(&mut *self), cx)
+ }
+}
+
+#[unstable(feature = "async_iterator", issue = "79024")]
+impl<S: ?Sized + AsyncIterator + Unpin> AsyncIterator for Box<S> {
+ type Item = S::Item;
+
+ fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
+ Pin::new(&mut **self).poll_next(cx)
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (**self).size_hint()
+ }
+}
diff --git a/rust/alloc/boxed/thin.rs b/rust/alloc/boxed/thin.rs
new file mode 100644
index 000000000000..390030fa2b21
--- /dev/null
+++ b/rust/alloc/boxed/thin.rs
@@ -0,0 +1,215 @@
+// Based on
+// https://github.com/matthieu-m/rfc2580/blob/b58d1d3cba0d4b5e859d3617ea2d0943aaa31329/examples/thin.rs
+// by matthieu-m
+use crate::alloc::{self, Layout, LayoutError};
+use core::fmt::{self, Debug, Display, Formatter};
+use core::marker::{PhantomData, Unsize};
+use core::mem;
+use core::ops::{Deref, DerefMut};
+use core::ptr::Pointee;
+use core::ptr::{self, NonNull};
+
+/// ThinBox.
+///
+/// A thin pointer for heap allocation, regardless of T.
+///
+/// # Examples
+///
+/// ```
+/// #![feature(thin_box)]
+/// use std::boxed::ThinBox;
+///
+/// let five = ThinBox::new(5);
+/// let thin_slice = ThinBox::<[i32]>::new_unsize([1, 2, 3, 4]);
+///
+/// use std::mem::{size_of, size_of_val};
+/// let size_of_ptr = size_of::<*const ()>();
+/// assert_eq!(size_of_ptr, size_of_val(&five));
+/// assert_eq!(size_of_ptr, size_of_val(&thin_slice));
+/// ```
+#[unstable(feature = "thin_box", issue = "92791")]
+pub struct ThinBox<T: ?Sized> {
+ ptr: WithHeader<<T as Pointee>::Metadata>,
+ _marker: PhantomData<T>,
+}
+
+#[unstable(feature = "thin_box", issue = "92791")]
+impl<T> ThinBox<T> {
+ /// Moves a type to the heap with its `Metadata` stored in the heap allocation instead of on
+ /// the stack.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(thin_box)]
+ /// use std::boxed::ThinBox;
+ ///
+ /// let five = ThinBox::new(5);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ pub fn new(value: T) -> Self {
+ let meta = ptr::metadata(&value);
+ let ptr = WithHeader::new(meta, value);
+ ThinBox { ptr, _marker: PhantomData }
+ }
+}
+
+#[unstable(feature = "thin_box", issue = "92791")]
+impl<Dyn: ?Sized> ThinBox<Dyn> {
+ /// Moves a type to the heap with its `Metadata` stored in the heap allocation instead of on
+ /// the stack.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(thin_box)]
+ /// use std::boxed::ThinBox;
+ ///
+ /// let thin_slice = ThinBox::<[i32]>::new_unsize([1, 2, 3, 4]);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ pub fn new_unsize<T>(value: T) -> Self
+ where
+ T: Unsize<Dyn>,
+ {
+ let meta = ptr::metadata(&value as &Dyn);
+ let ptr = WithHeader::new(meta, value);
+ ThinBox { ptr, _marker: PhantomData }
+ }
+}
+
+#[unstable(feature = "thin_box", issue = "92791")]
+impl<T: ?Sized + Debug> Debug for ThinBox<T> {
+ fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
+ Debug::fmt(self.deref(), f)
+ }
+}
+
+#[unstable(feature = "thin_box", issue = "92791")]
+impl<T: ?Sized + Display> Display for ThinBox<T> {
+ fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
+ Display::fmt(self.deref(), f)
+ }
+}
+
+#[unstable(feature = "thin_box", issue = "92791")]
+impl<T: ?Sized> Deref for ThinBox<T> {
+ type Target = T;
+
+ fn deref(&self) -> &T {
+ let value = self.data();
+ let metadata = self.meta();
+ let pointer = ptr::from_raw_parts(value as *const (), metadata);
+ unsafe { &*pointer }
+ }
+}
+
+#[unstable(feature = "thin_box", issue = "92791")]
+impl<T: ?Sized> DerefMut for ThinBox<T> {
+ fn deref_mut(&mut self) -> &mut T {
+ let value = self.data();
+ let metadata = self.meta();
+ let pointer = ptr::from_raw_parts_mut::<T>(value as *mut (), metadata);
+ unsafe { &mut *pointer }
+ }
+}
+
+#[unstable(feature = "thin_box", issue = "92791")]
+impl<T: ?Sized> Drop for ThinBox<T> {
+ fn drop(&mut self) {
+ unsafe {
+ let value = self.deref_mut();
+ let value = value as *mut T;
+ self.ptr.drop::<T>(value);
+ }
+ }
+}
+
+#[unstable(feature = "thin_box", issue = "92791")]
+impl<T: ?Sized> ThinBox<T> {
+ fn meta(&self) -> <T as Pointee>::Metadata {
+ // Safety:
+ // - NonNull and valid.
+ unsafe { *self.ptr.header() }
+ }
+
+ fn data(&self) -> *mut u8 {
+ self.ptr.value()
+ }
+}
+
+/// A pointer to type-erased data, guaranteed to have a header `H` before the pointed-to location.
+struct WithHeader<H>(NonNull<u8>, PhantomData<H>);
+
+impl<H> WithHeader<H> {
+ #[cfg(not(no_global_oom_handling))]
+ fn new<T>(header: H, value: T) -> WithHeader<H> {
+ let value_layout = Layout::new::<T>();
+ let Ok((layout, value_offset)) = Self::alloc_layout(value_layout) else {
+ // We pass an empty layout here because we do not know which layout caused the
+ // arithmetic overflow in `Layout::extend` and `handle_alloc_error` takes `Layout` as
+ // its argument rather than `Result<Layout, LayoutError>`, also this function has been
+ // stable since 1.28 ._.
+ //
+ // On the other hand, look at this gorgeous turbofish!
+ alloc::handle_alloc_error(Layout::new::<()>());
+ };
+
+ unsafe {
+ let ptr = alloc::alloc(layout);
+
+ if ptr.is_null() {
+ alloc::handle_alloc_error(layout);
+ }
+ // Safety:
+ // - The size is at least `aligned_header_size`.
+ let ptr = ptr.add(value_offset) as *mut _;
+
+ let ptr = NonNull::new_unchecked(ptr);
+
+ let result = WithHeader(ptr, PhantomData);
+ ptr::write(result.header(), header);
+ ptr::write(result.value().cast(), value);
+
+ result
+ }
+ }
+
+ // Safety:
+ // - Assumes that `value` can be dereferenced.
+ unsafe fn drop<T: ?Sized>(&self, value: *mut T) {
+ unsafe {
+ // SAFETY: Layout must have been computable if we're in drop
+ let (layout, value_offset) =
+ Self::alloc_layout(Layout::for_value_raw(value)).unwrap_unchecked();
+
+ ptr::drop_in_place::<T>(value);
+ // We only drop the value because the Pointee trait requires that the metadata is copy
+ // aka trivially droppable
+ alloc::dealloc(self.0.as_ptr().sub(value_offset), layout);
+ }
+ }
+
+ fn header(&self) -> *mut H {
+ // Safety:
+ // - At least `size_of::<H>()` bytes are allocated ahead of the pointer.
+ // - We know that H will be aligned because the middle pointer is aligned to the greater
+ // of the alignment of the header and the data and the header size includes the padding
+ // needed to align the header. Subtracting the header size from the aligned data pointer
+ // will always result in an aligned header pointer, it just may not point to the
+ // beginning of the allocation.
+ unsafe { self.0.as_ptr().sub(Self::header_size()) as *mut H }
+ }
+
+ fn value(&self) -> *mut u8 {
+ self.0.as_ptr()
+ }
+
+ const fn header_size() -> usize {
+ mem::size_of::<H>()
+ }
+
+ fn alloc_layout(value_layout: Layout) -> Result<(Layout, usize), LayoutError> {
+ Layout::new::<H>().extend(value_layout)
+ }
+}
diff --git a/rust/alloc/collections/mod.rs b/rust/alloc/collections/mod.rs
new file mode 100644
index 000000000000..628a5b155673
--- /dev/null
+++ b/rust/alloc/collections/mod.rs
@@ -0,0 +1,154 @@
+//! Collection types.
+
+#![stable(feature = "rust1", since = "1.0.0")]
+
+#[cfg(not(no_global_oom_handling))]
+pub mod binary_heap;
+#[cfg(not(no_global_oom_handling))]
+mod btree;
+#[cfg(not(no_global_oom_handling))]
+pub mod linked_list;
+#[cfg(not(no_global_oom_handling))]
+pub mod vec_deque;
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub mod btree_map {
+ //! An ordered map based on a B-Tree.
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub use super::btree::map::*;
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub mod btree_set {
+ //! An ordered set based on a B-Tree.
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub use super::btree::set::*;
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[doc(no_inline)]
+pub use binary_heap::BinaryHeap;
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[doc(no_inline)]
+pub use btree_map::BTreeMap;
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[doc(no_inline)]
+pub use btree_set::BTreeSet;
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[doc(no_inline)]
+pub use linked_list::LinkedList;
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[doc(no_inline)]
+pub use vec_deque::VecDeque;
+
+use crate::alloc::{Layout, LayoutError};
+use core::fmt::Display;
+
+/// The error type for `try_reserve` methods.
+#[derive(Clone, PartialEq, Eq, Debug)]
+#[stable(feature = "try_reserve", since = "1.57.0")]
+pub struct TryReserveError {
+ kind: TryReserveErrorKind,
+}
+
+impl TryReserveError {
+ /// Details about the allocation that caused the error
+ #[inline]
+ #[must_use]
+ #[unstable(
+ feature = "try_reserve_kind",
+ reason = "Uncertain how much info should be exposed",
+ issue = "48043"
+ )]
+ pub fn kind(&self) -> TryReserveErrorKind {
+ self.kind.clone()
+ }
+}
+
+/// Details of the allocation that caused a `TryReserveError`
+#[derive(Clone, PartialEq, Eq, Debug)]
+#[unstable(
+ feature = "try_reserve_kind",
+ reason = "Uncertain how much info should be exposed",
+ issue = "48043"
+)]
+pub enum TryReserveErrorKind {
+ /// Error due to the computed capacity exceeding the collection's maximum
+ /// (usually `isize::MAX` bytes).
+ CapacityOverflow,
+
+ /// The memory allocator returned an error
+ AllocError {
+ /// The layout of allocation request that failed
+ layout: Layout,
+
+ #[doc(hidden)]
+ #[unstable(
+ feature = "container_error_extra",
+ issue = "none",
+ reason = "\
+ Enable exposing the allocator’s custom error value \
+ if an associated type is added in the future: \
+ https://github.com/rust-lang/wg-allocators/issues/23"
+ )]
+ non_exhaustive: (),
+ },
+}
+
+#[unstable(
+ feature = "try_reserve_kind",
+ reason = "Uncertain how much info should be exposed",
+ issue = "48043"
+)]
+impl From<TryReserveErrorKind> for TryReserveError {
+ #[inline]
+ fn from(kind: TryReserveErrorKind) -> Self {
+ Self { kind }
+ }
+}
+
+#[unstable(feature = "try_reserve_kind", reason = "new API", issue = "48043")]
+impl From<LayoutError> for TryReserveErrorKind {
+ /// Always evaluates to [`TryReserveErrorKind::CapacityOverflow`].
+ #[inline]
+ fn from(_: LayoutError) -> Self {
+ TryReserveErrorKind::CapacityOverflow
+ }
+}
+
+#[stable(feature = "try_reserve", since = "1.57.0")]
+impl Display for TryReserveError {
+ fn fmt(
+ &self,
+ fmt: &mut core::fmt::Formatter<'_>,
+ ) -> core::result::Result<(), core::fmt::Error> {
+ fmt.write_str("memory allocation failed")?;
+ let reason = match self.kind {
+ TryReserveErrorKind::CapacityOverflow => {
+ " because the computed capacity exceeded the collection's maximum"
+ }
+ TryReserveErrorKind::AllocError { .. } => {
+ " because the memory allocator returned a error"
+ }
+ };
+ fmt.write_str(reason)
+ }
+}
+
+/// An intermediate trait for specialization of `Extend`.
+#[doc(hidden)]
+trait SpecExtend<I: IntoIterator> {
+ /// Extends `self` with the contents of the given iterator.
+ fn spec_extend(&mut self, iter: I);
+}
diff --git a/rust/alloc/ffi/c_str.rs b/rust/alloc/ffi/c_str.rs
new file mode 100644
index 000000000000..172a008e89a0
--- /dev/null
+++ b/rust/alloc/ffi/c_str.rs
@@ -0,0 +1,1201 @@
+#[cfg(test)]
+mod tests;
+
+use crate::borrow::{Cow, ToOwned};
+use crate::boxed::Box;
+use crate::rc::Rc;
+use crate::slice::hack::into_vec;
+use crate::string::String;
+use crate::vec::Vec;
+use core::borrow::Borrow;
+use core::ffi::{c_char, CStr};
+use core::fmt;
+use core::mem;
+use core::num::NonZeroU8;
+use core::ops;
+use core::ptr;
+use core::slice;
+use core::slice::memchr;
+use core::str::{self, Utf8Error};
+
+#[cfg(target_has_atomic = "ptr")]
+use crate::sync::Arc;
+
+/// A type representing an owned, C-compatible, nul-terminated string with no nul bytes in the
+/// middle.
+///
+/// This type serves the purpose of being able to safely generate a
+/// C-compatible string from a Rust byte slice or vector. An instance of this
+/// type is a static guarantee that the underlying bytes contain no interior 0
+/// bytes ("nul characters") and that the final byte is 0 ("nul terminator").
+///
+/// `CString` is to <code>&[CStr]</code> as [`String`] is to <code>&[str]</code>: the former
+/// in each pair are owned strings; the latter are borrowed
+/// references.
+///
+/// # Creating a `CString`
+///
+/// A `CString` is created from either a byte slice or a byte vector,
+/// or anything that implements <code>[Into]<[Vec]<[u8]>></code> (for
+/// example, you can build a `CString` straight out of a [`String`] or
+/// a <code>&[str]</code>, since both implement that trait).
+///
+/// The [`CString::new`] method will actually check that the provided <code>&[[u8]]</code>
+/// does not have 0 bytes in the middle, and return an error if it
+/// finds one.
+///
+/// # Extracting a raw pointer to the whole C string
+///
+/// `CString` implements an [`as_ptr`][`CStr::as_ptr`] method through the [`Deref`]
+/// trait. This method will give you a `*const c_char` which you can
+/// feed directly to extern functions that expect a nul-terminated
+/// string, like C's `strdup()`. Notice that [`as_ptr`][`CStr::as_ptr`] returns a
+/// read-only pointer; if the C code writes to it, that causes
+/// undefined behavior.
+///
+/// # Extracting a slice of the whole C string
+///
+/// Alternatively, you can obtain a <code>&[[u8]]</code> slice from a
+/// `CString` with the [`CString::as_bytes`] method. Slices produced in this
+/// way do *not* contain the trailing nul terminator. This is useful
+/// when you will be calling an extern function that takes a `*const
+/// u8` argument which is not necessarily nul-terminated, plus another
+/// argument with the length of the string — like C's `strndup()`.
+/// You can of course get the slice's length with its
+/// [`len`][slice::len] method.
+///
+/// If you need a <code>&[[u8]]</code> slice *with* the nul terminator, you
+/// can use [`CString::as_bytes_with_nul`] instead.
+///
+/// Once you have the kind of slice you need (with or without a nul
+/// terminator), you can call the slice's own
+/// [`as_ptr`][slice::as_ptr] method to get a read-only raw pointer to pass to
+/// extern functions. See the documentation for that function for a
+/// discussion on ensuring the lifetime of the raw pointer.
+///
+/// [str]: prim@str "str"
+/// [`Deref`]: ops::Deref
+///
+/// # Examples
+///
+/// ```ignore (extern-declaration)
+/// # fn main() {
+/// use std::ffi::CString;
+/// use std::os::raw::c_char;
+///
+/// extern "C" {
+/// fn my_printer(s: *const c_char);
+/// }
+///
+/// // We are certain that our string doesn't have 0 bytes in the middle,
+/// // so we can .expect()
+/// let c_to_print = CString::new("Hello, world!").expect("CString::new failed");
+/// unsafe {
+/// my_printer(c_to_print.as_ptr());
+/// }
+/// # }
+/// ```
+///
+/// # Safety
+///
+/// `CString` is intended for working with traditional C-style strings
+/// (a sequence of non-nul bytes terminated by a single nul byte); the
+/// primary use case for these kinds of strings is interoperating with C-like
+/// code. Often you will need to transfer ownership to/from that external
+/// code. It is strongly recommended that you thoroughly read through the
+/// documentation of `CString` before use, as improper ownership management
+/// of `CString` instances can lead to invalid memory accesses, memory leaks,
+/// and other memory errors.
+#[derive(PartialEq, PartialOrd, Eq, Ord, Hash, Clone)]
+#[cfg_attr(not(test), rustc_diagnostic_item = "cstring_type")]
+#[unstable(feature = "alloc_c_string", issue = "94079")]
+pub struct CString {
+ // Invariant 1: the slice ends with a zero byte and has a length of at least one.
+ // Invariant 2: the slice contains only one zero byte.
+ // Improper usage of unsafe function can break Invariant 2, but not Invariant 1.
+ inner: Box<[u8]>,
+}
+
+/// An error indicating that an interior nul byte was found.
+///
+/// While Rust strings may contain nul bytes in the middle, C strings
+/// can't, as that byte would effectively truncate the string.
+///
+/// This error is created by the [`new`][`CString::new`] method on
+/// [`CString`]. See its documentation for more.
+///
+/// # Examples
+///
+/// ```
+/// use std::ffi::{CString, NulError};
+///
+/// let _: NulError = CString::new(b"f\0oo".to_vec()).unwrap_err();
+/// ```
+#[derive(Clone, PartialEq, Eq, Debug)]
+#[unstable(feature = "alloc_c_string", issue = "94079")]
+pub struct NulError(usize, Vec<u8>);
+
+#[derive(Clone, PartialEq, Eq, Debug)]
+enum FromBytesWithNulErrorKind {
+ InteriorNul(usize),
+ NotNulTerminated,
+}
+
+/// An error indicating that a nul byte was not in the expected position.
+///
+/// The vector used to create a [`CString`] must have one and only one nul byte,
+/// positioned at the end.
+///
+/// This error is created by the [`CString::from_vec_with_nul`] method.
+/// See its documentation for more.
+///
+/// # Examples
+///
+/// ```
+/// use std::ffi::{CString, FromVecWithNulError};
+///
+/// let _: FromVecWithNulError = CString::from_vec_with_nul(b"f\0oo".to_vec()).unwrap_err();
+/// ```
+#[derive(Clone, PartialEq, Eq, Debug)]
+#[unstable(feature = "alloc_c_string", issue = "94079")]
+pub struct FromVecWithNulError {
+ error_kind: FromBytesWithNulErrorKind,
+ bytes: Vec<u8>,
+}
+
+#[stable(feature = "cstring_from_vec_with_nul", since = "1.58.0")]
+impl FromVecWithNulError {
+ /// Returns a slice of [`u8`]s bytes that were attempted to convert to a [`CString`].
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::ffi::CString;
+ ///
+ /// // Some invalid bytes in a vector
+ /// let bytes = b"f\0oo".to_vec();
+ ///
+ /// let value = CString::from_vec_with_nul(bytes.clone());
+ ///
+ /// assert_eq!(&bytes[..], value.unwrap_err().as_bytes());
+ /// ```
+ #[must_use]
+ #[stable(feature = "cstring_from_vec_with_nul", since = "1.58.0")]
+ pub fn as_bytes(&self) -> &[u8] {
+ &self.bytes[..]
+ }
+
+ /// Returns the bytes that were attempted to convert to a [`CString`].
+ ///
+ /// This method is carefully constructed to avoid allocation. It will
+ /// consume the error, moving out the bytes, so that a copy of the bytes
+ /// does not need to be made.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::ffi::CString;
+ ///
+ /// // Some invalid bytes in a vector
+ /// let bytes = b"f\0oo".to_vec();
+ ///
+ /// let value = CString::from_vec_with_nul(bytes.clone());
+ ///
+ /// assert_eq!(bytes, value.unwrap_err().into_bytes());
+ /// ```
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[stable(feature = "cstring_from_vec_with_nul", since = "1.58.0")]
+ pub fn into_bytes(self) -> Vec<u8> {
+ self.bytes
+ }
+}
+
+/// An error indicating invalid UTF-8 when converting a [`CString`] into a [`String`].
+///
+/// `CString` is just a wrapper over a buffer of bytes with a nul terminator;
+/// [`CString::into_string`] performs UTF-8 validation on those bytes and may
+/// return this error.
+///
+/// This `struct` is created by [`CString::into_string()`]. See
+/// its documentation for more.
+#[derive(Clone, PartialEq, Eq, Debug)]
+#[unstable(feature = "alloc_c_string", issue = "94079")]
+pub struct IntoStringError {
+ inner: CString,
+ error: Utf8Error,
+}
+
+impl CString {
+ /// Creates a new C-compatible string from a container of bytes.
+ ///
+ /// This function will consume the provided data and use the
+ /// underlying bytes to construct a new string, ensuring that
+ /// there is a trailing 0 byte. This trailing 0 byte will be
+ /// appended by this function; the provided data should *not*
+ /// contain any 0 bytes in it.
+ ///
+ /// # Examples
+ ///
+ /// ```ignore (extern-declaration)
+ /// use std::ffi::CString;
+ /// use std::os::raw::c_char;
+ ///
+ /// extern "C" { fn puts(s: *const c_char); }
+ ///
+ /// let to_print = CString::new("Hello!").expect("CString::new failed");
+ /// unsafe {
+ /// puts(to_print.as_ptr());
+ /// }
+ /// ```
+ ///
+ /// # Errors
+ ///
+ /// This function will return an error if the supplied bytes contain an
+ /// internal 0 byte. The [`NulError`] returned will contain the bytes as well as
+ /// the position of the nul byte.
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn new<T: Into<Vec<u8>>>(t: T) -> Result<CString, NulError> {
+ trait SpecNewImpl {
+ fn spec_new_impl(self) -> Result<CString, NulError>;
+ }
+
+ impl<T: Into<Vec<u8>>> SpecNewImpl for T {
+ default fn spec_new_impl(self) -> Result<CString, NulError> {
+ let bytes: Vec<u8> = self.into();
+ match memchr::memchr(0, &bytes) {
+ Some(i) => Err(NulError(i, bytes)),
+ None => Ok(unsafe { CString::_from_vec_unchecked(bytes) }),
+ }
+ }
+ }
+
+ // Specialization for avoiding reallocation
+ #[inline(always)] // Without that it is not inlined into specializations
+ fn spec_new_impl_bytes(bytes: &[u8]) -> Result<CString, NulError> {
+ // We cannot have such large slice that we would overflow here
+ // but using `checked_add` allows LLVM to assume that capacity never overflows
+ // and generate twice shorter code.
+ // `saturating_add` doesn't help for some reason.
+ let capacity = bytes.len().checked_add(1).unwrap();
+
+ // Allocate before validation to avoid duplication of allocation code.
+ // We still need to allocate and copy memory even if we get an error.
+ let mut buffer = Vec::with_capacity(capacity);
+ buffer.extend(bytes);
+
+ // Check memory of self instead of new buffer.
+ // This allows better optimizations if lto enabled.
+ match memchr::memchr(0, bytes) {
+ Some(i) => Err(NulError(i, buffer)),
+ None => Ok(unsafe { CString::_from_vec_unchecked(buffer) }),
+ }
+ }
+
+ impl SpecNewImpl for &'_ [u8] {
+ fn spec_new_impl(self) -> Result<CString, NulError> {
+ spec_new_impl_bytes(self)
+ }
+ }
+
+ impl SpecNewImpl for &'_ str {
+ fn spec_new_impl(self) -> Result<CString, NulError> {
+ spec_new_impl_bytes(self.as_bytes())
+ }
+ }
+
+ impl SpecNewImpl for &'_ mut [u8] {
+ fn spec_new_impl(self) -> Result<CString, NulError> {
+ spec_new_impl_bytes(self)
+ }
+ }
+
+ t.spec_new_impl()
+ }
+
+ /// Creates a C-compatible string by consuming a byte vector,
+ /// without checking for interior 0 bytes.
+ ///
+ /// Trailing 0 byte will be appended by this function.
+ ///
+ /// This method is equivalent to [`CString::new`] except that no runtime
+ /// assertion is made that `v` contains no 0 bytes, and it requires an
+ /// actual byte vector, not anything that can be converted to one with Into.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ffi::CString;
+ ///
+ /// let raw = b"foo".to_vec();
+ /// unsafe {
+ /// let c_string = CString::from_vec_unchecked(raw);
+ /// }
+ /// ```
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub unsafe fn from_vec_unchecked(v: Vec<u8>) -> Self {
+ debug_assert!(memchr::memchr(0, &v).is_none());
+ unsafe { Self::_from_vec_unchecked(v) }
+ }
+
+ unsafe fn _from_vec_unchecked(mut v: Vec<u8>) -> Self {
+ v.reserve_exact(1);
+ v.push(0);
+ Self { inner: v.into_boxed_slice() }
+ }
+
+ /// Retakes ownership of a `CString` that was transferred to C via
+ /// [`CString::into_raw`].
+ ///
+ /// Additionally, the length of the string will be recalculated from the pointer.
+ ///
+ /// # Safety
+ ///
+ /// This should only ever be called with a pointer that was earlier
+ /// obtained by calling [`CString::into_raw`]. Other usage (e.g., trying to take
+ /// ownership of a string that was allocated by foreign code) is likely to lead
+ /// to undefined behavior or allocator corruption.
+ ///
+ /// It should be noted that the length isn't just "recomputed," but that
+ /// the recomputed length must match the original length from the
+ /// [`CString::into_raw`] call. This means the [`CString::into_raw`]/`from_raw`
+ /// methods should not be used when passing the string to C functions that can
+ /// modify the string's length.
+ ///
+ /// > **Note:** If you need to borrow a string that was allocated by
+ /// > foreign code, use [`CStr`]. If you need to take ownership of
+ /// > a string that was allocated by foreign code, you will need to
+ /// > make your own provisions for freeing it appropriately, likely
+ /// > with the foreign code's API to do that.
+ ///
+ /// # Examples
+ ///
+ /// Creates a `CString`, pass ownership to an `extern` function (via raw pointer), then retake
+ /// ownership with `from_raw`:
+ ///
+ /// ```ignore (extern-declaration)
+ /// use std::ffi::CString;
+ /// use std::os::raw::c_char;
+ ///
+ /// extern "C" {
+ /// fn some_extern_function(s: *mut c_char);
+ /// }
+ ///
+ /// let c_string = CString::new("Hello!").expect("CString::new failed");
+ /// let raw = c_string.into_raw();
+ /// unsafe {
+ /// some_extern_function(raw);
+ /// let c_string = CString::from_raw(raw);
+ /// }
+ /// ```
+ #[must_use = "call `drop(from_raw(ptr))` if you intend to drop the `CString`"]
+ #[stable(feature = "cstr_memory", since = "1.4.0")]
+ pub unsafe fn from_raw(ptr: *mut c_char) -> CString {
+ // SAFETY: This is called with a pointer that was obtained from a call
+ // to `CString::into_raw` and the length has not been modified. As such,
+ // we know there is a NUL byte (and only one) at the end and that the
+ // information about the size of the allocation is correct on Rust's
+ // side.
+ unsafe {
+ extern "C" {
+ /// Provided by libc or compiler_builtins.
+ fn strlen(s: *const c_char) -> usize;
+ }
+ let len = strlen(ptr) + 1; // Including the NUL byte
+ let slice = slice::from_raw_parts_mut(ptr, len as usize);
+ CString { inner: Box::from_raw(slice as *mut [c_char] as *mut [u8]) }
+ }
+ }
+
+ /// Consumes the `CString` and transfers ownership of the string to a C caller.
+ ///
+ /// The pointer which this function returns must be returned to Rust and reconstituted using
+ /// [`CString::from_raw`] to be properly deallocated. Specifically, one
+ /// should *not* use the standard C `free()` function to deallocate
+ /// this string.
+ ///
+ /// Failure to call [`CString::from_raw`] will lead to a memory leak.
+ ///
+ /// The C side must **not** modify the length of the string (by writing a
+ /// `null` somewhere inside the string or removing the final one) before
+ /// it makes it back into Rust using [`CString::from_raw`]. See the safety section
+ /// in [`CString::from_raw`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ffi::CString;
+ ///
+ /// let c_string = CString::new("foo").expect("CString::new failed");
+ ///
+ /// let ptr = c_string.into_raw();
+ ///
+ /// unsafe {
+ /// assert_eq!(b'f', *ptr as u8);
+ /// assert_eq!(b'o', *ptr.offset(1) as u8);
+ /// assert_eq!(b'o', *ptr.offset(2) as u8);
+ /// assert_eq!(b'\0', *ptr.offset(3) as u8);
+ ///
+ /// // retake pointer to free memory
+ /// let _ = CString::from_raw(ptr);
+ /// }
+ /// ```
+ #[inline]
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[stable(feature = "cstr_memory", since = "1.4.0")]
+ pub fn into_raw(self) -> *mut c_char {
+ Box::into_raw(self.into_inner()) as *mut c_char
+ }
+
+ /// Converts the `CString` into a [`String`] if it contains valid UTF-8 data.
+ ///
+ /// On failure, ownership of the original `CString` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ffi::CString;
+ ///
+ /// let valid_utf8 = vec![b'f', b'o', b'o'];
+ /// let cstring = CString::new(valid_utf8).expect("CString::new failed");
+ /// assert_eq!(cstring.into_string().expect("into_string() call failed"), "foo");
+ ///
+ /// let invalid_utf8 = vec![b'f', 0xff, b'o', b'o'];
+ /// let cstring = CString::new(invalid_utf8).expect("CString::new failed");
+ /// let err = cstring.into_string().err().expect("into_string().err() failed");
+ /// assert_eq!(err.utf8_error().valid_up_to(), 1);
+ /// ```
+ #[stable(feature = "cstring_into", since = "1.7.0")]
+ pub fn into_string(self) -> Result<String, IntoStringError> {
+ String::from_utf8(self.into_bytes()).map_err(|e| IntoStringError {
+ error: e.utf8_error(),
+ inner: unsafe { Self::_from_vec_unchecked(e.into_bytes()) },
+ })
+ }
+
+ /// Consumes the `CString` and returns the underlying byte buffer.
+ ///
+ /// The returned buffer does **not** contain the trailing nul
+ /// terminator, and it is guaranteed to not have any interior nul
+ /// bytes.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ffi::CString;
+ ///
+ /// let c_string = CString::new("foo").expect("CString::new failed");
+ /// let bytes = c_string.into_bytes();
+ /// assert_eq!(bytes, vec![b'f', b'o', b'o']);
+ /// ```
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[stable(feature = "cstring_into", since = "1.7.0")]
+ pub fn into_bytes(self) -> Vec<u8> {
+ let mut vec = into_vec(self.into_inner());
+ let _nul = vec.pop();
+ debug_assert_eq!(_nul, Some(0u8));
+ vec
+ }
+
+ /// Equivalent to [`CString::into_bytes()`] except that the
+ /// returned vector includes the trailing nul terminator.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ffi::CString;
+ ///
+ /// let c_string = CString::new("foo").expect("CString::new failed");
+ /// let bytes = c_string.into_bytes_with_nul();
+ /// assert_eq!(bytes, vec![b'f', b'o', b'o', b'\0']);
+ /// ```
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[stable(feature = "cstring_into", since = "1.7.0")]
+ pub fn into_bytes_with_nul(self) -> Vec<u8> {
+ into_vec(self.into_inner())
+ }
+
+ /// Returns the contents of this `CString` as a slice of bytes.
+ ///
+ /// The returned slice does **not** contain the trailing nul
+ /// terminator, and it is guaranteed to not have any interior nul
+ /// bytes. If you need the nul terminator, use
+ /// [`CString::as_bytes_with_nul`] instead.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ffi::CString;
+ ///
+ /// let c_string = CString::new("foo").expect("CString::new failed");
+ /// let bytes = c_string.as_bytes();
+ /// assert_eq!(bytes, &[b'f', b'o', b'o']);
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn as_bytes(&self) -> &[u8] {
+ // SAFETY: CString has a length at least 1
+ unsafe { self.inner.get_unchecked(..self.inner.len() - 1) }
+ }
+
+ /// Equivalent to [`CString::as_bytes()`] except that the
+ /// returned slice includes the trailing nul terminator.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ffi::CString;
+ ///
+ /// let c_string = CString::new("foo").expect("CString::new failed");
+ /// let bytes = c_string.as_bytes_with_nul();
+ /// assert_eq!(bytes, &[b'f', b'o', b'o', b'\0']);
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn as_bytes_with_nul(&self) -> &[u8] {
+ &self.inner
+ }
+
+ /// Extracts a [`CStr`] slice containing the entire string.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ffi::{CString, CStr};
+ ///
+ /// let c_string = CString::new(b"foo".to_vec()).expect("CString::new failed");
+ /// let cstr = c_string.as_c_str();
+ /// assert_eq!(cstr,
+ /// CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed"));
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "as_c_str", since = "1.20.0")]
+ pub fn as_c_str(&self) -> &CStr {
+ &*self
+ }
+
+ /// Converts this `CString` into a boxed [`CStr`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ffi::{CString, CStr};
+ ///
+ /// let c_string = CString::new(b"foo".to_vec()).expect("CString::new failed");
+ /// let boxed = c_string.into_boxed_c_str();
+ /// assert_eq!(&*boxed,
+ /// CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed"));
+ /// ```
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[stable(feature = "into_boxed_c_str", since = "1.20.0")]
+ pub fn into_boxed_c_str(self) -> Box<CStr> {
+ unsafe { Box::from_raw(Box::into_raw(self.into_inner()) as *mut CStr) }
+ }
+
+ /// Bypass "move out of struct which implements [`Drop`] trait" restriction.
+ #[inline]
+ fn into_inner(self) -> Box<[u8]> {
+ // Rationale: `mem::forget(self)` invalidates the previous call to `ptr::read(&self.inner)`
+ // so we use `ManuallyDrop` to ensure `self` is not dropped.
+ // Then we can return the box directly without invalidating it.
+ // See https://github.com/rust-lang/rust/issues/62553.
+ let this = mem::ManuallyDrop::new(self);
+ unsafe { ptr::read(&this.inner) }
+ }
+
+ /// Converts a <code>[Vec]<[u8]></code> to a [`CString`] without checking the
+ /// invariants on the given [`Vec`].
+ ///
+ /// # Safety
+ ///
+ /// The given [`Vec`] **must** have one nul byte as its last element.
+ /// This means it cannot be empty nor have any other nul byte anywhere else.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use std::ffi::CString;
+ /// assert_eq!(
+ /// unsafe { CString::from_vec_with_nul_unchecked(b"abc\0".to_vec()) },
+ /// unsafe { CString::from_vec_unchecked(b"abc".to_vec()) }
+ /// );
+ /// ```
+ #[must_use]
+ #[stable(feature = "cstring_from_vec_with_nul", since = "1.58.0")]
+ pub unsafe fn from_vec_with_nul_unchecked(v: Vec<u8>) -> Self {
+ debug_assert!(memchr::memchr(0, &v).unwrap() + 1 == v.len());
+ unsafe { Self::_from_vec_with_nul_unchecked(v) }
+ }
+
+ unsafe fn _from_vec_with_nul_unchecked(v: Vec<u8>) -> Self {
+ Self { inner: v.into_boxed_slice() }
+ }
+
+ /// Attempts to converts a <code>[Vec]<[u8]></code> to a [`CString`].
+ ///
+ /// Runtime checks are present to ensure there is only one nul byte in the
+ /// [`Vec`], its last element.
+ ///
+ /// # Errors
+ ///
+ /// If a nul byte is present and not the last element or no nul bytes
+ /// is present, an error will be returned.
+ ///
+ /// # Examples
+ ///
+ /// A successful conversion will produce the same result as [`CString::new`]
+ /// when called without the ending nul byte.
+ ///
+ /// ```
+ /// use std::ffi::CString;
+ /// assert_eq!(
+ /// CString::from_vec_with_nul(b"abc\0".to_vec())
+ /// .expect("CString::from_vec_with_nul failed"),
+ /// CString::new(b"abc".to_vec()).expect("CString::new failed")
+ /// );
+ /// ```
+ ///
+ /// An incorrectly formatted [`Vec`] will produce an error.
+ ///
+ /// ```
+ /// use std::ffi::{CString, FromVecWithNulError};
+ /// // Interior nul byte
+ /// let _: FromVecWithNulError = CString::from_vec_with_nul(b"a\0bc".to_vec()).unwrap_err();
+ /// // No nul byte
+ /// let _: FromVecWithNulError = CString::from_vec_with_nul(b"abc".to_vec()).unwrap_err();
+ /// ```
+ #[stable(feature = "cstring_from_vec_with_nul", since = "1.58.0")]
+ pub fn from_vec_with_nul(v: Vec<u8>) -> Result<Self, FromVecWithNulError> {
+ let nul_pos = memchr::memchr(0, &v);
+ match nul_pos {
+ Some(nul_pos) if nul_pos + 1 == v.len() => {
+ // SAFETY: We know there is only one nul byte, at the end
+ // of the vec.
+ Ok(unsafe { Self::_from_vec_with_nul_unchecked(v) })
+ }
+ Some(nul_pos) => Err(FromVecWithNulError {
+ error_kind: FromBytesWithNulErrorKind::InteriorNul(nul_pos),
+ bytes: v,
+ }),
+ None => Err(FromVecWithNulError {
+ error_kind: FromBytesWithNulErrorKind::NotNulTerminated,
+ bytes: v,
+ }),
+ }
+ }
+}
+
+// Turns this `CString` into an empty string to prevent
+// memory-unsafe code from working by accident. Inline
+// to prevent LLVM from optimizing it away in debug builds.
+#[stable(feature = "cstring_drop", since = "1.13.0")]
+impl Drop for CString {
+ #[inline]
+ fn drop(&mut self) {
+ unsafe {
+ *self.inner.get_unchecked_mut(0) = 0;
+ }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl ops::Deref for CString {
+ type Target = CStr;
+
+ #[inline]
+ fn deref(&self) -> &CStr {
+ unsafe { CStr::from_bytes_with_nul_unchecked(self.as_bytes_with_nul()) }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl fmt::Debug for CString {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Debug::fmt(&**self, f)
+ }
+}
+
+#[stable(feature = "cstring_into", since = "1.7.0")]
+impl From<CString> for Vec<u8> {
+ /// Converts a [`CString`] into a <code>[Vec]<[u8]></code>.
+ ///
+ /// The conversion consumes the [`CString`], and removes the terminating NUL byte.
+ #[inline]
+ fn from(s: CString) -> Vec<u8> {
+ s.into_bytes()
+ }
+}
+
+#[stable(feature = "cstr_default", since = "1.10.0")]
+impl Default for CString {
+ /// Creates an empty `CString`.
+ fn default() -> CString {
+ let a: &CStr = Default::default();
+ a.to_owned()
+ }
+}
+
+#[stable(feature = "cstr_borrow", since = "1.3.0")]
+impl Borrow<CStr> for CString {
+ #[inline]
+ fn borrow(&self) -> &CStr {
+ self
+ }
+}
+
+#[stable(feature = "cstring_from_cow_cstr", since = "1.28.0")]
+impl<'a> From<Cow<'a, CStr>> for CString {
+ /// Converts a `Cow<'a, CStr>` into a `CString`, by copying the contents if they are
+ /// borrowed.
+ #[inline]
+ fn from(s: Cow<'a, CStr>) -> Self {
+ s.into_owned()
+ }
+}
+
+#[cfg(not(test))]
+#[stable(feature = "box_from_c_str", since = "1.17.0")]
+impl From<&CStr> for Box<CStr> {
+ /// Converts a `&CStr` into a `Box<CStr>`,
+ /// by copying the contents into a newly allocated [`Box`].
+ fn from(s: &CStr) -> Box<CStr> {
+ let boxed: Box<[u8]> = Box::from(s.to_bytes_with_nul());
+ unsafe { Box::from_raw(Box::into_raw(boxed) as *mut CStr) }
+ }
+}
+
+#[stable(feature = "box_from_cow", since = "1.45.0")]
+impl From<Cow<'_, CStr>> for Box<CStr> {
+ /// Converts a `Cow<'a, CStr>` into a `Box<CStr>`,
+ /// by copying the contents if they are borrowed.
+ #[inline]
+ fn from(cow: Cow<'_, CStr>) -> Box<CStr> {
+ match cow {
+ Cow::Borrowed(s) => Box::from(s),
+ Cow::Owned(s) => Box::from(s),
+ }
+ }
+}
+
+#[stable(feature = "c_string_from_box", since = "1.18.0")]
+impl From<Box<CStr>> for CString {
+ /// Converts a <code>[Box]<[CStr]></code> into a [`CString`] without copying or allocating.
+ #[inline]
+ fn from(s: Box<CStr>) -> CString {
+ let raw = Box::into_raw(s) as *mut [u8];
+ CString { inner: unsafe { Box::from_raw(raw) } }
+ }
+}
+
+#[stable(feature = "cstring_from_vec_of_nonzerou8", since = "1.43.0")]
+impl From<Vec<NonZeroU8>> for CString {
+ /// Converts a <code>[Vec]<[NonZeroU8]></code> into a [`CString`] without
+ /// copying nor checking for inner null bytes.
+ #[inline]
+ fn from(v: Vec<NonZeroU8>) -> CString {
+ unsafe {
+ // Transmute `Vec<NonZeroU8>` to `Vec<u8>`.
+ let v: Vec<u8> = {
+ // SAFETY:
+ // - transmuting between `NonZeroU8` and `u8` is sound;
+ // - `alloc::Layout<NonZeroU8> == alloc::Layout<u8>`.
+ let (ptr, len, cap): (*mut NonZeroU8, _, _) = Vec::into_raw_parts(v);
+ Vec::from_raw_parts(ptr.cast::<u8>(), len, cap)
+ };
+ // SAFETY: `v` cannot contain null bytes, given the type-level
+ // invariant of `NonZeroU8`.
+ Self::_from_vec_unchecked(v)
+ }
+ }
+}
+
+#[cfg(not(test))]
+#[stable(feature = "more_box_slice_clone", since = "1.29.0")]
+impl Clone for Box<CStr> {
+ #[inline]
+ fn clone(&self) -> Self {
+ (**self).into()
+ }
+}
+
+#[stable(feature = "box_from_c_string", since = "1.20.0")]
+impl From<CString> for Box<CStr> {
+ /// Converts a [`CString`] into a <code>[Box]<[CStr]></code> without copying or allocating.
+ #[inline]
+ fn from(s: CString) -> Box<CStr> {
+ s.into_boxed_c_str()
+ }
+}
+
+#[stable(feature = "cow_from_cstr", since = "1.28.0")]
+impl<'a> From<CString> for Cow<'a, CStr> {
+ /// Converts a [`CString`] into an owned [`Cow`] without copying or allocating.
+ #[inline]
+ fn from(s: CString) -> Cow<'a, CStr> {
+ Cow::Owned(s)
+ }
+}
+
+#[stable(feature = "cow_from_cstr", since = "1.28.0")]
+impl<'a> From<&'a CStr> for Cow<'a, CStr> {
+ /// Converts a [`CStr`] into a borrowed [`Cow`] without copying or allocating.
+ #[inline]
+ fn from(s: &'a CStr) -> Cow<'a, CStr> {
+ Cow::Borrowed(s)
+ }
+}
+
+#[stable(feature = "cow_from_cstr", since = "1.28.0")]
+impl<'a> From<&'a CString> for Cow<'a, CStr> {
+ /// Converts a `&`[`CString`] into a borrowed [`Cow`] without copying or allocating.
+ #[inline]
+ fn from(s: &'a CString) -> Cow<'a, CStr> {
+ Cow::Borrowed(s.as_c_str())
+ }
+}
+
+#[cfg(target_has_atomic = "ptr")]
+#[stable(feature = "shared_from_slice2", since = "1.24.0")]
+impl From<CString> for Arc<CStr> {
+ /// Converts a [`CString`] into an <code>[Arc]<[CStr]></code> by moving the [`CString`]
+ /// data into a new [`Arc`] buffer.
+ #[inline]
+ fn from(s: CString) -> Arc<CStr> {
+ let arc: Arc<[u8]> = Arc::from(s.into_inner());
+ unsafe { Arc::from_raw(Arc::into_raw(arc) as *const CStr) }
+ }
+}
+
+#[cfg(target_has_atomic = "ptr")]
+#[stable(feature = "shared_from_slice2", since = "1.24.0")]
+impl From<&CStr> for Arc<CStr> {
+ /// Converts a `&CStr` into a `Arc<CStr>`,
+ /// by copying the contents into a newly allocated [`Arc`].
+ #[inline]
+ fn from(s: &CStr) -> Arc<CStr> {
+ let arc: Arc<[u8]> = Arc::from(s.to_bytes_with_nul());
+ unsafe { Arc::from_raw(Arc::into_raw(arc) as *const CStr) }
+ }
+}
+
+#[stable(feature = "shared_from_slice2", since = "1.24.0")]
+impl From<CString> for Rc<CStr> {
+ /// Converts a [`CString`] into an <code>[Rc]<[CStr]></code> by moving the [`CString`]
+ /// data into a new [`Arc`] buffer.
+ #[inline]
+ fn from(s: CString) -> Rc<CStr> {
+ let rc: Rc<[u8]> = Rc::from(s.into_inner());
+ unsafe { Rc::from_raw(Rc::into_raw(rc) as *const CStr) }
+ }
+}
+
+#[stable(feature = "shared_from_slice2", since = "1.24.0")]
+impl From<&CStr> for Rc<CStr> {
+ /// Converts a `&CStr` into a `Rc<CStr>`,
+ /// by copying the contents into a newly allocated [`Rc`].
+ #[inline]
+ fn from(s: &CStr) -> Rc<CStr> {
+ let rc: Rc<[u8]> = Rc::from(s.to_bytes_with_nul());
+ unsafe { Rc::from_raw(Rc::into_raw(rc) as *const CStr) }
+ }
+}
+
+#[cfg(not(test))]
+#[stable(feature = "default_box_extra", since = "1.17.0")]
+impl Default for Box<CStr> {
+ fn default() -> Box<CStr> {
+ let boxed: Box<[u8]> = Box::from([0]);
+ unsafe { Box::from_raw(Box::into_raw(boxed) as *mut CStr) }
+ }
+}
+
+impl NulError {
+ /// Returns the position of the nul byte in the slice that caused
+ /// [`CString::new`] to fail.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ffi::CString;
+ ///
+ /// let nul_error = CString::new("foo\0bar").unwrap_err();
+ /// assert_eq!(nul_error.nul_position(), 3);
+ ///
+ /// let nul_error = CString::new("foo bar\0").unwrap_err();
+ /// assert_eq!(nul_error.nul_position(), 7);
+ /// ```
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn nul_position(&self) -> usize {
+ self.0
+ }
+
+ /// Consumes this error, returning the underlying vector of bytes which
+ /// generated the error in the first place.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ffi::CString;
+ ///
+ /// let nul_error = CString::new("foo\0bar").unwrap_err();
+ /// assert_eq!(nul_error.into_vec(), b"foo\0bar");
+ /// ```
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn into_vec(self) -> Vec<u8> {
+ self.1
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl fmt::Display for NulError {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "nul byte found in provided data at position: {}", self.0)
+ }
+}
+
+#[stable(feature = "cstring_from_vec_with_nul", since = "1.58.0")]
+impl fmt::Display for FromVecWithNulError {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ match self.error_kind {
+ FromBytesWithNulErrorKind::InteriorNul(pos) => {
+ write!(f, "data provided contains an interior nul byte at pos {pos}")
+ }
+ FromBytesWithNulErrorKind::NotNulTerminated => {
+ write!(f, "data provided is not nul terminated")
+ }
+ }
+ }
+}
+
+impl IntoStringError {
+ /// Consumes this error, returning original [`CString`] which generated the
+ /// error.
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[stable(feature = "cstring_into", since = "1.7.0")]
+ pub fn into_cstring(self) -> CString {
+ self.inner
+ }
+
+ /// Access the underlying UTF-8 error that was the cause of this error.
+ #[must_use]
+ #[stable(feature = "cstring_into", since = "1.7.0")]
+ pub fn utf8_error(&self) -> Utf8Error {
+ self.error
+ }
+
+ #[doc(hidden)]
+ #[unstable(feature = "cstr_internals", issue = "none")]
+ pub fn __source(&self) -> &Utf8Error {
+ &self.error
+ }
+}
+
+impl IntoStringError {
+ fn description(&self) -> &str {
+ "C string contained non-utf8 bytes"
+ }
+}
+
+#[stable(feature = "cstring_into", since = "1.7.0")]
+impl fmt::Display for IntoStringError {
+ #[allow(deprecated, deprecated_in_future)]
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ self.description().fmt(f)
+ }
+}
+
+#[stable(feature = "cstr_borrow", since = "1.3.0")]
+impl ToOwned for CStr {
+ type Owned = CString;
+
+ fn to_owned(&self) -> CString {
+ CString { inner: self.to_bytes_with_nul().into() }
+ }
+
+ fn clone_into(&self, target: &mut CString) {
+ let mut b = into_vec(mem::take(&mut target.inner));
+ self.to_bytes_with_nul().clone_into(&mut b);
+ target.inner = b.into_boxed_slice();
+ }
+}
+
+#[stable(feature = "cstring_asref", since = "1.7.0")]
+impl From<&CStr> for CString {
+ fn from(s: &CStr) -> CString {
+ s.to_owned()
+ }
+}
+
+#[stable(feature = "cstring_asref", since = "1.7.0")]
+impl ops::Index<ops::RangeFull> for CString {
+ type Output = CStr;
+
+ #[inline]
+ fn index(&self, _index: ops::RangeFull) -> &CStr {
+ self
+ }
+}
+
+#[stable(feature = "cstring_asref", since = "1.7.0")]
+impl AsRef<CStr> for CString {
+ #[inline]
+ fn as_ref(&self) -> &CStr {
+ self
+ }
+}
+
+#[cfg(bootstrap)]
+#[doc(hidden)]
+#[unstable(feature = "cstr_internals", issue = "none")]
+pub trait CStrExt {
+ /// Converts a `CStr` into a <code>[Cow]<[str]></code>.
+ ///
+ /// If the contents of the `CStr` are valid UTF-8 data, this
+ /// function will return a <code>[Cow]::[Borrowed]\(&[str])</code>
+ /// with the corresponding <code>&[str]</code> slice. Otherwise, it will
+ /// replace any invalid UTF-8 sequences with
+ /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD] and return a
+ /// <code>[Cow]::[Owned]\(&[str])</code> with the result.
+ ///
+ /// [str]: prim@str "str"
+ /// [Borrowed]: Cow::Borrowed
+ /// [Owned]: Cow::Owned
+ /// [U+FFFD]: crate::char::REPLACEMENT_CHARACTER "std::char::REPLACEMENT_CHARACTER"
+ ///
+ /// # Examples
+ ///
+ /// Calling `to_string_lossy` on a `CStr` containing valid UTF-8:
+ ///
+ /// ```
+ /// use std::borrow::Cow;
+ /// use std::ffi::CStr;
+ ///
+ /// let cstr = CStr::from_bytes_with_nul(b"Hello World\0")
+ /// .expect("CStr::from_bytes_with_nul failed");
+ /// assert_eq!(cstr.to_string_lossy(), Cow::Borrowed("Hello World"));
+ /// ```
+ ///
+ /// Calling `to_string_lossy` on a `CStr` containing invalid UTF-8:
+ ///
+ /// ```
+ /// use std::borrow::Cow;
+ /// use std::ffi::CStr;
+ ///
+ /// let cstr = CStr::from_bytes_with_nul(b"Hello \xF0\x90\x80World\0")
+ /// .expect("CStr::from_bytes_with_nul failed");
+ /// assert_eq!(
+ /// cstr.to_string_lossy(),
+ /// Cow::Owned(String::from("Hello �World")) as Cow<'_, str>
+ /// );
+ /// ```
+ #[must_use = "this returns the result of the operation, \
+ without modifying the original"]
+ #[stable(feature = "cstr_to_str", since = "1.4.0")]
+ fn to_string_lossy(&self) -> Cow<'_, str>;
+
+ /// Converts a <code>[Box]<[CStr]></code> into a [`CString`] without copying or allocating.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ffi::CString;
+ ///
+ /// let c_string = CString::new(b"foo".to_vec()).expect("CString::new failed");
+ /// let boxed = c_string.into_boxed_c_str();
+ /// assert_eq!(boxed.into_c_string(), CString::new("foo").expect("CString::new failed"));
+ /// ```
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[stable(feature = "into_boxed_c_str", since = "1.20.0")]
+ fn into_c_string(self: Box<Self>) -> CString;
+}
+
+#[cfg(bootstrap)]
+#[unstable(feature = "cstr_internals", issue = "none")]
+impl CStrExt for CStr {
+ fn to_string_lossy(&self) -> Cow<'_, str> {
+ String::from_utf8_lossy(self.to_bytes())
+ }
+
+ fn into_c_string(self: Box<Self>) -> CString {
+ CString::from(self)
+ }
+}
+
+#[cfg(not(bootstrap))]
+#[cfg(not(test))]
+impl CStr {
+ /// Converts a `CStr` into a <code>[Cow]<[str]></code>.
+ ///
+ /// If the contents of the `CStr` are valid UTF-8 data, this
+ /// function will return a <code>[Cow]::[Borrowed]\(&[str])</code>
+ /// with the corresponding <code>&[str]</code> slice. Otherwise, it will
+ /// replace any invalid UTF-8 sequences with
+ /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD] and return a
+ /// <code>[Cow]::[Owned]\(&[str])</code> with the result.
+ ///
+ /// [str]: prim@str "str"
+ /// [Borrowed]: Cow::Borrowed
+ /// [Owned]: Cow::Owned
+ /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER "std::char::REPLACEMENT_CHARACTER"
+ ///
+ /// # Examples
+ ///
+ /// Calling `to_string_lossy` on a `CStr` containing valid UTF-8:
+ ///
+ /// ```
+ /// use std::borrow::Cow;
+ /// use std::ffi::CStr;
+ ///
+ /// let cstr = CStr::from_bytes_with_nul(b"Hello World\0")
+ /// .expect("CStr::from_bytes_with_nul failed");
+ /// assert_eq!(cstr.to_string_lossy(), Cow::Borrowed("Hello World"));
+ /// ```
+ ///
+ /// Calling `to_string_lossy` on a `CStr` containing invalid UTF-8:
+ ///
+ /// ```
+ /// use std::borrow::Cow;
+ /// use std::ffi::CStr;
+ ///
+ /// let cstr = CStr::from_bytes_with_nul(b"Hello \xF0\x90\x80World\0")
+ /// .expect("CStr::from_bytes_with_nul failed");
+ /// assert_eq!(
+ /// cstr.to_string_lossy(),
+ /// Cow::Owned(String::from("Hello �World")) as Cow<'_, str>
+ /// );
+ /// ```
+ #[rustc_allow_incoherent_impl]
+ #[must_use = "this returns the result of the operation, \
+ without modifying the original"]
+ #[stable(feature = "cstr_to_str", since = "1.4.0")]
+ pub fn to_string_lossy(&self) -> Cow<'_, str> {
+ String::from_utf8_lossy(self.to_bytes())
+ }
+
+ /// Converts a <code>[Box]<[CStr]></code> into a [`CString`] without copying or allocating.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ffi::CString;
+ ///
+ /// let c_string = CString::new(b"foo".to_vec()).expect("CString::new failed");
+ /// let boxed = c_string.into_boxed_c_str();
+ /// assert_eq!(boxed.into_c_string(), CString::new("foo").expect("CString::new failed"));
+ /// ```
+ #[rustc_allow_incoherent_impl]
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[stable(feature = "into_boxed_c_str", since = "1.20.0")]
+ pub fn into_c_string(self: Box<Self>) -> CString {
+ CString::from(self)
+ }
+}
diff --git a/rust/alloc/ffi/mod.rs b/rust/alloc/ffi/mod.rs
new file mode 100644
index 000000000000..eed2851c1539
--- /dev/null
+++ b/rust/alloc/ffi/mod.rs
@@ -0,0 +1,91 @@
+//! Utilities related to FFI bindings.
+//!
+//! This module provides utilities to handle data across non-Rust
+//! interfaces, like other programming languages and the underlying
+//! operating system. It is mainly of use for FFI (Foreign Function
+//! Interface) bindings and code that needs to exchange C-like strings
+//! with other languages.
+//!
+//! # Overview
+//!
+//! Rust represents owned strings with the [`String`] type, and
+//! borrowed slices of strings with the [`str`] primitive. Both are
+//! always in UTF-8 encoding, and may contain nul bytes in the middle,
+//! i.e., if you look at the bytes that make up the string, there may
+//! be a `\0` among them. Both `String` and `str` store their length
+//! explicitly; there are no nul terminators at the end of strings
+//! like in C.
+//!
+//! C strings are different from Rust strings:
+//!
+//! * **Encodings** - Rust strings are UTF-8, but C strings may use
+//! other encodings. If you are using a string from C, you should
+//! check its encoding explicitly, rather than just assuming that it
+//! is UTF-8 like you can do in Rust.
+//!
+//! * **Character size** - C strings may use `char` or `wchar_t`-sized
+//! characters; please **note** that C's `char` is different from Rust's.
+//! The C standard leaves the actual sizes of those types open to
+//! interpretation, but defines different APIs for strings made up of
+//! each character type. Rust strings are always UTF-8, so different
+//! Unicode characters will be encoded in a variable number of bytes
+//! each. The Rust type [`char`] represents a '[Unicode scalar
+//! value]', which is similar to, but not the same as, a '[Unicode
+//! code point]'.
+//!
+//! * **Nul terminators and implicit string lengths** - Often, C
+//! strings are nul-terminated, i.e., they have a `\0` character at the
+//! end. The length of a string buffer is not stored, but has to be
+//! calculated; to compute the length of a string, C code must
+//! manually call a function like `strlen()` for `char`-based strings,
+//! or `wcslen()` for `wchar_t`-based ones. Those functions return
+//! the number of characters in the string excluding the nul
+//! terminator, so the buffer length is really `len+1` characters.
+//! Rust strings don't have a nul terminator; their length is always
+//! stored and does not need to be calculated. While in Rust
+//! accessing a string's length is an *O*(1) operation (because the
+//! length is stored); in C it is an *O*(*n*) operation because the
+//! length needs to be computed by scanning the string for the nul
+//! terminator.
+//!
+//! * **Internal nul characters** - When C strings have a nul
+//! terminator character, this usually means that they cannot have nul
+//! characters in the middle — a nul character would essentially
+//! truncate the string. Rust strings *can* have nul characters in
+//! the middle, because nul does not have to mark the end of the
+//! string in Rust.
+//!
+//! # Representations of non-Rust strings
+//!
+//! [`CString`] and [`CStr`] are useful when you need to transfer
+//! UTF-8 strings to and from languages with a C ABI, like Python.
+//!
+//! * **From Rust to C:** [`CString`] represents an owned, C-friendly
+//! string: it is nul-terminated, and has no internal nul characters.
+//! Rust code can create a [`CString`] out of a normal string (provided
+//! that the string doesn't have nul characters in the middle), and
+//! then use a variety of methods to obtain a raw <code>\*mut [u8]</code> that can
+//! then be passed as an argument to functions which use the C
+//! conventions for strings.
+//!
+//! * **From C to Rust:** [`CStr`] represents a borrowed C string; it
+//! is what you would use to wrap a raw <code>\*const [u8]</code> that you got from
+//! a C function. A [`CStr`] is guaranteed to be a nul-terminated array
+//! of bytes. Once you have a [`CStr`], you can convert it to a Rust
+//! <code>&[str]</code> if it's valid UTF-8, or lossily convert it by adding
+//! replacement characters.
+//!
+//! [`String`]: crate::string::String
+//! [`CStr`]: core::ffi::CStr
+
+#![unstable(feature = "alloc_ffi", issue = "94079")]
+
+#[cfg(bootstrap)]
+#[unstable(feature = "cstr_internals", issue = "none")]
+pub use self::c_str::CStrExt;
+#[unstable(feature = "alloc_c_string", issue = "94079")]
+pub use self::c_str::FromVecWithNulError;
+#[unstable(feature = "alloc_c_string", issue = "94079")]
+pub use self::c_str::{CString, IntoStringError, NulError};
+
+mod c_str;
diff --git a/rust/alloc/fmt.rs b/rust/alloc/fmt.rs
new file mode 100644
index 000000000000..73b75ea4d83d
--- /dev/null
+++ b/rust/alloc/fmt.rs
@@ -0,0 +1,612 @@
+//! Utilities for formatting and printing `String`s.
+//!
+//! This module contains the runtime support for the [`format!`] syntax extension.
+//! This macro is implemented in the compiler to emit calls to this module in
+//! order to format arguments at runtime into strings.
+//!
+//! # Usage
+//!
+//! The [`format!`] macro is intended to be familiar to those coming from C's
+//! `printf`/`fprintf` functions or Python's `str.format` function.
+//!
+//! Some examples of the [`format!`] extension are:
+//!
+//! ```
+//! format!("Hello"); // => "Hello"
+//! format!("Hello, {}!", "world"); // => "Hello, world!"
+//! format!("The number is {}", 1); // => "The number is 1"
+//! format!("{:?}", (3, 4)); // => "(3, 4)"
+//! format!("{value}", value=4); // => "4"
+//! let people = "Rustaceans";
+//! format!("Hello {people}!"); // => "Hello Rustaceans!"
+//! format!("{} {}", 1, 2); // => "1 2"
+//! format!("{:04}", 42); // => "0042" with leading zeros
+//! format!("{:#?}", (100, 200)); // => "(
+//! // 100,
+//! // 200,
+//! // )"
+//! ```
+//!
+//! From these, you can see that the first argument is a format string. It is
+//! required by the compiler for this to be a string literal; it cannot be a
+//! variable passed in (in order to perform validity checking). The compiler
+//! will then parse the format string and determine if the list of arguments
+//! provided is suitable to pass to this format string.
+//!
+//! To convert a single value to a string, use the [`to_string`] method. This
+//! will use the [`Display`] formatting trait.
+//!
+//! ## Positional parameters
+//!
+//! Each formatting argument is allowed to specify which value argument it's
+//! referencing, and if omitted it is assumed to be "the next argument". For
+//! example, the format string `{} {} {}` would take three parameters, and they
+//! would be formatted in the same order as they're given. The format string
+//! `{2} {1} {0}`, however, would format arguments in reverse order.
+//!
+//! Things can get a little tricky once you start intermingling the two types of
+//! positional specifiers. The "next argument" specifier can be thought of as an
+//! iterator over the argument. Each time a "next argument" specifier is seen,
+//! the iterator advances. This leads to behavior like this:
+//!
+//! ```
+//! format!("{1} {} {0} {}", 1, 2); // => "2 1 1 2"
+//! ```
+//!
+//! The internal iterator over the argument has not been advanced by the time
+//! the first `{}` is seen, so it prints the first argument. Then upon reaching
+//! the second `{}`, the iterator has advanced forward to the second argument.
+//! Essentially, parameters that explicitly name their argument do not affect
+//! parameters that do not name an argument in terms of positional specifiers.
+//!
+//! A format string is required to use all of its arguments, otherwise it is a
+//! compile-time error. You may refer to the same argument more than once in the
+//! format string.
+//!
+//! ## Named parameters
+//!
+//! Rust itself does not have a Python-like equivalent of named parameters to a
+//! function, but the [`format!`] macro is a syntax extension that allows it to
+//! leverage named parameters. Named parameters are listed at the end of the
+//! argument list and have the syntax:
+//!
+//! ```text
+//! identifier '=' expression
+//! ```
+//!
+//! For example, the following [`format!`] expressions all use named arguments:
+//!
+//! ```
+//! format!("{argument}", argument = "test"); // => "test"
+//! format!("{name} {}", 1, name = 2); // => "2 1"
+//! format!("{a} {c} {b}", a="a", b='b', c=3); // => "a 3 b"
+//! ```
+//!
+//! If a named parameter does not appear in the argument list, `format!` will
+//! reference a variable with that name in the current scope.
+//!
+//! ```
+//! let argument = 2 + 2;
+//! format!("{argument}"); // => "4"
+//!
+//! fn make_string(a: u32, b: &str) -> String {
+//! format!("{b} {a}")
+//! }
+//! make_string(927, "label"); // => "label 927"
+//! ```
+//!
+//! It is not valid to put positional parameters (those without names) after
+//! arguments that have names. Like with positional parameters, it is not
+//! valid to provide named parameters that are unused by the format string.
+//!
+//! # Formatting Parameters
+//!
+//! Each argument being formatted can be transformed by a number of formatting
+//! parameters (corresponding to `format_spec` in [the syntax](#syntax)). These
+//! parameters affect the string representation of what's being formatted.
+//!
+//! ## Width
+//!
+//! ```
+//! // All of these print "Hello x !"
+//! println!("Hello {:5}!", "x");
+//! println!("Hello {:1$}!", "x", 5);
+//! println!("Hello {1:0$}!", 5, "x");
+//! println!("Hello {:width$}!", "x", width = 5);
+//! let width = 5;
+//! println!("Hello {:width$}!", "x");
+//! ```
+//!
+//! This is a parameter for the "minimum width" that the format should take up.
+//! If the value's string does not fill up this many characters, then the
+//! padding specified by fill/alignment will be used to take up the required
+//! space (see below).
+//!
+//! The value for the width can also be provided as a [`usize`] in the list of
+//! parameters by adding a postfix `$`, indicating that the second argument is
+//! a [`usize`] specifying the width.
+//!
+//! Referring to an argument with the dollar syntax does not affect the "next
+//! argument" counter, so it's usually a good idea to refer to arguments by
+//! position, or use named arguments.
+//!
+//! ## Fill/Alignment
+//!
+//! ```
+//! assert_eq!(format!("Hello {:<5}!", "x"), "Hello x !");
+//! assert_eq!(format!("Hello {:-<5}!", "x"), "Hello x----!");
+//! assert_eq!(format!("Hello {:^5}!", "x"), "Hello x !");
+//! assert_eq!(format!("Hello {:>5}!", "x"), "Hello x!");
+//! ```
+//!
+//! The optional fill character and alignment is provided normally in conjunction with the
+//! [`width`](#width) parameter. It must be defined before `width`, right after the `:`.
+//! This indicates that if the value being formatted is smaller than
+//! `width` some extra characters will be printed around it.
+//! Filling comes in the following variants for different alignments:
+//!
+//! * `[fill]<` - the argument is left-aligned in `width` columns
+//! * `[fill]^` - the argument is center-aligned in `width` columns
+//! * `[fill]>` - the argument is right-aligned in `width` columns
+//!
+//! The default [fill/alignment](#fillalignment) for non-numerics is a space and
+//! left-aligned. The
+//! default for numeric formatters is also a space character but with right-alignment. If
+//! the `0` flag (see below) is specified for numerics, then the implicit fill character is
+//! `0`.
+//!
+//! Note that alignment might not be implemented by some types. In particular, it
+//! is not generally implemented for the `Debug` trait. A good way to ensure
+//! padding is applied is to format your input, then pad this resulting string
+//! to obtain your output:
+//!
+//! ```
+//! println!("Hello {:^15}!", format!("{:?}", Some("hi"))); // => "Hello Some("hi") !"
+//! ```
+//!
+//! ## Sign/`#`/`0`
+//!
+//! ```
+//! assert_eq!(format!("Hello {:+}!", 5), "Hello +5!");
+//! assert_eq!(format!("{:#x}!", 27), "0x1b!");
+//! assert_eq!(format!("Hello {:05}!", 5), "Hello 00005!");
+//! assert_eq!(format!("Hello {:05}!", -5), "Hello -0005!");
+//! assert_eq!(format!("{:#010x}!", 27), "0x0000001b!");
+//! ```
+//!
+//! These are all flags altering the behavior of the formatter.
+//!
+//! * `+` - This is intended for numeric types and indicates that the sign
+//! should always be printed. Positive signs are never printed by
+//! default, and the negative sign is only printed by default for signed values.
+//! This flag indicates that the correct sign (`+` or `-`) should always be printed.
+//! * `-` - Currently not used
+//! * `#` - This flag indicates that the "alternate" form of printing should
+//! be used. The alternate forms are:
+//! * `#?` - pretty-print the [`Debug`] formatting (adds linebreaks and indentation)
+//! * `#x` - precedes the argument with a `0x`
+//! * `#X` - precedes the argument with a `0x`
+//! * `#b` - precedes the argument with a `0b`
+//! * `#o` - precedes the argument with a `0o`
+//! * `0` - This is used to indicate for integer formats that the padding to `width` should
+//! both be done with a `0` character as well as be sign-aware. A format
+//! like `{:08}` would yield `00000001` for the integer `1`, while the
+//! same format would yield `-0000001` for the integer `-1`. Notice that
+//! the negative version has one fewer zero than the positive version.
+//! Note that padding zeros are always placed after the sign (if any)
+//! and before the digits. When used together with the `#` flag, a similar
+//! rule applies: padding zeros are inserted after the prefix but before
+//! the digits. The prefix is included in the total width.
+//!
+//! ## Precision
+//!
+//! For non-numeric types, this can be considered a "maximum width". If the resulting string is
+//! longer than this width, then it is truncated down to this many characters and that truncated
+//! value is emitted with proper `fill`, `alignment` and `width` if those parameters are set.
+//!
+//! For integral types, this is ignored.
+//!
+//! For floating-point types, this indicates how many digits after the decimal point should be
+//! printed.
+//!
+//! There are three possible ways to specify the desired `precision`:
+//!
+//! 1. An integer `.N`:
+//!
+//! the integer `N` itself is the precision.
+//!
+//! 2. An integer or name followed by dollar sign `.N$`:
+//!
+//! use format *argument* `N` (which must be a `usize`) as the precision.
+//!
+//! 3. An asterisk `.*`:
+//!
+//! `.*` means that this `{...}` is associated with *two* format inputs rather than one:
+//! - If a format string in the fashion of `{:<spec>.*}` is used, then the first input holds
+//! the `usize` precision, and the second holds the value to print.
+//! - If a format string in the fashion of `{<arg>:<spec>.*}` is used, then the `<arg>` part
+//! refers to the value to print, and the `precision` is taken like it was specified with an
+//! omitted positional parameter (`{}` instead of `{<arg>:}`).
+//!
+//! For example, the following calls all print the same thing `Hello x is 0.01000`:
+//!
+//! ```
+//! // Hello {arg 0 ("x")} is {arg 1 (0.01) with precision specified inline (5)}
+//! println!("Hello {0} is {1:.5}", "x", 0.01);
+//!
+//! // Hello {arg 1 ("x")} is {arg 2 (0.01) with precision specified in arg 0 (5)}
+//! println!("Hello {1} is {2:.0$}", 5, "x", 0.01);
+//!
+//! // Hello {arg 0 ("x")} is {arg 2 (0.01) with precision specified in arg 1 (5)}
+//! println!("Hello {0} is {2:.1$}", "x", 5, 0.01);
+//!
+//! // Hello {next arg -> arg 0 ("x")} is {second of next two args -> arg 2 (0.01) with precision
+//! // specified in first of next two args -> arg 1 (5)}
+//! println!("Hello {} is {:.*}", "x", 5, 0.01);
+//!
+//! // Hello {arg 1 ("x")} is {arg 2 (0.01) with precision
+//! // specified in next arg -> arg 0 (5)}
+//! println!("Hello {1} is {2:.*}", 5, "x", 0.01);
+//!
+//! // Hello {next arg -> arg 0 ("x")} is {arg 2 (0.01) with precision
+//! // specified in next arg -> arg 1 (5)}
+//! println!("Hello {} is {2:.*}", "x", 5, 0.01);
+//!
+//! // Hello {next arg -> arg 0 ("x")} is {arg "number" (0.01) with precision specified
+//! // in arg "prec" (5)}
+//! println!("Hello {} is {number:.prec$}", "x", prec = 5, number = 0.01);
+//! ```
+//!
+//! While these:
+//!
+//! ```
+//! println!("{}, `{name:.*}` has 3 fractional digits", "Hello", 3, name=1234.56);
+//! println!("{}, `{name:.*}` has 3 characters", "Hello", 3, name="1234.56");
+//! println!("{}, `{name:>8.*}` has 3 right-aligned characters", "Hello", 3, name="1234.56");
+//! ```
+//!
+//! print three significantly different things:
+//!
+//! ```text
+//! Hello, `1234.560` has 3 fractional digits
+//! Hello, `123` has 3 characters
+//! Hello, ` 123` has 3 right-aligned characters
+//! ```
+//!
+//! ## Localization
+//!
+//! In some programming languages, the behavior of string formatting functions
+//! depends on the operating system's locale setting. The format functions
+//! provided by Rust's standard library do not have any concept of locale and
+//! will produce the same results on all systems regardless of user
+//! configuration.
+//!
+//! For example, the following code will always print `1.5` even if the system
+//! locale uses a decimal separator other than a dot.
+//!
+//! ```
+//! println!("The value is {}", 1.5);
+//! ```
+//!
+//! # Escaping
+//!
+//! The literal characters `{` and `}` may be included in a string by preceding
+//! them with the same character. For example, the `{` character is escaped with
+//! `{{` and the `}` character is escaped with `}}`.
+//!
+//! ```
+//! assert_eq!(format!("Hello {{}}"), "Hello {}");
+//! assert_eq!(format!("{{ Hello"), "{ Hello");
+//! ```
+//!
+//! # Syntax
+//!
+//! To summarize, here you can find the full grammar of format strings.
+//! The syntax for the formatting language used is drawn from other languages,
+//! so it should not be too alien. Arguments are formatted with Python-like
+//! syntax, meaning that arguments are surrounded by `{}` instead of the C-like
+//! `%`. The actual grammar for the formatting syntax is:
+//!
+//! ```text
+//! format_string := text [ maybe_format text ] *
+//! maybe_format := '{' '{' | '}' '}' | format
+//! format := '{' [ argument ] [ ':' format_spec ] [ ws ] * '}'
+//! argument := integer | identifier
+//!
+//! format_spec := [[fill]align][sign]['#']['0'][width]['.' precision]type
+//! fill := character
+//! align := '<' | '^' | '>'
+//! sign := '+' | '-'
+//! width := count
+//! precision := count | '*'
+//! type := '' | '?' | 'x?' | 'X?' | identifier
+//! count := parameter | integer
+//! parameter := argument '$'
+//! ```
+//! In the above grammar,
+//! - `text` must not contain any `'{'` or `'}'` characters,
+//! - `ws` is any character for which [`char::is_whitespace`] returns `true`, has no semantic
+//! meaning and is completely optional,
+//! - `integer` is a decimal integer that may contain leading zeroes and
+//! - `identifier` is an `IDENTIFIER_OR_KEYWORD` (not an `IDENTIFIER`) as defined by the [Rust language reference](https://doc.rust-lang.org/reference/identifiers.html).
+//!
+//! # Formatting traits
+//!
+//! When requesting that an argument be formatted with a particular type, you
+//! are actually requesting that an argument ascribes to a particular trait.
+//! This allows multiple actual types to be formatted via `{:x}` (like [`i8`] as
+//! well as [`isize`]). The current mapping of types to traits is:
+//!
+//! * *nothing* ⇒ [`Display`]
+//! * `?` ⇒ [`Debug`]
+//! * `x?` ⇒ [`Debug`] with lower-case hexadecimal integers
+//! * `X?` ⇒ [`Debug`] with upper-case hexadecimal integers
+//! * `o` ⇒ [`Octal`]
+//! * `x` ⇒ [`LowerHex`]
+//! * `X` ⇒ [`UpperHex`]
+//! * `p` ⇒ [`Pointer`]
+//! * `b` ⇒ [`Binary`]
+//! * `e` ⇒ [`LowerExp`]
+//! * `E` ⇒ [`UpperExp`]
+//!
+//! What this means is that any type of argument which implements the
+//! [`fmt::Binary`][`Binary`] trait can then be formatted with `{:b}`. Implementations
+//! are provided for these traits for a number of primitive types by the
+//! standard library as well. If no format is specified (as in `{}` or `{:6}`),
+//! then the format trait used is the [`Display`] trait.
+//!
+//! When implementing a format trait for your own type, you will have to
+//! implement a method of the signature:
+//!
+//! ```
+//! # #![allow(dead_code)]
+//! # use std::fmt;
+//! # struct Foo; // our custom type
+//! # impl fmt::Display for Foo {
+//! fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+//! # write!(f, "testing, testing")
+//! # } }
+//! ```
+//!
+//! Your type will be passed as `self` by-reference, and then the function
+//! should emit output into the Formatter `f` which implements `fmt::Write`. It is up to each
+//! format trait implementation to correctly adhere to the requested formatting parameters.
+//! The values of these parameters can be accessed with methods of the
+//! [`Formatter`] struct. In order to help with this, the [`Formatter`] struct also
+//! provides some helper methods.
+//!
+//! Additionally, the return value of this function is [`fmt::Result`] which is a
+//! type alias of <code>[Result]<(), [std::fmt::Error]></code>. Formatting implementations
+//! should ensure that they propagate errors from the [`Formatter`] (e.g., when
+//! calling [`write!`]). However, they should never return errors spuriously. That
+//! is, a formatting implementation must and may only return an error if the
+//! passed-in [`Formatter`] returns an error. This is because, contrary to what
+//! the function signature might suggest, string formatting is an infallible
+//! operation. This function only returns a result because writing to the
+//! underlying stream might fail and it must provide a way to propagate the fact
+//! that an error has occurred back up the stack.
+//!
+//! An example of implementing the formatting traits would look
+//! like:
+//!
+//! ```
+//! use std::fmt;
+//!
+//! #[derive(Debug)]
+//! struct Vector2D {
+//! x: isize,
+//! y: isize,
+//! }
+//!
+//! impl fmt::Display for Vector2D {
+//! fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+//! // The `f` value implements the `Write` trait, which is what the
+//! // write! macro is expecting. Note that this formatting ignores the
+//! // various flags provided to format strings.
+//! write!(f, "({}, {})", self.x, self.y)
+//! }
+//! }
+//!
+//! // Different traits allow different forms of output of a type. The meaning
+//! // of this format is to print the magnitude of a vector.
+//! impl fmt::Binary for Vector2D {
+//! fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+//! let magnitude = (self.x * self.x + self.y * self.y) as f64;
+//! let magnitude = magnitude.sqrt();
+//!
+//! // Respect the formatting flags by using the helper method
+//! // `pad_integral` on the Formatter object. See the method
+//! // documentation for details, and the function `pad` can be used
+//! // to pad strings.
+//! let decimals = f.precision().unwrap_or(3);
+//! let string = format!("{:.*}", decimals, magnitude);
+//! f.pad_integral(true, "", &string)
+//! }
+//! }
+//!
+//! fn main() {
+//! let myvector = Vector2D { x: 3, y: 4 };
+//!
+//! println!("{myvector}"); // => "(3, 4)"
+//! println!("{myvector:?}"); // => "Vector2D {x: 3, y:4}"
+//! println!("{myvector:10.3b}"); // => " 5.000"
+//! }
+//! ```
+//!
+//! ### `fmt::Display` vs `fmt::Debug`
+//!
+//! These two formatting traits have distinct purposes:
+//!
+//! - [`fmt::Display`][`Display`] implementations assert that the type can be faithfully
+//! represented as a UTF-8 string at all times. It is **not** expected that
+//! all types implement the [`Display`] trait.
+//! - [`fmt::Debug`][`Debug`] implementations should be implemented for **all** public types.
+//! Output will typically represent the internal state as faithfully as possible.
+//! The purpose of the [`Debug`] trait is to facilitate debugging Rust code. In
+//! most cases, using `#[derive(Debug)]` is sufficient and recommended.
+//!
+//! Some examples of the output from both traits:
+//!
+//! ```
+//! assert_eq!(format!("{} {:?}", 3, 4), "3 4");
+//! assert_eq!(format!("{} {:?}", 'a', 'b'), "a 'b'");
+//! assert_eq!(format!("{} {:?}", "foo\n", "bar\n"), "foo\n \"bar\\n\"");
+//! ```
+//!
+//! # Related macros
+//!
+//! There are a number of related macros in the [`format!`] family. The ones that
+//! are currently implemented are:
+//!
+//! ```ignore (only-for-syntax-highlight)
+//! format! // described above
+//! write! // first argument is either a &mut io::Write or a &mut fmt::Write, the destination
+//! writeln! // same as write but appends a newline
+//! print! // the format string is printed to the standard output
+//! println! // same as print but appends a newline
+//! eprint! // the format string is printed to the standard error
+//! eprintln! // same as eprint but appends a newline
+//! format_args! // described below.
+//! ```
+//!
+//! ### `write!`
+//!
+//! [`write!`] and [`writeln!`] are two macros which are used to emit the format string
+//! to a specified stream. This is used to prevent intermediate allocations of
+//! format strings and instead directly write the output. Under the hood, this
+//! function is actually invoking the [`write_fmt`] function defined on the
+//! [`std::io::Write`] and the [`std::fmt::Write`] trait. Example usage is:
+//!
+//! ```
+//! # #![allow(unused_must_use)]
+//! use std::io::Write;
+//! let mut w = Vec::new();
+//! write!(&mut w, "Hello {}!", "world");
+//! ```
+//!
+//! ### `print!`
+//!
+//! This and [`println!`] emit their output to stdout. Similarly to the [`write!`]
+//! macro, the goal of these macros is to avoid intermediate allocations when
+//! printing output. Example usage is:
+//!
+//! ```
+//! print!("Hello {}!", "world");
+//! println!("I have a newline {}", "character at the end");
+//! ```
+//! ### `eprint!`
+//!
+//! The [`eprint!`] and [`eprintln!`] macros are identical to
+//! [`print!`] and [`println!`], respectively, except they emit their
+//! output to stderr.
+//!
+//! ### `format_args!`
+//!
+//! [`format_args!`] is a curious macro used to safely pass around
+//! an opaque object describing the format string. This object
+//! does not require any heap allocations to create, and it only
+//! references information on the stack. Under the hood, all of
+//! the related macros are implemented in terms of this. First
+//! off, some example usage is:
+//!
+//! ```
+//! # #![allow(unused_must_use)]
+//! use std::fmt;
+//! use std::io::{self, Write};
+//!
+//! let mut some_writer = io::stdout();
+//! write!(&mut some_writer, "{}", format_args!("print with a {}", "macro"));
+//!
+//! fn my_fmt_fn(args: fmt::Arguments) {
+//! write!(&mut io::stdout(), "{}", args);
+//! }
+//! my_fmt_fn(format_args!(", or a {} too", "function"));
+//! ```
+//!
+//! The result of the [`format_args!`] macro is a value of type [`fmt::Arguments`].
+//! This structure can then be passed to the [`write`] and [`format`] functions
+//! inside this module in order to process the format string.
+//! The goal of this macro is to even further prevent intermediate allocations
+//! when dealing with formatting strings.
+//!
+//! For example, a logging library could use the standard formatting syntax, but
+//! it would internally pass around this structure until it has been determined
+//! where output should go to.
+//!
+//! [`fmt::Result`]: Result "fmt::Result"
+//! [Result]: core::result::Result "std::result::Result"
+//! [std::fmt::Error]: Error "fmt::Error"
+//! [`write`]: write() "fmt::write"
+//! [`to_string`]: crate::string::ToString::to_string "ToString::to_string"
+//! [`write_fmt`]: ../../std/io/trait.Write.html#method.write_fmt
+//! [`std::io::Write`]: ../../std/io/trait.Write.html
+//! [`std::fmt::Write`]: ../../std/fmt/trait.Write.html
+//! [`print!`]: ../../std/macro.print.html "print!"
+//! [`println!`]: ../../std/macro.println.html "println!"
+//! [`eprint!`]: ../../std/macro.eprint.html "eprint!"
+//! [`eprintln!`]: ../../std/macro.eprintln.html "eprintln!"
+//! [`format_args!`]: ../../std/macro.format_args.html "format_args!"
+//! [`fmt::Arguments`]: Arguments "fmt::Arguments"
+//! [`format`]: format() "fmt::format"
+
+#![stable(feature = "rust1", since = "1.0.0")]
+
+#[unstable(feature = "fmt_internals", issue = "none")]
+pub use core::fmt::rt;
+#[stable(feature = "fmt_flags_align", since = "1.28.0")]
+pub use core::fmt::Alignment;
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::fmt::Error;
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::fmt::{write, ArgumentV1, Arguments};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::fmt::{Binary, Octal};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::fmt::{Debug, Display};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::fmt::{DebugList, DebugMap, DebugSet, DebugStruct, DebugTuple};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::fmt::{Formatter, Result, Write};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::fmt::{LowerExp, UpperExp};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::fmt::{LowerHex, Pointer, UpperHex};
+
+#[cfg(not(no_global_oom_handling))]
+use crate::string;
+
+/// The `format` function takes an [`Arguments`] struct and returns the resulting
+/// formatted string.
+///
+/// The [`Arguments`] instance can be created with the [`format_args!`] macro.
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// use std::fmt;
+///
+/// let s = fmt::format(format_args!("Hello, {}!", "world"));
+/// assert_eq!(s, "Hello, world!");
+/// ```
+///
+/// Please note that using [`format!`] might be preferable.
+/// Example:
+///
+/// ```
+/// let s = format!("Hello, {}!", "world");
+/// assert_eq!(s, "Hello, world!");
+/// ```
+///
+/// [`format_args!`]: core::format_args
+/// [`format!`]: crate::format
+#[cfg(not(no_global_oom_handling))]
+#[must_use]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub fn format(args: Arguments<'_>) -> string::String {
+ let capacity = args.estimated_capacity();
+ let mut output = string::String::with_capacity(capacity);
+ output.write_fmt(args).expect("a formatting trait implementation returned an error");
+ output
+}
diff --git a/rust/alloc/lib.rs b/rust/alloc/lib.rs
new file mode 100644
index 000000000000..fd21b3671182
--- /dev/null
+++ b/rust/alloc/lib.rs
@@ -0,0 +1,236 @@
+//! # The Rust core allocation and collections library
+//!
+//! This library provides smart pointers and collections for managing
+//! heap-allocated values.
+//!
+//! This library, like libcore, normally doesn’t need to be used directly
+//! since its contents are re-exported in the [`std` crate](../std/index.html).
+//! Crates that use the `#![no_std]` attribute however will typically
+//! not depend on `std`, so they’d use this crate instead.
+//!
+//! ## Boxed values
+//!
+//! The [`Box`] type is a smart pointer type. There can only be one owner of a
+//! [`Box`], and the owner can decide to mutate the contents, which live on the
+//! heap.
+//!
+//! This type can be sent among threads efficiently as the size of a `Box` value
+//! is the same as that of a pointer. Tree-like data structures are often built
+//! with boxes because each node often has only one owner, the parent.
+//!
+//! ## Reference counted pointers
+//!
+//! The [`Rc`] type is a non-threadsafe reference-counted pointer type intended
+//! for sharing memory within a thread. An [`Rc`] pointer wraps a type, `T`, and
+//! only allows access to `&T`, a shared reference.
+//!
+//! This type is useful when inherited mutability (such as using [`Box`]) is too
+//! constraining for an application, and is often paired with the [`Cell`] or
+//! [`RefCell`] types in order to allow mutation.
+//!
+//! ## Atomically reference counted pointers
+//!
+//! The [`Arc`] type is the threadsafe equivalent of the [`Rc`] type. It
+//! provides all the same functionality of [`Rc`], except it requires that the
+//! contained type `T` is shareable. Additionally, [`Arc<T>`][`Arc`] is itself
+//! sendable while [`Rc<T>`][`Rc`] is not.
+//!
+//! This type allows for shared access to the contained data, and is often
+//! paired with synchronization primitives such as mutexes to allow mutation of
+//! shared resources.
+//!
+//! ## Collections
+//!
+//! Implementations of the most common general purpose data structures are
+//! defined in this library. They are re-exported through the
+//! [standard collections library](../std/collections/index.html).
+//!
+//! ## Heap interfaces
+//!
+//! The [`alloc`](alloc/index.html) module defines the low-level interface to the
+//! default global allocator. It is not compatible with the libc allocator API.
+//!
+//! [`Arc`]: sync
+//! [`Box`]: boxed
+//! [`Cell`]: core::cell
+//! [`Rc`]: rc
+//! [`RefCell`]: core::cell
+
+// To run liballoc tests without x.py without ending up with two copies of liballoc, Miri needs to be
+// able to "empty" this crate. See <https://github.com/rust-lang/miri-test-libstd/issues/4>.
+// rustc itself never sets the feature, so this line has no affect there.
+#![cfg(any(not(feature = "miri-test-libstd"), test, doctest))]
+#![allow(unused_attributes)]
+#![stable(feature = "alloc", since = "1.36.0")]
+#![doc(
+ html_playground_url = "https://play.rust-lang.org/",
+ issue_tracker_base_url = "https://github.com/rust-lang/rust/issues/",
+ test(no_crate_inject, attr(allow(unused_variables), deny(warnings)))
+)]
+#![doc(cfg_hide(
+ not(test),
+ not(any(test, bootstrap)),
+ any(not(feature = "miri-test-libstd"), test, doctest),
+ no_global_oom_handling,
+ not(no_global_oom_handling),
+ target_has_atomic = "ptr"
+))]
+#![no_std]
+#![needs_allocator]
+//
+// Lints:
+#![deny(unsafe_op_in_unsafe_fn)]
+#![warn(deprecated_in_future)]
+#![warn(missing_debug_implementations)]
+#![warn(missing_docs)]
+#![allow(explicit_outlives_requirements)]
+//
+// Library features:
+#![cfg_attr(not(no_global_oom_handling), feature(alloc_c_string))]
+#![feature(alloc_layout_extra)]
+#![feature(allocator_api)]
+#![feature(array_chunks)]
+#![feature(array_methods)]
+#![feature(array_windows)]
+#![feature(assert_matches)]
+#![feature(async_iterator)]
+#![feature(coerce_unsized)]
+#![cfg_attr(not(no_global_oom_handling), feature(const_alloc_error))]
+#![feature(const_box)]
+#![cfg_attr(not(no_global_oom_handling), feature(const_btree_new))]
+#![feature(const_cow_is_borrowed)]
+#![feature(const_convert)]
+#![feature(const_size_of_val)]
+#![feature(const_align_of_val)]
+#![feature(const_ptr_read)]
+#![feature(const_maybe_uninit_write)]
+#![feature(const_maybe_uninit_as_mut_ptr)]
+#![feature(const_refs_to_cell)]
+#![feature(core_c_str)]
+#![feature(core_intrinsics)]
+#![feature(core_ffi_c)]
+#![feature(const_eval_select)]
+#![feature(const_pin)]
+#![feature(cstr_from_bytes_until_nul)]
+#![feature(dispatch_from_dyn)]
+#![feature(exact_size_is_empty)]
+#![feature(extend_one)]
+#![feature(fmt_internals)]
+#![feature(fn_traits)]
+#![feature(hasher_prefixfree_extras)]
+#![feature(inplace_iteration)]
+#![feature(iter_advance_by)]
+#![feature(layout_for_ptr)]
+#![feature(maybe_uninit_slice)]
+#![cfg_attr(test, feature(new_uninit))]
+#![feature(nonnull_slice_from_raw_parts)]
+#![feature(pattern)]
+#![feature(ptr_internals)]
+#![feature(ptr_metadata)]
+#![feature(ptr_sub_ptr)]
+#![feature(receiver_trait)]
+#![feature(set_ptr_value)]
+#![feature(slice_group_by)]
+#![feature(slice_ptr_get)]
+#![feature(slice_ptr_len)]
+#![feature(slice_range)]
+#![feature(str_internals)]
+#![feature(strict_provenance)]
+#![feature(trusted_len)]
+#![feature(trusted_random_access)]
+#![feature(try_trait_v2)]
+#![feature(unchecked_math)]
+#![feature(unicode_internals)]
+#![feature(unsize)]
+//
+// Language features:
+#![feature(allocator_internals)]
+#![feature(allow_internal_unstable)]
+#![feature(associated_type_bounds)]
+#![feature(box_syntax)]
+#![feature(cfg_sanitize)]
+#![feature(const_deref)]
+#![feature(const_mut_refs)]
+#![feature(const_ptr_write)]
+#![feature(const_precise_live_drops)]
+#![feature(const_trait_impl)]
+#![feature(const_try)]
+#![feature(dropck_eyepatch)]
+#![feature(exclusive_range_pattern)]
+#![feature(fundamental)]
+#![cfg_attr(not(test), feature(generator_trait))]
+#![feature(hashmap_internals)]
+#![feature(lang_items)]
+#![feature(let_else)]
+#![feature(min_specialization)]
+#![feature(negative_impls)]
+#![feature(never_type)]
+#![feature(nll)] // Not necessary, but here to test the `nll` feature.
+#![feature(rustc_allow_const_fn_unstable)]
+#![feature(rustc_attrs)]
+#![feature(slice_internals)]
+#![feature(staged_api)]
+#![cfg_attr(test, feature(test))]
+#![feature(unboxed_closures)]
+#![feature(unsized_fn_params)]
+#![feature(c_unwind)]
+//
+// Rustdoc features:
+#![feature(doc_cfg)]
+#![feature(doc_cfg_hide)]
+// Technically, this is a bug in rustdoc: rustdoc sees the documentation on `#[lang = slice_alloc]`
+// blocks is for `&[T]`, which also has documentation using this feature in `core`, and gets mad
+// that the feature-gate isn't enabled. Ideally, it wouldn't check for the feature gate for docs
+// from other crates, but since this can only appear for lang items, it doesn't seem worth fixing.
+#![feature(intra_doc_pointers)]
+
+// Allow testing this library
+#[cfg(test)]
+#[macro_use]
+extern crate std;
+#[cfg(test)]
+extern crate test;
+
+// Module with internal macros used by other modules (needs to be included before other modules).
+#[macro_use]
+mod macros;
+
+mod raw_vec;
+
+// Heaps provided for low-level allocation strategies
+
+pub mod alloc;
+
+// Primitive types using the heaps above
+
+// Need to conditionally define the mod from `boxed.rs` to avoid
+// duplicating the lang-items when building in test cfg; but also need
+// to allow code to have `use boxed::Box;` declarations.
+#[cfg(not(test))]
+pub mod boxed;
+#[cfg(test)]
+mod boxed {
+ pub use std::boxed::Box;
+}
+pub mod borrow;
+pub mod collections;
+#[cfg(not(no_global_oom_handling))]
+pub mod ffi;
+pub mod fmt;
+pub mod rc;
+pub mod slice;
+pub mod str;
+pub mod string;
+#[cfg(target_has_atomic = "ptr")]
+pub mod sync;
+#[cfg(all(not(no_global_oom_handling), target_has_atomic = "ptr"))]
+pub mod task;
+#[cfg(test)]
+mod tests;
+pub mod vec;
+
+#[doc(hidden)]
+#[unstable(feature = "liballoc_internals", issue = "none", reason = "implementation detail")]
+pub mod __export {
+ pub use core::format_args;
+}
diff --git a/rust/alloc/macros.rs b/rust/alloc/macros.rs
new file mode 100644
index 000000000000..093b02113c3a
--- /dev/null
+++ b/rust/alloc/macros.rs
@@ -0,0 +1,126 @@
+/// Creates a [`Vec`] containing the arguments.
+///
+/// `vec!` allows `Vec`s to be defined with the same syntax as array expressions.
+/// There are two forms of this macro:
+///
+/// - Create a [`Vec`] containing a given list of elements:
+///
+/// ```
+/// let v = vec![1, 2, 3];
+/// assert_eq!(v[0], 1);
+/// assert_eq!(v[1], 2);
+/// assert_eq!(v[2], 3);
+/// ```
+///
+/// - Create a [`Vec`] from a given element and size:
+///
+/// ```
+/// let v = vec![1; 3];
+/// assert_eq!(v, [1, 1, 1]);
+/// ```
+///
+/// Note that unlike array expressions this syntax supports all elements
+/// which implement [`Clone`] and the number of elements doesn't have to be
+/// a constant.
+///
+/// This will use `clone` to duplicate an expression, so one should be careful
+/// using this with types having a nonstandard `Clone` implementation. For
+/// example, `vec![Rc::new(1); 5]` will create a vector of five references
+/// to the same boxed integer value, not five references pointing to independently
+/// boxed integers.
+///
+/// Also, note that `vec![expr; 0]` is allowed, and produces an empty vector.
+/// This will still evaluate `expr`, however, and immediately drop the resulting value, so
+/// be mindful of side effects.
+///
+/// [`Vec`]: crate::vec::Vec
+#[cfg(all(not(no_global_oom_handling), not(test)))]
+#[macro_export]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[rustc_diagnostic_item = "vec_macro"]
+#[allow_internal_unstable(box_syntax, liballoc_internals)]
+macro_rules! vec {
+ () => (
+ $crate::__rust_force_expr!($crate::vec::Vec::new())
+ );
+ ($elem:expr; $n:expr) => (
+ $crate::__rust_force_expr!($crate::vec::from_elem($elem, $n))
+ );
+ ($($x:expr),+ $(,)?) => (
+ $crate::__rust_force_expr!(<[_]>::into_vec(box [$($x),+]))
+ );
+}
+
+// HACK(japaric): with cfg(test) the inherent `[T]::into_vec` method, which is
+// required for this macro definition, is not available. Instead use the
+// `slice::into_vec` function which is only available with cfg(test)
+// NB see the slice::hack module in slice.rs for more information
+#[cfg(all(not(no_global_oom_handling), test))]
+#[cfg_attr(not(bootstrap), allow(unused_macro_rules))]
+macro_rules! vec {
+ () => (
+ $crate::vec::Vec::new()
+ );
+ ($elem:expr; $n:expr) => (
+ $crate::vec::from_elem($elem, $n)
+ );
+ ($($x:expr),*) => (
+ $crate::slice::into_vec(box [$($x),*])
+ );
+ ($($x:expr,)*) => (vec![$($x),*])
+}
+
+/// Creates a `String` using interpolation of runtime expressions.
+///
+/// The first argument `format!` receives is a format string. This must be a string
+/// literal. The power of the formatting string is in the `{}`s contained.
+///
+/// Additional parameters passed to `format!` replace the `{}`s within the
+/// formatting string in the order given unless named or positional parameters
+/// are used; see [`std::fmt`] for more information.
+///
+/// A common use for `format!` is concatenation and interpolation of strings.
+/// The same convention is used with [`print!`] and [`write!`] macros,
+/// depending on the intended destination of the string.
+///
+/// To convert a single value to a string, use the [`to_string`] method. This
+/// will use the [`Display`] formatting trait.
+///
+/// [`std::fmt`]: ../std/fmt/index.html
+/// [`print!`]: ../std/macro.print.html
+/// [`write!`]: core::write
+/// [`to_string`]: crate::string::ToString
+/// [`Display`]: core::fmt::Display
+///
+/// # Panics
+///
+/// `format!` panics if a formatting trait implementation returns an error.
+/// This indicates an incorrect implementation
+/// since `fmt::Write for String` never returns an error itself.
+///
+/// # Examples
+///
+/// ```
+/// format!("test");
+/// format!("hello {}", "world!");
+/// format!("x = {}, y = {y}", 10, y = 30);
+/// ```
+#[macro_export]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[cfg_attr(not(test), rustc_diagnostic_item = "format_macro")]
+macro_rules! format {
+ ($($arg:tt)*) => {{
+ let res = $crate::fmt::format($crate::__export::format_args!($($arg)*));
+ res
+ }}
+}
+
+/// Force AST node to an expression to improve diagnostics in pattern position.
+#[doc(hidden)]
+#[macro_export]
+#[unstable(feature = "liballoc_internals", issue = "none", reason = "implementation detail")]
+macro_rules! __rust_force_expr {
+ ($e:expr) => {
+ $e
+ };
+}
diff --git a/rust/alloc/raw_vec.rs b/rust/alloc/raw_vec.rs
new file mode 100644
index 000000000000..4be5f6cf9ca5
--- /dev/null
+++ b/rust/alloc/raw_vec.rs
@@ -0,0 +1,518 @@
+#![unstable(feature = "raw_vec_internals", reason = "unstable const warnings", issue = "none")]
+
+use core::alloc::LayoutError;
+use core::cmp;
+use core::intrinsics;
+use core::mem::{self, ManuallyDrop, MaybeUninit};
+use core::ops::Drop;
+use core::ptr::{self, NonNull, Unique};
+use core::slice;
+
+#[cfg(not(no_global_oom_handling))]
+use crate::alloc::handle_alloc_error;
+use crate::alloc::{Allocator, Global, Layout};
+use crate::boxed::Box;
+use crate::collections::TryReserveError;
+use crate::collections::TryReserveErrorKind::*;
+
+#[cfg(test)]
+mod tests;
+
+#[cfg(not(no_global_oom_handling))]
+enum AllocInit {
+ /// The contents of the new memory are uninitialized.
+ Uninitialized,
+ /// The new memory is guaranteed to be zeroed.
+ Zeroed,
+}
+
+/// A low-level utility for more ergonomically allocating, reallocating, and deallocating
+/// a buffer of memory on the heap without having to worry about all the corner cases
+/// involved. This type is excellent for building your own data structures like Vec and VecDeque.
+/// In particular:
+///
+/// * Produces `Unique::dangling()` on zero-sized types.
+/// * Produces `Unique::dangling()` on zero-length allocations.
+/// * Avoids freeing `Unique::dangling()`.
+/// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics).
+/// * Guards against 32-bit systems allocating more than isize::MAX bytes.
+/// * Guards against overflowing your length.
+/// * Calls `handle_alloc_error` for fallible allocations.
+/// * Contains a `ptr::Unique` and thus endows the user with all related benefits.
+/// * Uses the excess returned from the allocator to use the largest available capacity.
+///
+/// This type does not in anyway inspect the memory that it manages. When dropped it *will*
+/// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec`
+/// to handle the actual things *stored* inside of a `RawVec`.
+///
+/// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns
+/// `usize::MAX`. This means that you need to be careful when round-tripping this type with a
+/// `Box<[T]>`, since `capacity()` won't yield the length.
+#[allow(missing_debug_implementations)]
+pub(crate) struct RawVec<T, A: Allocator = Global> {
+ ptr: Unique<T>,
+ cap: usize,
+ alloc: A,
+}
+
+impl<T> RawVec<T, Global> {
+ /// HACK(Centril): This exists because stable `const fn` can only call stable `const fn`, so
+ /// they cannot call `Self::new()`.
+ ///
+ /// If you change `RawVec<T>::new` or dependencies, please take care to not introduce anything
+ /// that would truly const-call something unstable.
+ pub const NEW: Self = Self::new();
+
+ /// Creates the biggest possible `RawVec` (on the system heap)
+ /// without allocating. If `T` has positive size, then this makes a
+ /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a
+ /// `RawVec` with capacity `usize::MAX`. Useful for implementing
+ /// delayed allocation.
+ #[must_use]
+ pub const fn new() -> Self {
+ Self::new_in(Global)
+ }
+
+ /// Creates a `RawVec` (on the system heap) with exactly the
+ /// capacity and alignment requirements for a `[T; capacity]`. This is
+ /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is
+ /// zero-sized. Note that if `T` is zero-sized this means you will
+ /// *not* get a `RawVec` with the requested capacity.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the requested capacity exceeds `isize::MAX` bytes.
+ ///
+ /// # Aborts
+ ///
+ /// Aborts on OOM.
+ #[cfg(not(any(no_global_oom_handling, test)))]
+ #[must_use]
+ #[inline]
+ pub fn with_capacity(capacity: usize) -> Self {
+ Self::with_capacity_in(capacity, Global)
+ }
+
+ /// Like `with_capacity`, but guarantees the buffer is zeroed.
+ #[cfg(not(any(no_global_oom_handling, test)))]
+ #[must_use]
+ #[inline]
+ pub fn with_capacity_zeroed(capacity: usize) -> Self {
+ Self::with_capacity_zeroed_in(capacity, Global)
+ }
+}
+
+impl<T, A: Allocator> RawVec<T, A> {
+ // Tiny Vecs are dumb. Skip to:
+ // - 8 if the element size is 1, because any heap allocators is likely
+ // to round up a request of less than 8 bytes to at least 8 bytes.
+ // - 4 if elements are moderate-sized (<= 1 KiB).
+ // - 1 otherwise, to avoid wasting too much space for very short Vecs.
+ pub(crate) const MIN_NON_ZERO_CAP: usize = if mem::size_of::<T>() == 1 {
+ 8
+ } else if mem::size_of::<T>() <= 1024 {
+ 4
+ } else {
+ 1
+ };
+
+ /// Like `new`, but parameterized over the choice of allocator for
+ /// the returned `RawVec`.
+ pub const fn new_in(alloc: A) -> Self {
+ // `cap: 0` means "unallocated". zero-sized types are ignored.
+ Self { ptr: Unique::dangling(), cap: 0, alloc }
+ }
+
+ /// Like `with_capacity`, but parameterized over the choice of
+ /// allocator for the returned `RawVec`.
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
+ Self::allocate_in(capacity, AllocInit::Uninitialized, alloc)
+ }
+
+ /// Like `with_capacity_zeroed`, but parameterized over the choice
+ /// of allocator for the returned `RawVec`.
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ pub fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self {
+ Self::allocate_in(capacity, AllocInit::Zeroed, alloc)
+ }
+
+ /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`.
+ ///
+ /// Note that this will correctly reconstitute any `cap` changes
+ /// that may have been performed. (See description of type for details.)
+ ///
+ /// # Safety
+ ///
+ /// * `len` must be greater than or equal to the most recently requested capacity, and
+ /// * `len` must be less than or equal to `self.capacity()`.
+ ///
+ /// Note, that the requested capacity and `self.capacity()` could differ, as
+ /// an allocator could overallocate and return a greater memory block than requested.
+ pub unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> {
+ // Sanity-check one half of the safety requirement (we cannot check the other half).
+ debug_assert!(
+ len <= self.capacity(),
+ "`len` must be smaller than or equal to `self.capacity()`"
+ );
+
+ let me = ManuallyDrop::new(self);
+ unsafe {
+ let slice = slice::from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len);
+ Box::from_raw_in(slice, ptr::read(&me.alloc))
+ }
+ }
+
+ #[cfg(not(no_global_oom_handling))]
+ fn allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self {
+ // Don't allocate here because `Drop` will not deallocate when `capacity` is 0.
+ if mem::size_of::<T>() == 0 || capacity == 0 {
+ Self::new_in(alloc)
+ } else {
+ // We avoid `unwrap_or_else` here because it bloats the amount of
+ // LLVM IR generated.
+ let layout = match Layout::array::<T>(capacity) {
+ Ok(layout) => layout,
+ Err(_) => capacity_overflow(),
+ };
+ match alloc_guard(layout.size()) {
+ Ok(_) => {}
+ Err(_) => capacity_overflow(),
+ }
+ let result = match init {
+ AllocInit::Uninitialized => alloc.allocate(layout),
+ AllocInit::Zeroed => alloc.allocate_zeroed(layout),
+ };
+ let ptr = match result {
+ Ok(ptr) => ptr,
+ Err(_) => handle_alloc_error(layout),
+ };
+
+ // Allocators currently return a `NonNull<[u8]>` whose length
+ // matches the size requested. If that ever changes, the capacity
+ // here should change to `ptr.len() / mem::size_of::<T>()`.
+ Self {
+ ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) },
+ cap: capacity,
+ alloc,
+ }
+ }
+ }
+
+ /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator.
+ ///
+ /// # Safety
+ ///
+ /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given
+ /// `capacity`.
+ /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
+ /// systems). ZST vectors may have a capacity up to `usize::MAX`.
+ /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is
+ /// guaranteed.
+ #[inline]
+ pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self {
+ Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap: capacity, alloc }
+ }
+
+ /// Gets a raw pointer to the start of the allocation. Note that this is
+ /// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must
+ /// be careful.
+ #[inline]
+ pub fn ptr(&self) -> *mut T {
+ self.ptr.as_ptr()
+ }
+
+ /// Gets the capacity of the allocation.
+ ///
+ /// This will always be `usize::MAX` if `T` is zero-sized.
+ #[inline(always)]
+ pub fn capacity(&self) -> usize {
+ if mem::size_of::<T>() == 0 { usize::MAX } else { self.cap }
+ }
+
+ /// Returns a shared reference to the allocator backing this `RawVec`.
+ pub fn allocator(&self) -> &A {
+ &self.alloc
+ }
+
+ fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> {
+ if mem::size_of::<T>() == 0 || self.cap == 0 {
+ None
+ } else {
+ // We have an allocated chunk of memory, so we can bypass runtime
+ // checks to get our current layout.
+ unsafe {
+ let layout = Layout::array::<T>(self.cap).unwrap_unchecked();
+ Some((self.ptr.cast().into(), layout))
+ }
+ }
+ }
+
+ /// Ensures that the buffer contains at least enough space to hold `len +
+ /// additional` elements. If it doesn't already have enough capacity, will
+ /// reallocate enough space plus comfortable slack space to get amortized
+ /// *O*(1) behavior. Will limit this behavior if it would needlessly cause
+ /// itself to panic.
+ ///
+ /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
+ /// the requested space. This is not really unsafe, but the unsafe
+ /// code *you* write that relies on the behavior of this function may break.
+ ///
+ /// This is ideal for implementing a bulk-push operation like `extend`.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity exceeds `isize::MAX` bytes.
+ ///
+ /// # Aborts
+ ///
+ /// Aborts on OOM.
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ pub fn reserve(&mut self, len: usize, additional: usize) {
+ // Callers expect this function to be very cheap when there is already sufficient capacity.
+ // Therefore, we move all the resizing and error-handling logic from grow_amortized and
+ // handle_reserve behind a call, while making sure that this function is likely to be
+ // inlined as just a comparison and a call if the comparison fails.
+ #[cold]
+ fn do_reserve_and_handle<T, A: Allocator>(
+ slf: &mut RawVec<T, A>,
+ len: usize,
+ additional: usize,
+ ) {
+ handle_reserve(slf.grow_amortized(len, additional));
+ }
+
+ if self.needs_to_grow(len, additional) {
+ do_reserve_and_handle(self, len, additional);
+ }
+ }
+
+ /// A specialized version of `reserve()` used only by the hot and
+ /// oft-instantiated `Vec::push()`, which does its own capacity check.
+ #[cfg(not(no_global_oom_handling))]
+ #[inline(never)]
+ pub fn reserve_for_push(&mut self, len: usize) {
+ handle_reserve(self.grow_amortized(len, 1));
+ }
+
+ /// The same as `reserve`, but returns on errors instead of panicking or aborting.
+ pub fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
+ if self.needs_to_grow(len, additional) {
+ self.grow_amortized(len, additional)
+ } else {
+ Ok(())
+ }
+ }
+
+ /// Ensures that the buffer contains at least enough space to hold `len +
+ /// additional` elements. If it doesn't already, will reallocate the
+ /// minimum possible amount of memory necessary. Generally this will be
+ /// exactly the amount of memory necessary, but in principle the allocator
+ /// is free to give back more than we asked for.
+ ///
+ /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
+ /// the requested space. This is not really unsafe, but the unsafe code
+ /// *you* write that relies on the behavior of this function may break.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity exceeds `isize::MAX` bytes.
+ ///
+ /// # Aborts
+ ///
+ /// Aborts on OOM.
+ #[cfg(not(no_global_oom_handling))]
+ pub fn reserve_exact(&mut self, len: usize, additional: usize) {
+ handle_reserve(self.try_reserve_exact(len, additional));
+ }
+
+ /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting.
+ pub fn try_reserve_exact(
+ &mut self,
+ len: usize,
+ additional: usize,
+ ) -> Result<(), TryReserveError> {
+ if self.needs_to_grow(len, additional) { self.grow_exact(len, additional) } else { Ok(()) }
+ }
+
+ /// Shrinks the buffer down to the specified capacity. If the given amount
+ /// is 0, actually completely deallocates.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the given amount is *larger* than the current capacity.
+ ///
+ /// # Aborts
+ ///
+ /// Aborts on OOM.
+ #[cfg(not(no_global_oom_handling))]
+ pub fn shrink_to_fit(&mut self, cap: usize) {
+ handle_reserve(self.shrink(cap));
+ }
+}
+
+impl<T, A: Allocator> RawVec<T, A> {
+ /// Returns if the buffer needs to grow to fulfill the needed extra capacity.
+ /// Mainly used to make inlining reserve-calls possible without inlining `grow`.
+ fn needs_to_grow(&self, len: usize, additional: usize) -> bool {
+ additional > self.capacity().wrapping_sub(len)
+ }
+
+ fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) {
+ // Allocators currently return a `NonNull<[u8]>` whose length matches
+ // the size requested. If that ever changes, the capacity here should
+ // change to `ptr.len() / mem::size_of::<T>()`.
+ self.ptr = unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) };
+ self.cap = cap;
+ }
+
+ // This method is usually instantiated many times. So we want it to be as
+ // small as possible, to improve compile times. But we also want as much of
+ // its contents to be statically computable as possible, to make the
+ // generated code run faster. Therefore, this method is carefully written
+ // so that all of the code that depends on `T` is within it, while as much
+ // of the code that doesn't depend on `T` as possible is in functions that
+ // are non-generic over `T`.
+ fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
+ // This is ensured by the calling contexts.
+ debug_assert!(additional > 0);
+
+ if mem::size_of::<T>() == 0 {
+ // Since we return a capacity of `usize::MAX` when `elem_size` is
+ // 0, getting to here necessarily means the `RawVec` is overfull.
+ return Err(CapacityOverflow.into());
+ }
+
+ // Nothing we can really do about these checks, sadly.
+ let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
+
+ // This guarantees exponential growth. The doubling cannot overflow
+ // because `cap <= isize::MAX` and the type of `cap` is `usize`.
+ let cap = cmp::max(self.cap * 2, required_cap);
+ let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap);
+
+ let new_layout = Layout::array::<T>(cap);
+
+ // `finish_grow` is non-generic over `T`.
+ let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
+ self.set_ptr_and_cap(ptr, cap);
+ Ok(())
+ }
+
+ // The constraints on this method are much the same as those on
+ // `grow_amortized`, but this method is usually instantiated less often so
+ // it's less critical.
+ fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
+ if mem::size_of::<T>() == 0 {
+ // Since we return a capacity of `usize::MAX` when the type size is
+ // 0, getting to here necessarily means the `RawVec` is overfull.
+ return Err(CapacityOverflow.into());
+ }
+
+ let cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
+ let new_layout = Layout::array::<T>(cap);
+
+ // `finish_grow` is non-generic over `T`.
+ let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
+ self.set_ptr_and_cap(ptr, cap);
+ Ok(())
+ }
+
+ fn shrink(&mut self, cap: usize) -> Result<(), TryReserveError> {
+ assert!(cap <= self.capacity(), "Tried to shrink to a larger capacity");
+
+ let (ptr, layout) = if let Some(mem) = self.current_memory() { mem } else { return Ok(()) };
+
+ let ptr = unsafe {
+ // `Layout::array` cannot overflow here because it would have
+ // overflowed earlier when capacity was larger.
+ let new_layout = Layout::array::<T>(cap).unwrap_unchecked();
+ self.alloc
+ .shrink(ptr, layout, new_layout)
+ .map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })?
+ };
+ self.set_ptr_and_cap(ptr, cap);
+ Ok(())
+ }
+}
+
+// This function is outside `RawVec` to minimize compile times. See the comment
+// above `RawVec::grow_amortized` for details. (The `A` parameter isn't
+// significant, because the number of different `A` types seen in practice is
+// much smaller than the number of `T` types.)
+#[inline(never)]
+fn finish_grow<A>(
+ new_layout: Result<Layout, LayoutError>,
+ current_memory: Option<(NonNull<u8>, Layout)>,
+ alloc: &mut A,
+) -> Result<NonNull<[u8]>, TryReserveError>
+where
+ A: Allocator,
+{
+ // Check for the error here to minimize the size of `RawVec::grow_*`.
+ let new_layout = new_layout.map_err(|_| CapacityOverflow)?;
+
+ alloc_guard(new_layout.size())?;
+
+ let memory = if let Some((ptr, old_layout)) = current_memory {
+ debug_assert_eq!(old_layout.align(), new_layout.align());
+ unsafe {
+ // The allocator checks for alignment equality
+ intrinsics::assume(old_layout.align() == new_layout.align());
+ alloc.grow(ptr, old_layout, new_layout)
+ }
+ } else {
+ alloc.allocate(new_layout)
+ };
+
+ memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () }.into())
+}
+
+unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawVec<T, A> {
+ /// Frees the memory owned by the `RawVec` *without* trying to drop its contents.
+ fn drop(&mut self) {
+ if let Some((ptr, layout)) = self.current_memory() {
+ unsafe { self.alloc.deallocate(ptr, layout) }
+ }
+ }
+}
+
+// Central function for reserve error handling.
+#[cfg(not(no_global_oom_handling))]
+#[inline]
+fn handle_reserve(result: Result<(), TryReserveError>) {
+ match result.map_err(|e| e.kind()) {
+ Err(CapacityOverflow) => capacity_overflow(),
+ Err(AllocError { layout, .. }) => handle_alloc_error(layout),
+ Ok(()) => { /* yay */ }
+ }
+}
+
+// We need to guarantee the following:
+// * We don't ever allocate `> isize::MAX` byte-size objects.
+// * We don't overflow `usize::MAX` and actually allocate too little.
+//
+// On 64-bit we just need to check for overflow since trying to allocate
+// `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add
+// an extra guard for this in case we're running on a platform which can use
+// all 4GB in user-space, e.g., PAE or x32.
+
+#[inline]
+fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> {
+ if usize::BITS < 64 && alloc_size > isize::MAX as usize {
+ Err(CapacityOverflow.into())
+ } else {
+ Ok(())
+ }
+}
+
+// One central function responsible for reporting capacity overflows. This'll
+// ensure that the code generation related to these panics is minimal as there's
+// only one location which panics rather than a bunch throughout the module.
+#[cfg(not(no_global_oom_handling))]
+fn capacity_overflow() -> ! {
+ panic!("capacity overflow");
+}
diff --git a/rust/alloc/slice.rs b/rust/alloc/slice.rs
new file mode 100644
index 000000000000..199b3c9d0290
--- /dev/null
+++ b/rust/alloc/slice.rs
@@ -0,0 +1,1202 @@
+//! A dynamically-sized view into a contiguous sequence, `[T]`.
+//!
+//! *[See also the slice primitive type](slice).*
+//!
+//! Slices are a view into a block of memory represented as a pointer and a
+//! length.
+//!
+//! ```
+//! // slicing a Vec
+//! let vec = vec![1, 2, 3];
+//! let int_slice = &vec[..];
+//! // coercing an array to a slice
+//! let str_slice: &[&str] = &["one", "two", "three"];
+//! ```
+//!
+//! Slices are either mutable or shared. The shared slice type is `&[T]`,
+//! while the mutable slice type is `&mut [T]`, where `T` represents the element
+//! type. For example, you can mutate the block of memory that a mutable slice
+//! points to:
+//!
+//! ```
+//! let x = &mut [1, 2, 3];
+//! x[1] = 7;
+//! assert_eq!(x, &[1, 7, 3]);
+//! ```
+//!
+//! Here are some of the things this module contains:
+//!
+//! ## Structs
+//!
+//! There are several structs that are useful for slices, such as [`Iter`], which
+//! represents iteration over a slice.
+//!
+//! ## Trait Implementations
+//!
+//! There are several implementations of common traits for slices. Some examples
+//! include:
+//!
+//! * [`Clone`]
+//! * [`Eq`], [`Ord`] - for slices whose element type are [`Eq`] or [`Ord`].
+//! * [`Hash`] - for slices whose element type is [`Hash`].
+//!
+//! ## Iteration
+//!
+//! The slices implement `IntoIterator`. The iterator yields references to the
+//! slice elements.
+//!
+//! ```
+//! let numbers = &[0, 1, 2];
+//! for n in numbers {
+//! println!("{n} is a number!");
+//! }
+//! ```
+//!
+//! The mutable slice yields mutable references to the elements:
+//!
+//! ```
+//! let mut scores = [7, 8, 9];
+//! for score in &mut scores[..] {
+//! *score += 1;
+//! }
+//! ```
+//!
+//! This iterator yields mutable references to the slice's elements, so while
+//! the element type of the slice is `i32`, the element type of the iterator is
+//! `&mut i32`.
+//!
+//! * [`.iter`] and [`.iter_mut`] are the explicit methods to return the default
+//! iterators.
+//! * Further methods that return iterators are [`.split`], [`.splitn`],
+//! [`.chunks`], [`.windows`] and more.
+//!
+//! [`Hash`]: core::hash::Hash
+//! [`.iter`]: slice::iter
+//! [`.iter_mut`]: slice::iter_mut
+//! [`.split`]: slice::split
+//! [`.splitn`]: slice::splitn
+//! [`.chunks`]: slice::chunks
+//! [`.windows`]: slice::windows
+#![stable(feature = "rust1", since = "1.0.0")]
+// Many of the usings in this module are only used in the test configuration.
+// It's cleaner to just turn off the unused_imports warning than to fix them.
+#![cfg_attr(test, allow(unused_imports, dead_code))]
+
+use core::borrow::{Borrow, BorrowMut};
+#[cfg(not(no_global_oom_handling))]
+use core::cmp::Ordering::{self, Less};
+#[cfg(not(no_global_oom_handling))]
+use core::mem;
+#[cfg(not(no_global_oom_handling))]
+use core::mem::size_of;
+#[cfg(not(no_global_oom_handling))]
+use core::ptr;
+
+use crate::alloc::Allocator;
+#[cfg(not(no_global_oom_handling))]
+use crate::alloc::Global;
+#[cfg(not(no_global_oom_handling))]
+use crate::borrow::ToOwned;
+use crate::boxed::Box;
+use crate::vec::Vec;
+
+#[unstable(feature = "slice_range", issue = "76393")]
+pub use core::slice::range;
+#[unstable(feature = "array_chunks", issue = "74985")]
+pub use core::slice::ArrayChunks;
+#[unstable(feature = "array_chunks", issue = "74985")]
+pub use core::slice::ArrayChunksMut;
+#[unstable(feature = "array_windows", issue = "75027")]
+pub use core::slice::ArrayWindows;
+#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
+pub use core::slice::EscapeAscii;
+#[stable(feature = "slice_get_slice", since = "1.28.0")]
+pub use core::slice::SliceIndex;
+#[stable(feature = "from_ref", since = "1.28.0")]
+pub use core::slice::{from_mut, from_ref};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::slice::{from_raw_parts, from_raw_parts_mut};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::slice::{Chunks, Windows};
+#[stable(feature = "chunks_exact", since = "1.31.0")]
+pub use core::slice::{ChunksExact, ChunksExactMut};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::slice::{ChunksMut, Split, SplitMut};
+#[unstable(feature = "slice_group_by", issue = "80552")]
+pub use core::slice::{GroupBy, GroupByMut};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::slice::{Iter, IterMut};
+#[stable(feature = "rchunks", since = "1.31.0")]
+pub use core::slice::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
+#[stable(feature = "slice_rsplit", since = "1.27.0")]
+pub use core::slice::{RSplit, RSplitMut};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::slice::{RSplitN, RSplitNMut, SplitN, SplitNMut};
+#[stable(feature = "split_inclusive", since = "1.51.0")]
+pub use core::slice::{SplitInclusive, SplitInclusiveMut};
+
+////////////////////////////////////////////////////////////////////////////////
+// Basic slice extension methods
+////////////////////////////////////////////////////////////////////////////////
+
+// HACK(japaric) needed for the implementation of `vec!` macro during testing
+// N.B., see the `hack` module in this file for more details.
+#[cfg(test)]
+pub use hack::into_vec;
+
+// HACK(japaric) needed for the implementation of `Vec::clone` during testing
+// N.B., see the `hack` module in this file for more details.
+#[cfg(test)]
+pub use hack::to_vec;
+
+// HACK(japaric): With cfg(test) `impl [T]` is not available, these three
+// functions are actually methods that are in `impl [T]` but not in
+// `core::slice::SliceExt` - we need to supply these functions for the
+// `test_permutations` test
+pub(crate) mod hack {
+ use core::alloc::Allocator;
+
+ use crate::boxed::Box;
+ use crate::vec::Vec;
+
+ // We shouldn't add inline attribute to this since this is used in
+ // `vec!` macro mostly and causes perf regression. See #71204 for
+ // discussion and perf results.
+ pub fn into_vec<T, A: Allocator>(b: Box<[T], A>) -> Vec<T, A> {
+ unsafe {
+ let len = b.len();
+ let (b, alloc) = Box::into_raw_with_allocator(b);
+ Vec::from_raw_parts_in(b as *mut T, len, len, alloc)
+ }
+ }
+
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ pub fn to_vec<T: ConvertVec, A: Allocator>(s: &[T], alloc: A) -> Vec<T, A> {
+ T::to_vec(s, alloc)
+ }
+
+ #[cfg(not(no_global_oom_handling))]
+ pub trait ConvertVec {
+ fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A>
+ where
+ Self: Sized;
+ }
+
+ #[cfg(not(no_global_oom_handling))]
+ impl<T: Clone> ConvertVec for T {
+ #[inline]
+ default fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
+ struct DropGuard<'a, T, A: Allocator> {
+ vec: &'a mut Vec<T, A>,
+ num_init: usize,
+ }
+ impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> {
+ #[inline]
+ fn drop(&mut self) {
+ // SAFETY:
+ // items were marked initialized in the loop below
+ unsafe {
+ self.vec.set_len(self.num_init);
+ }
+ }
+ }
+ let mut vec = Vec::with_capacity_in(s.len(), alloc);
+ let mut guard = DropGuard { vec: &mut vec, num_init: 0 };
+ let slots = guard.vec.spare_capacity_mut();
+ // .take(slots.len()) is necessary for LLVM to remove bounds checks
+ // and has better codegen than zip.
+ for (i, b) in s.iter().enumerate().take(slots.len()) {
+ guard.num_init = i;
+ slots[i].write(b.clone());
+ }
+ core::mem::forget(guard);
+ // SAFETY:
+ // the vec was allocated and initialized above to at least this length.
+ unsafe {
+ vec.set_len(s.len());
+ }
+ vec
+ }
+ }
+
+ #[cfg(not(no_global_oom_handling))]
+ impl<T: Copy> ConvertVec for T {
+ #[inline]
+ fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
+ let mut v = Vec::with_capacity_in(s.len(), alloc);
+ // SAFETY:
+ // allocated above with the capacity of `s`, and initialize to `s.len()` in
+ // ptr::copy_to_non_overlapping below.
+ unsafe {
+ s.as_ptr().copy_to_nonoverlapping(v.as_mut_ptr(), s.len());
+ v.set_len(s.len());
+ }
+ v
+ }
+ }
+}
+
+#[cfg(not(test))]
+impl<T> [T] {
+ /// Sorts the slice.
+ ///
+ /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case.
+ ///
+ /// When applicable, unstable sorting is preferred because it is generally faster than stable
+ /// sorting and it doesn't allocate auxiliary memory.
+ /// See [`sort_unstable`](slice::sort_unstable).
+ ///
+ /// # Current implementation
+ ///
+ /// The current algorithm is an adaptive, iterative merge sort inspired by
+ /// [timsort](https://en.wikipedia.org/wiki/Timsort).
+ /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
+ /// two or more sorted sequences concatenated one after another.
+ ///
+ /// Also, it allocates temporary storage half the size of `self`, but for short slices a
+ /// non-allocating insertion sort is used instead.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = [-5, 4, 1, -3, 2];
+ ///
+ /// v.sort();
+ /// assert!(v == [-5, -3, 1, 2, 4]);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn sort(&mut self)
+ where
+ T: Ord,
+ {
+ merge_sort(self, |a, b| a.lt(b));
+ }
+
+ /// Sorts the slice with a comparator function.
+ ///
+ /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case.
+ ///
+ /// The comparator function must define a total ordering for the elements in the slice. If
+ /// the ordering is not total, the order of the elements is unspecified. An order is a
+ /// total order if it is (for all `a`, `b` and `c`):
+ ///
+ /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and
+ /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`.
+ ///
+ /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use
+ /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`.
+ ///
+ /// ```
+ /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
+ /// floats.sort_by(|a, b| a.partial_cmp(b).unwrap());
+ /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
+ /// ```
+ ///
+ /// When applicable, unstable sorting is preferred because it is generally faster than stable
+ /// sorting and it doesn't allocate auxiliary memory.
+ /// See [`sort_unstable_by`](slice::sort_unstable_by).
+ ///
+ /// # Current implementation
+ ///
+ /// The current algorithm is an adaptive, iterative merge sort inspired by
+ /// [timsort](https://en.wikipedia.org/wiki/Timsort).
+ /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
+ /// two or more sorted sequences concatenated one after another.
+ ///
+ /// Also, it allocates temporary storage half the size of `self`, but for short slices a
+ /// non-allocating insertion sort is used instead.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = [5, 4, 1, 3, 2];
+ /// v.sort_by(|a, b| a.cmp(b));
+ /// assert!(v == [1, 2, 3, 4, 5]);
+ ///
+ /// // reverse sorting
+ /// v.sort_by(|a, b| b.cmp(a));
+ /// assert!(v == [5, 4, 3, 2, 1]);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn sort_by<F>(&mut self, mut compare: F)
+ where
+ F: FnMut(&T, &T) -> Ordering,
+ {
+ merge_sort(self, |a, b| compare(a, b) == Less);
+ }
+
+ /// Sorts the slice with a key extraction function.
+ ///
+ /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*))
+ /// worst-case, where the key function is *O*(*m*).
+ ///
+ /// For expensive key functions (e.g. functions that are not simple property accesses or
+ /// basic operations), [`sort_by_cached_key`](slice::sort_by_cached_key) is likely to be
+ /// significantly faster, as it does not recompute element keys.
+ ///
+ /// When applicable, unstable sorting is preferred because it is generally faster than stable
+ /// sorting and it doesn't allocate auxiliary memory.
+ /// See [`sort_unstable_by_key`](slice::sort_unstable_by_key).
+ ///
+ /// # Current implementation
+ ///
+ /// The current algorithm is an adaptive, iterative merge sort inspired by
+ /// [timsort](https://en.wikipedia.org/wiki/Timsort).
+ /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
+ /// two or more sorted sequences concatenated one after another.
+ ///
+ /// Also, it allocates temporary storage half the size of `self`, but for short slices a
+ /// non-allocating insertion sort is used instead.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = [-5i32, 4, 1, -3, 2];
+ ///
+ /// v.sort_by_key(|k| k.abs());
+ /// assert!(v == [1, 2, -3, 4, -5]);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[stable(feature = "slice_sort_by_key", since = "1.7.0")]
+ #[inline]
+ pub fn sort_by_key<K, F>(&mut self, mut f: F)
+ where
+ F: FnMut(&T) -> K,
+ K: Ord,
+ {
+ merge_sort(self, |a, b| f(a).lt(&f(b)));
+ }
+
+ /// Sorts the slice with a key extraction function.
+ ///
+ /// During sorting, the key function is called at most once per element, by using
+ /// temporary storage to remember the results of key evaluation.
+ /// The order of calls to the key function is unspecified and may change in future versions
+ /// of the standard library.
+ ///
+ /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \* log(*n*))
+ /// worst-case, where the key function is *O*(*m*).
+ ///
+ /// For simple key functions (e.g., functions that are property accesses or
+ /// basic operations), [`sort_by_key`](slice::sort_by_key) is likely to be
+ /// faster.
+ ///
+ /// # Current implementation
+ ///
+ /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
+ /// which combines the fast average case of randomized quicksort with the fast worst case of
+ /// heapsort, while achieving linear time on slices with certain patterns. It uses some
+ /// randomization to avoid degenerate cases, but with a fixed seed to always provide
+ /// deterministic behavior.
+ ///
+ /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the
+ /// length of the slice.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = [-5i32, 4, 32, -3, 2];
+ ///
+ /// v.sort_by_cached_key(|k| k.to_string());
+ /// assert!(v == [-3, -5, 2, 32, 4]);
+ /// ```
+ ///
+ /// [pdqsort]: https://github.com/orlp/pdqsort
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[stable(feature = "slice_sort_by_cached_key", since = "1.34.0")]
+ #[inline]
+ pub fn sort_by_cached_key<K, F>(&mut self, f: F)
+ where
+ F: FnMut(&T) -> K,
+ K: Ord,
+ {
+ // Helper macro for indexing our vector by the smallest possible type, to reduce allocation.
+ macro_rules! sort_by_key {
+ ($t:ty, $slice:ident, $f:ident) => {{
+ let mut indices: Vec<_> =
+ $slice.iter().map($f).enumerate().map(|(i, k)| (k, i as $t)).collect();
+ // The elements of `indices` are unique, as they are indexed, so any sort will be
+ // stable with respect to the original slice. We use `sort_unstable` here because
+ // it requires less memory allocation.
+ indices.sort_unstable();
+ for i in 0..$slice.len() {
+ let mut index = indices[i].1;
+ while (index as usize) < i {
+ index = indices[index as usize].1;
+ }
+ indices[i].1 = index;
+ $slice.swap(i, index as usize);
+ }
+ }};
+ }
+
+ let sz_u8 = mem::size_of::<(K, u8)>();
+ let sz_u16 = mem::size_of::<(K, u16)>();
+ let sz_u32 = mem::size_of::<(K, u32)>();
+ let sz_usize = mem::size_of::<(K, usize)>();
+
+ let len = self.len();
+ if len < 2 {
+ return;
+ }
+ if sz_u8 < sz_u16 && len <= (u8::MAX as usize) {
+ return sort_by_key!(u8, self, f);
+ }
+ if sz_u16 < sz_u32 && len <= (u16::MAX as usize) {
+ return sort_by_key!(u16, self, f);
+ }
+ if sz_u32 < sz_usize && len <= (u32::MAX as usize) {
+ return sort_by_key!(u32, self, f);
+ }
+ sort_by_key!(usize, self, f)
+ }
+
+ /// Copies `self` into a new `Vec`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let s = [10, 40, 30];
+ /// let x = s.to_vec();
+ /// // Here, `s` and `x` can be modified independently.
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[rustc_conversion_suggestion]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn to_vec(&self) -> Vec<T>
+ where
+ T: Clone,
+ {
+ self.to_vec_in(Global)
+ }
+
+ /// Copies `self` into a new `Vec` with an allocator.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api)]
+ ///
+ /// use std::alloc::System;
+ ///
+ /// let s = [10, 40, 30];
+ /// let x = s.to_vec_in(System);
+ /// // Here, `s` and `x` can be modified independently.
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[inline]
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ pub fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A>
+ where
+ T: Clone,
+ {
+ // N.B., see the `hack` module in this file for more details.
+ hack::to_vec(self, alloc)
+ }
+
+ /// Converts `self` into a vector without clones or allocation.
+ ///
+ /// The resulting vector can be converted back into a box via
+ /// `Vec<T>`'s `into_boxed_slice` method.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let s: Box<[i32]> = Box::new([10, 40, 30]);
+ /// let x = s.into_vec();
+ /// // `s` cannot be used anymore because it has been converted into `x`.
+ ///
+ /// assert_eq!(x, vec![10, 40, 30]);
+ /// ```
+ #[rustc_allow_incoherent_impl]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn into_vec<A: Allocator>(self: Box<Self, A>) -> Vec<T, A> {
+ // N.B., see the `hack` module in this file for more details.
+ hack::into_vec(self)
+ }
+
+ /// Creates a vector by repeating a slice `n` times.
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if the capacity would overflow.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);
+ /// ```
+ ///
+ /// A panic upon overflow:
+ ///
+ /// ```should_panic
+ /// // this will panic at runtime
+ /// b"0123456789abcdef".repeat(usize::MAX);
+ /// ```
+ #[rustc_allow_incoherent_impl]
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "repeat_generic_slice", since = "1.40.0")]
+ pub fn repeat(&self, n: usize) -> Vec<T>
+ where
+ T: Copy,
+ {
+ if n == 0 {
+ return Vec::new();
+ }
+
+ // If `n` is larger than zero, it can be split as
+ // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`.
+ // `2^expn` is the number represented by the leftmost '1' bit of `n`,
+ // and `rem` is the remaining part of `n`.
+
+ // Using `Vec` to access `set_len()`.
+ let capacity = self.len().checked_mul(n).expect("capacity overflow");
+ let mut buf = Vec::with_capacity(capacity);
+
+ // `2^expn` repetition is done by doubling `buf` `expn`-times.
+ buf.extend(self);
+ {
+ let mut m = n >> 1;
+ // If `m > 0`, there are remaining bits up to the leftmost '1'.
+ while m > 0 {
+ // `buf.extend(buf)`:
+ unsafe {
+ ptr::copy_nonoverlapping(
+ buf.as_ptr(),
+ (buf.as_mut_ptr() as *mut T).add(buf.len()),
+ buf.len(),
+ );
+ // `buf` has capacity of `self.len() * n`.
+ let buf_len = buf.len();
+ buf.set_len(buf_len * 2);
+ }
+
+ m >>= 1;
+ }
+ }
+
+ // `rem` (`= n - 2^expn`) repetition is done by copying
+ // first `rem` repetitions from `buf` itself.
+ let rem_len = capacity - buf.len(); // `self.len() * rem`
+ if rem_len > 0 {
+ // `buf.extend(buf[0 .. rem_len])`:
+ unsafe {
+ // This is non-overlapping since `2^expn > rem`.
+ ptr::copy_nonoverlapping(
+ buf.as_ptr(),
+ (buf.as_mut_ptr() as *mut T).add(buf.len()),
+ rem_len,
+ );
+ // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`).
+ buf.set_len(capacity);
+ }
+ }
+ buf
+ }
+
+ /// Flattens a slice of `T` into a single value `Self::Output`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!(["hello", "world"].concat(), "helloworld");
+ /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);
+ /// ```
+ #[rustc_allow_incoherent_impl]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn concat<Item: ?Sized>(&self) -> <Self as Concat<Item>>::Output
+ where
+ Self: Concat<Item>,
+ {
+ Concat::concat(self)
+ }
+
+ /// Flattens a slice of `T` into a single value `Self::Output`, placing a
+ /// given separator between each.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!(["hello", "world"].join(" "), "hello world");
+ /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
+ /// assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);
+ /// ```
+ #[rustc_allow_incoherent_impl]
+ #[stable(feature = "rename_connect_to_join", since = "1.3.0")]
+ pub fn join<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
+ where
+ Self: Join<Separator>,
+ {
+ Join::join(self, sep)
+ }
+
+ /// Flattens a slice of `T` into a single value `Self::Output`, placing a
+ /// given separator between each.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # #![allow(deprecated)]
+ /// assert_eq!(["hello", "world"].connect(" "), "hello world");
+ /// assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);
+ /// ```
+ #[rustc_allow_incoherent_impl]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[deprecated(since = "1.3.0", note = "renamed to join")]
+ pub fn connect<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
+ where
+ Self: Join<Separator>,
+ {
+ Join::join(self, sep)
+ }
+}
+
+#[cfg(not(test))]
+impl [u8] {
+ /// Returns a vector containing a copy of this slice where each byte
+ /// is mapped to its ASCII upper case equivalent.
+ ///
+ /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
+ /// but non-ASCII letters are unchanged.
+ ///
+ /// To uppercase the value in-place, use [`make_ascii_uppercase`].
+ ///
+ /// [`make_ascii_uppercase`]: slice::make_ascii_uppercase
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[must_use = "this returns the uppercase bytes as a new Vec, \
+ without modifying the original"]
+ #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
+ #[inline]
+ pub fn to_ascii_uppercase(&self) -> Vec<u8> {
+ let mut me = self.to_vec();
+ me.make_ascii_uppercase();
+ me
+ }
+
+ /// Returns a vector containing a copy of this slice where each byte
+ /// is mapped to its ASCII lower case equivalent.
+ ///
+ /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
+ /// but non-ASCII letters are unchanged.
+ ///
+ /// To lowercase the value in-place, use [`make_ascii_lowercase`].
+ ///
+ /// [`make_ascii_lowercase`]: slice::make_ascii_lowercase
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[must_use = "this returns the lowercase bytes as a new Vec, \
+ without modifying the original"]
+ #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
+ #[inline]
+ pub fn to_ascii_lowercase(&self) -> Vec<u8> {
+ let mut me = self.to_vec();
+ me.make_ascii_lowercase();
+ me
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Extension traits for slices over specific kinds of data
+////////////////////////////////////////////////////////////////////////////////
+
+/// Helper trait for [`[T]::concat`](slice::concat).
+///
+/// Note: the `Item` type parameter is not used in this trait,
+/// but it allows impls to be more generic.
+/// Without it, we get this error:
+///
+/// ```error
+/// error[E0207]: the type parameter `T` is not constrained by the impl trait, self type, or predica
+/// --> src/liballoc/slice.rs:608:6
+/// |
+/// 608 | impl<T: Clone, V: Borrow<[T]>> Concat for [V] {
+/// | ^ unconstrained type parameter
+/// ```
+///
+/// This is because there could exist `V` types with multiple `Borrow<[_]>` impls,
+/// such that multiple `T` types would apply:
+///
+/// ```
+/// # #[allow(dead_code)]
+/// pub struct Foo(Vec<u32>, Vec<String>);
+///
+/// impl std::borrow::Borrow<[u32]> for Foo {
+/// fn borrow(&self) -> &[u32] { &self.0 }
+/// }
+///
+/// impl std::borrow::Borrow<[String]> for Foo {
+/// fn borrow(&self) -> &[String] { &self.1 }
+/// }
+/// ```
+#[unstable(feature = "slice_concat_trait", issue = "27747")]
+pub trait Concat<Item: ?Sized> {
+ #[unstable(feature = "slice_concat_trait", issue = "27747")]
+ /// The resulting type after concatenation
+ type Output;
+
+ /// Implementation of [`[T]::concat`](slice::concat)
+ #[unstable(feature = "slice_concat_trait", issue = "27747")]
+ fn concat(slice: &Self) -> Self::Output;
+}
+
+/// Helper trait for [`[T]::join`](slice::join)
+#[unstable(feature = "slice_concat_trait", issue = "27747")]
+pub trait Join<Separator> {
+ #[unstable(feature = "slice_concat_trait", issue = "27747")]
+ /// The resulting type after concatenation
+ type Output;
+
+ /// Implementation of [`[T]::join`](slice::join)
+ #[unstable(feature = "slice_concat_trait", issue = "27747")]
+ fn join(slice: &Self, sep: Separator) -> Self::Output;
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[unstable(feature = "slice_concat_ext", issue = "27747")]
+impl<T: Clone, V: Borrow<[T]>> Concat<T> for [V] {
+ type Output = Vec<T>;
+
+ fn concat(slice: &Self) -> Vec<T> {
+ let size = slice.iter().map(|slice| slice.borrow().len()).sum();
+ let mut result = Vec::with_capacity(size);
+ for v in slice {
+ result.extend_from_slice(v.borrow())
+ }
+ result
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[unstable(feature = "slice_concat_ext", issue = "27747")]
+impl<T: Clone, V: Borrow<[T]>> Join<&T> for [V] {
+ type Output = Vec<T>;
+
+ fn join(slice: &Self, sep: &T) -> Vec<T> {
+ let mut iter = slice.iter();
+ let first = match iter.next() {
+ Some(first) => first,
+ None => return vec![],
+ };
+ let size = slice.iter().map(|v| v.borrow().len()).sum::<usize>() + slice.len() - 1;
+ let mut result = Vec::with_capacity(size);
+ result.extend_from_slice(first.borrow());
+
+ for v in iter {
+ result.push(sep.clone());
+ result.extend_from_slice(v.borrow())
+ }
+ result
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[unstable(feature = "slice_concat_ext", issue = "27747")]
+impl<T: Clone, V: Borrow<[T]>> Join<&[T]> for [V] {
+ type Output = Vec<T>;
+
+ fn join(slice: &Self, sep: &[T]) -> Vec<T> {
+ let mut iter = slice.iter();
+ let first = match iter.next() {
+ Some(first) => first,
+ None => return vec![],
+ };
+ let size =
+ slice.iter().map(|v| v.borrow().len()).sum::<usize>() + sep.len() * (slice.len() - 1);
+ let mut result = Vec::with_capacity(size);
+ result.extend_from_slice(first.borrow());
+
+ for v in iter {
+ result.extend_from_slice(sep);
+ result.extend_from_slice(v.borrow())
+ }
+ result
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Standard trait implementations for slices
+////////////////////////////////////////////////////////////////////////////////
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> Borrow<[T]> for Vec<T> {
+ fn borrow(&self) -> &[T] {
+ &self[..]
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> BorrowMut<[T]> for Vec<T> {
+ fn borrow_mut(&mut self) -> &mut [T] {
+ &mut self[..]
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Clone> ToOwned for [T] {
+ type Owned = Vec<T>;
+ #[cfg(not(test))]
+ fn to_owned(&self) -> Vec<T> {
+ self.to_vec()
+ }
+
+ #[cfg(test)]
+ fn to_owned(&self) -> Vec<T> {
+ hack::to_vec(self, Global)
+ }
+
+ fn clone_into(&self, target: &mut Vec<T>) {
+ // drop anything in target that will not be overwritten
+ target.truncate(self.len());
+
+ // target.len <= self.len due to the truncate above, so the
+ // slices here are always in-bounds.
+ let (init, tail) = self.split_at(target.len());
+
+ // reuse the contained values' allocations/resources.
+ target.clone_from_slice(init);
+ target.extend_from_slice(tail);
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Sorting
+////////////////////////////////////////////////////////////////////////////////
+
+/// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted.
+///
+/// This is the integral subroutine of insertion sort.
+#[cfg(not(no_global_oom_handling))]
+fn insert_head<T, F>(v: &mut [T], is_less: &mut F)
+where
+ F: FnMut(&T, &T) -> bool,
+{
+ if v.len() >= 2 && is_less(&v[1], &v[0]) {
+ unsafe {
+ // There are three ways to implement insertion here:
+ //
+ // 1. Swap adjacent elements until the first one gets to its final destination.
+ // However, this way we copy data around more than is necessary. If elements are big
+ // structures (costly to copy), this method will be slow.
+ //
+ // 2. Iterate until the right place for the first element is found. Then shift the
+ // elements succeeding it to make room for it and finally place it into the
+ // remaining hole. This is a good method.
+ //
+ // 3. Copy the first element into a temporary variable. Iterate until the right place
+ // for it is found. As we go along, copy every traversed element into the slot
+ // preceding it. Finally, copy data from the temporary variable into the remaining
+ // hole. This method is very good. Benchmarks demonstrated slightly better
+ // performance than with the 2nd method.
+ //
+ // All methods were benchmarked, and the 3rd showed best results. So we chose that one.
+ let tmp = mem::ManuallyDrop::new(ptr::read(&v[0]));
+
+ // Intermediate state of the insertion process is always tracked by `hole`, which
+ // serves two purposes:
+ // 1. Protects integrity of `v` from panics in `is_less`.
+ // 2. Fills the remaining hole in `v` in the end.
+ //
+ // Panic safety:
+ //
+ // If `is_less` panics at any point during the process, `hole` will get dropped and
+ // fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it
+ // initially held exactly once.
+ let mut hole = InsertionHole { src: &*tmp, dest: &mut v[1] };
+ ptr::copy_nonoverlapping(&v[1], &mut v[0], 1);
+
+ for i in 2..v.len() {
+ if !is_less(&v[i], &*tmp) {
+ break;
+ }
+ ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1);
+ hole.dest = &mut v[i];
+ }
+ // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`.
+ }
+ }
+
+ // When dropped, copies from `src` into `dest`.
+ struct InsertionHole<T> {
+ src: *const T,
+ dest: *mut T,
+ }
+
+ impl<T> Drop for InsertionHole<T> {
+ fn drop(&mut self) {
+ unsafe {
+ ptr::copy_nonoverlapping(self.src, self.dest, 1);
+ }
+ }
+ }
+}
+
+/// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and
+/// stores the result into `v[..]`.
+///
+/// # Safety
+///
+/// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough
+/// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type.
+#[cfg(not(no_global_oom_handling))]
+unsafe fn merge<T, F>(v: &mut [T], mid: usize, buf: *mut T, is_less: &mut F)
+where
+ F: FnMut(&T, &T) -> bool,
+{
+ let len = v.len();
+ let v = v.as_mut_ptr();
+ let (v_mid, v_end) = unsafe { (v.add(mid), v.add(len)) };
+
+ // The merge process first copies the shorter run into `buf`. Then it traces the newly copied
+ // run and the longer run forwards (or backwards), comparing their next unconsumed elements and
+ // copying the lesser (or greater) one into `v`.
+ //
+ // As soon as the shorter run is fully consumed, the process is done. If the longer run gets
+ // consumed first, then we must copy whatever is left of the shorter run into the remaining
+ // hole in `v`.
+ //
+ // Intermediate state of the process is always tracked by `hole`, which serves two purposes:
+ // 1. Protects integrity of `v` from panics in `is_less`.
+ // 2. Fills the remaining hole in `v` if the longer run gets consumed first.
+ //
+ // Panic safety:
+ //
+ // If `is_less` panics at any point during the process, `hole` will get dropped and fill the
+ // hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every
+ // object it initially held exactly once.
+ let mut hole;
+
+ if mid <= len - mid {
+ // The left run is shorter.
+ unsafe {
+ ptr::copy_nonoverlapping(v, buf, mid);
+ hole = MergeHole { start: buf, end: buf.add(mid), dest: v };
+ }
+
+ // Initially, these pointers point to the beginnings of their arrays.
+ let left = &mut hole.start;
+ let mut right = v_mid;
+ let out = &mut hole.dest;
+
+ while *left < hole.end && right < v_end {
+ // Consume the lesser side.
+ // If equal, prefer the left run to maintain stability.
+ unsafe {
+ let to_copy = if is_less(&*right, &**left) {
+ get_and_increment(&mut right)
+ } else {
+ get_and_increment(left)
+ };
+ ptr::copy_nonoverlapping(to_copy, get_and_increment(out), 1);
+ }
+ }
+ } else {
+ // The right run is shorter.
+ unsafe {
+ ptr::copy_nonoverlapping(v_mid, buf, len - mid);
+ hole = MergeHole { start: buf, end: buf.add(len - mid), dest: v_mid };
+ }
+
+ // Initially, these pointers point past the ends of their arrays.
+ let left = &mut hole.dest;
+ let right = &mut hole.end;
+ let mut out = v_end;
+
+ while v < *left && buf < *right {
+ // Consume the greater side.
+ // If equal, prefer the right run to maintain stability.
+ unsafe {
+ let to_copy = if is_less(&*right.offset(-1), &*left.offset(-1)) {
+ decrement_and_get(left)
+ } else {
+ decrement_and_get(right)
+ };
+ ptr::copy_nonoverlapping(to_copy, decrement_and_get(&mut out), 1);
+ }
+ }
+ }
+ // Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of
+ // it will now be copied into the hole in `v`.
+
+ unsafe fn get_and_increment<T>(ptr: &mut *mut T) -> *mut T {
+ let old = *ptr;
+ *ptr = unsafe { ptr.offset(1) };
+ old
+ }
+
+ unsafe fn decrement_and_get<T>(ptr: &mut *mut T) -> *mut T {
+ *ptr = unsafe { ptr.offset(-1) };
+ *ptr
+ }
+
+ // When dropped, copies the range `start..end` into `dest..`.
+ struct MergeHole<T> {
+ start: *mut T,
+ end: *mut T,
+ dest: *mut T,
+ }
+
+ impl<T> Drop for MergeHole<T> {
+ fn drop(&mut self) {
+ // `T` is not a zero-sized type, and these are pointers into a slice's elements.
+ unsafe {
+ let len = self.end.sub_ptr(self.start);
+ ptr::copy_nonoverlapping(self.start, self.dest, len);
+ }
+ }
+ }
+}
+
+/// This merge sort borrows some (but not all) ideas from TimSort, which is described in detail
+/// [here](https://github.com/python/cpython/blob/main/Objects/listsort.txt).
+///
+/// The algorithm identifies strictly descending and non-descending subsequences, which are called
+/// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed
+/// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are
+/// satisfied:
+///
+/// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len`
+/// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len`
+///
+/// The invariants ensure that the total running time is *O*(*n* \* log(*n*)) worst-case.
+#[cfg(not(no_global_oom_handling))]
+fn merge_sort<T, F>(v: &mut [T], mut is_less: F)
+where
+ F: FnMut(&T, &T) -> bool,
+{
+ // Slices of up to this length get sorted using insertion sort.
+ const MAX_INSERTION: usize = 20;
+ // Very short runs are extended using insertion sort to span at least this many elements.
+ const MIN_RUN: usize = 10;
+
+ // Sorting has no meaningful behavior on zero-sized types.
+ if size_of::<T>() == 0 {
+ return;
+ }
+
+ let len = v.len();
+
+ // Short arrays get sorted in-place via insertion sort to avoid allocations.
+ if len <= MAX_INSERTION {
+ if len >= 2 {
+ for i in (0..len - 1).rev() {
+ insert_head(&mut v[i..], &mut is_less);
+ }
+ }
+ return;
+ }
+
+ // Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it
+ // shallow copies of the contents of `v` without risking the dtors running on copies if
+ // `is_less` panics. When merging two sorted runs, this buffer holds a copy of the shorter run,
+ // which will always have length at most `len / 2`.
+ let mut buf = Vec::with_capacity(len / 2);
+
+ // In order to identify natural runs in `v`, we traverse it backwards. That might seem like a
+ // strange decision, but consider the fact that merges more often go in the opposite direction
+ // (forwards). According to benchmarks, merging forwards is slightly faster than merging
+ // backwards. To conclude, identifying runs by traversing backwards improves performance.
+ let mut runs = vec![];
+ let mut end = len;
+ while end > 0 {
+ // Find the next natural run, and reverse it if it's strictly descending.
+ let mut start = end - 1;
+ if start > 0 {
+ start -= 1;
+ unsafe {
+ if is_less(v.get_unchecked(start + 1), v.get_unchecked(start)) {
+ while start > 0 && is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) {
+ start -= 1;
+ }
+ v[start..end].reverse();
+ } else {
+ while start > 0 && !is_less(v.get_unchecked(start), v.get_unchecked(start - 1))
+ {
+ start -= 1;
+ }
+ }
+ }
+ }
+
+ // Insert some more elements into the run if it's too short. Insertion sort is faster than
+ // merge sort on short sequences, so this significantly improves performance.
+ while start > 0 && end - start < MIN_RUN {
+ start -= 1;
+ insert_head(&mut v[start..end], &mut is_less);
+ }
+
+ // Push this run onto the stack.
+ runs.push(Run { start, len: end - start });
+ end = start;
+
+ // Merge some pairs of adjacent runs to satisfy the invariants.
+ while let Some(r) = collapse(&runs) {
+ let left = runs[r + 1];
+ let right = runs[r];
+ unsafe {
+ merge(
+ &mut v[left.start..right.start + right.len],
+ left.len,
+ buf.as_mut_ptr(),
+ &mut is_less,
+ );
+ }
+ runs[r] = Run { start: left.start, len: left.len + right.len };
+ runs.remove(r + 1);
+ }
+ }
+
+ // Finally, exactly one run must remain in the stack.
+ debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len);
+
+ // Examines the stack of runs and identifies the next pair of runs to merge. More specifically,
+ // if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the
+ // algorithm should continue building a new run instead, `None` is returned.
+ //
+ // TimSort is infamous for its buggy implementations, as described here:
+ // http://envisage-project.eu/timsort-specification-and-verification/
+ //
+ // The gist of the story is: we must enforce the invariants on the top four runs on the stack.
+ // Enforcing them on just top three is not sufficient to ensure that the invariants will still
+ // hold for *all* runs in the stack.
+ //
+ // This function correctly checks invariants for the top four runs. Additionally, if the top
+ // run starts at index 0, it will always demand a merge operation until the stack is fully
+ // collapsed, in order to complete the sort.
+ #[inline]
+ fn collapse(runs: &[Run]) -> Option<usize> {
+ let n = runs.len();
+ if n >= 2
+ && (runs[n - 1].start == 0
+ || runs[n - 2].len <= runs[n - 1].len
+ || (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len)
+ || (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len))
+ {
+ if n >= 3 && runs[n - 3].len < runs[n - 1].len { Some(n - 3) } else { Some(n - 2) }
+ } else {
+ None
+ }
+ }
+
+ #[derive(Clone, Copy)]
+ struct Run {
+ start: usize,
+ len: usize,
+ }
+}
diff --git a/rust/alloc/str.rs b/rust/alloc/str.rs
new file mode 100644
index 000000000000..0eaa26398635
--- /dev/null
+++ b/rust/alloc/str.rs
@@ -0,0 +1,621 @@
+//! Unicode string slices.
+//!
+//! *[See also the `str` primitive type](str).*
+//!
+//! The `&str` type is one of the two main string types, the other being `String`.
+//! Unlike its `String` counterpart, its contents are borrowed.
+//!
+//! # Basic Usage
+//!
+//! A basic string declaration of `&str` type:
+//!
+//! ```
+//! let hello_world = "Hello, World!";
+//! ```
+//!
+//! Here we have declared a string literal, also known as a string slice.
+//! String literals have a static lifetime, which means the string `hello_world`
+//! is guaranteed to be valid for the duration of the entire program.
+//! We can explicitly specify `hello_world`'s lifetime as well:
+//!
+//! ```
+//! let hello_world: &'static str = "Hello, world!";
+//! ```
+
+#![stable(feature = "rust1", since = "1.0.0")]
+// Many of the usings in this module are only used in the test configuration.
+// It's cleaner to just turn off the unused_imports warning than to fix them.
+#![allow(unused_imports)]
+
+use core::borrow::{Borrow, BorrowMut};
+use core::iter::FusedIterator;
+use core::mem;
+use core::ptr;
+use core::str::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher};
+use core::unicode::conversions;
+
+use crate::borrow::ToOwned;
+use crate::boxed::Box;
+use crate::slice::{Concat, Join, SliceIndex};
+use crate::string::String;
+use crate::vec::Vec;
+
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::str::pattern;
+#[stable(feature = "encode_utf16", since = "1.8.0")]
+pub use core::str::EncodeUtf16;
+#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
+pub use core::str::SplitAsciiWhitespace;
+#[stable(feature = "split_inclusive", since = "1.51.0")]
+pub use core::str::SplitInclusive;
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::str::SplitWhitespace;
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::str::{from_utf8, from_utf8_mut, Bytes, CharIndices, Chars};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::str::{from_utf8_unchecked, from_utf8_unchecked_mut, ParseBoolError};
+#[stable(feature = "str_escape", since = "1.34.0")]
+pub use core::str::{EscapeDebug, EscapeDefault, EscapeUnicode};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::str::{FromStr, Utf8Error};
+#[allow(deprecated)]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::str::{Lines, LinesAny};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::str::{MatchIndices, RMatchIndices};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::str::{Matches, RMatches};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::str::{RSplit, Split};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::str::{RSplitN, SplitN};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use core::str::{RSplitTerminator, SplitTerminator};
+
+/// Note: `str` in `Concat<str>` is not meaningful here.
+/// This type parameter of the trait only exists to enable another impl.
+#[cfg(not(no_global_oom_handling))]
+#[unstable(feature = "slice_concat_ext", issue = "27747")]
+impl<S: Borrow<str>> Concat<str> for [S] {
+ type Output = String;
+
+ fn concat(slice: &Self) -> String {
+ Join::join(slice, "")
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[unstable(feature = "slice_concat_ext", issue = "27747")]
+impl<S: Borrow<str>> Join<&str> for [S] {
+ type Output = String;
+
+ fn join(slice: &Self, sep: &str) -> String {
+ unsafe { String::from_utf8_unchecked(join_generic_copy(slice, sep.as_bytes())) }
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+macro_rules! specialize_for_lengths {
+ ($separator:expr, $target:expr, $iter:expr; $($num:expr),*) => {{
+ let mut target = $target;
+ let iter = $iter;
+ let sep_bytes = $separator;
+ match $separator.len() {
+ $(
+ // loops with hardcoded sizes run much faster
+ // specialize the cases with small separator lengths
+ $num => {
+ for s in iter {
+ copy_slice_and_advance!(target, sep_bytes);
+ let content_bytes = s.borrow().as_ref();
+ copy_slice_and_advance!(target, content_bytes);
+ }
+ },
+ )*
+ _ => {
+ // arbitrary non-zero size fallback
+ for s in iter {
+ copy_slice_and_advance!(target, sep_bytes);
+ let content_bytes = s.borrow().as_ref();
+ copy_slice_and_advance!(target, content_bytes);
+ }
+ }
+ }
+ target
+ }}
+}
+
+#[cfg(not(no_global_oom_handling))]
+macro_rules! copy_slice_and_advance {
+ ($target:expr, $bytes:expr) => {
+ let len = $bytes.len();
+ let (head, tail) = { $target }.split_at_mut(len);
+ head.copy_from_slice($bytes);
+ $target = tail;
+ };
+}
+
+// Optimized join implementation that works for both Vec<T> (T: Copy) and String's inner vec
+// Currently (2018-05-13) there is a bug with type inference and specialization (see issue #36262)
+// For this reason SliceConcat<T> is not specialized for T: Copy and SliceConcat<str> is the
+// only user of this function. It is left in place for the time when that is fixed.
+//
+// the bounds for String-join are S: Borrow<str> and for Vec-join Borrow<[T]>
+// [T] and str both impl AsRef<[T]> for some T
+// => s.borrow().as_ref() and we always have slices
+#[cfg(not(no_global_oom_handling))]
+fn join_generic_copy<B, T, S>(slice: &[S], sep: &[T]) -> Vec<T>
+where
+ T: Copy,
+ B: AsRef<[T]> + ?Sized,
+ S: Borrow<B>,
+{
+ let sep_len = sep.len();
+ let mut iter = slice.iter();
+
+ // the first slice is the only one without a separator preceding it
+ let first = match iter.next() {
+ Some(first) => first,
+ None => return vec![],
+ };
+
+ // compute the exact total length of the joined Vec
+ // if the `len` calculation overflows, we'll panic
+ // we would have run out of memory anyway and the rest of the function requires
+ // the entire Vec pre-allocated for safety
+ let reserved_len = sep_len
+ .checked_mul(iter.len())
+ .and_then(|n| {
+ slice.iter().map(|s| s.borrow().as_ref().len()).try_fold(n, usize::checked_add)
+ })
+ .expect("attempt to join into collection with len > usize::MAX");
+
+ // prepare an uninitialized buffer
+ let mut result = Vec::with_capacity(reserved_len);
+ debug_assert!(result.capacity() >= reserved_len);
+
+ result.extend_from_slice(first.borrow().as_ref());
+
+ unsafe {
+ let pos = result.len();
+ let target = result.spare_capacity_mut().get_unchecked_mut(..reserved_len - pos);
+
+ // Convert the separator and slices to slices of MaybeUninit
+ // to simplify implementation in specialize_for_lengths
+ let sep_uninit = core::slice::from_raw_parts(sep.as_ptr().cast(), sep.len());
+ let iter_uninit = iter.map(|it| {
+ let it = it.borrow().as_ref();
+ core::slice::from_raw_parts(it.as_ptr().cast(), it.len())
+ });
+
+ // copy separator and slices over without bounds checks
+ // generate loops with hardcoded offsets for small separators
+ // massive improvements possible (~ x2)
+ let remain = specialize_for_lengths!(sep_uninit, target, iter_uninit; 0, 1, 2, 3, 4);
+
+ // A weird borrow implementation may return different
+ // slices for the length calculation and the actual copy.
+ // Make sure we don't expose uninitialized bytes to the caller.
+ let result_len = reserved_len - remain.len();
+ result.set_len(result_len);
+ }
+ result
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Borrow<str> for String {
+ #[inline]
+ fn borrow(&self) -> &str {
+ &self[..]
+ }
+}
+
+#[stable(feature = "string_borrow_mut", since = "1.36.0")]
+impl BorrowMut<str> for String {
+ #[inline]
+ fn borrow_mut(&mut self) -> &mut str {
+ &mut self[..]
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl ToOwned for str {
+ type Owned = String;
+ #[inline]
+ fn to_owned(&self) -> String {
+ unsafe { String::from_utf8_unchecked(self.as_bytes().to_owned()) }
+ }
+
+ fn clone_into(&self, target: &mut String) {
+ let mut b = mem::take(target).into_bytes();
+ self.as_bytes().clone_into(&mut b);
+ *target = unsafe { String::from_utf8_unchecked(b) }
+ }
+}
+
+/// Methods for string slices.
+#[cfg(not(test))]
+impl str {
+ /// Converts a `Box<str>` into a `Box<[u8]>` without copying or allocating.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = "this is a string";
+ /// let boxed_str = s.to_owned().into_boxed_str();
+ /// let boxed_bytes = boxed_str.into_boxed_bytes();
+ /// assert_eq!(*boxed_bytes, *s.as_bytes());
+ /// ```
+ #[rustc_allow_incoherent_impl]
+ #[stable(feature = "str_box_extras", since = "1.20.0")]
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[inline]
+ pub fn into_boxed_bytes(self: Box<str>) -> Box<[u8]> {
+ self.into()
+ }
+
+ /// Replaces all matches of a pattern with another string.
+ ///
+ /// `replace` creates a new [`String`], and copies the data from this string slice into it.
+ /// While doing so, it attempts to find matches of a pattern. If it finds any, it
+ /// replaces them with the replacement string slice.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = "this is old";
+ ///
+ /// assert_eq!("this is new", s.replace("old", "new"));
+ /// ```
+ ///
+ /// When the pattern doesn't match:
+ ///
+ /// ```
+ /// let s = "this is old";
+ /// assert_eq!(s, s.replace("cookie monster", "little lamb"));
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[must_use = "this returns the replaced string as a new allocation, \
+ without modifying the original"]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn replace<'a, P: Pattern<'a>>(&'a self, from: P, to: &str) -> String {
+ let mut result = String::new();
+ let mut last_end = 0;
+ for (start, part) in self.match_indices(from) {
+ result.push_str(unsafe { self.get_unchecked(last_end..start) });
+ result.push_str(to);
+ last_end = start + part.len();
+ }
+ result.push_str(unsafe { self.get_unchecked(last_end..self.len()) });
+ result
+ }
+
+ /// Replaces first N matches of a pattern with another string.
+ ///
+ /// `replacen` creates a new [`String`], and copies the data from this string slice into it.
+ /// While doing so, it attempts to find matches of a pattern. If it finds any, it
+ /// replaces them with the replacement string slice at most `count` times.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = "foo foo 123 foo";
+ /// assert_eq!("new new 123 foo", s.replacen("foo", "new", 2));
+ /// assert_eq!("faa fao 123 foo", s.replacen('o', "a", 3));
+ /// assert_eq!("foo foo new23 foo", s.replacen(char::is_numeric, "new", 1));
+ /// ```
+ ///
+ /// When the pattern doesn't match:
+ ///
+ /// ```
+ /// let s = "this is old";
+ /// assert_eq!(s, s.replacen("cookie monster", "little lamb", 10));
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[must_use = "this returns the replaced string as a new allocation, \
+ without modifying the original"]
+ #[stable(feature = "str_replacen", since = "1.16.0")]
+ pub fn replacen<'a, P: Pattern<'a>>(&'a self, pat: P, to: &str, count: usize) -> String {
+ // Hope to reduce the times of re-allocation
+ let mut result = String::with_capacity(32);
+ let mut last_end = 0;
+ for (start, part) in self.match_indices(pat).take(count) {
+ result.push_str(unsafe { self.get_unchecked(last_end..start) });
+ result.push_str(to);
+ last_end = start + part.len();
+ }
+ result.push_str(unsafe { self.get_unchecked(last_end..self.len()) });
+ result
+ }
+
+ /// Returns the lowercase equivalent of this string slice, as a new [`String`].
+ ///
+ /// 'Lowercase' is defined according to the terms of the Unicode Derived Core Property
+ /// `Lowercase`.
+ ///
+ /// Since some characters can expand into multiple characters when changing
+ /// the case, this function returns a [`String`] instead of modifying the
+ /// parameter in-place.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = "HELLO";
+ ///
+ /// assert_eq!("hello", s.to_lowercase());
+ /// ```
+ ///
+ /// A tricky example, with sigma:
+ ///
+ /// ```
+ /// let sigma = "Σ";
+ ///
+ /// assert_eq!("σ", sigma.to_lowercase());
+ ///
+ /// // but at the end of a word, it's ς, not σ:
+ /// let odysseus = "ὈΔΥΣΣΕΎΣ";
+ ///
+ /// assert_eq!("ὀδυσσεύς", odysseus.to_lowercase());
+ /// ```
+ ///
+ /// Languages without case are not changed:
+ ///
+ /// ```
+ /// let new_year = "农历新年";
+ ///
+ /// assert_eq!(new_year, new_year.to_lowercase());
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[must_use = "this returns the lowercase string as a new String, \
+ without modifying the original"]
+ #[stable(feature = "unicode_case_mapping", since = "1.2.0")]
+ pub fn to_lowercase(&self) -> String {
+ let mut s = String::with_capacity(self.len());
+ for (i, c) in self[..].char_indices() {
+ if c == 'Σ' {
+ // Σ maps to σ, except at the end of a word where it maps to ς.
+ // This is the only conditional (contextual) but language-independent mapping
+ // in `SpecialCasing.txt`,
+ // so hard-code it rather than have a generic "condition" mechanism.
+ // See https://github.com/rust-lang/rust/issues/26035
+ map_uppercase_sigma(self, i, &mut s)
+ } else {
+ match conversions::to_lower(c) {
+ [a, '\0', _] => s.push(a),
+ [a, b, '\0'] => {
+ s.push(a);
+ s.push(b);
+ }
+ [a, b, c] => {
+ s.push(a);
+ s.push(b);
+ s.push(c);
+ }
+ }
+ }
+ }
+ return s;
+
+ fn map_uppercase_sigma(from: &str, i: usize, to: &mut String) {
+ // See https://www.unicode.org/versions/Unicode7.0.0/ch03.pdf#G33992
+ // for the definition of `Final_Sigma`.
+ debug_assert!('Σ'.len_utf8() == 2);
+ let is_word_final = case_ignoreable_then_cased(from[..i].chars().rev())
+ && !case_ignoreable_then_cased(from[i + 2..].chars());
+ to.push_str(if is_word_final { "ς" } else { "σ" });
+ }
+
+ fn case_ignoreable_then_cased<I: Iterator<Item = char>>(iter: I) -> bool {
+ use core::unicode::{Case_Ignorable, Cased};
+ match iter.skip_while(|&c| Case_Ignorable(c)).next() {
+ Some(c) => Cased(c),
+ None => false,
+ }
+ }
+ }
+
+ /// Returns the uppercase equivalent of this string slice, as a new [`String`].
+ ///
+ /// 'Uppercase' is defined according to the terms of the Unicode Derived Core Property
+ /// `Uppercase`.
+ ///
+ /// Since some characters can expand into multiple characters when changing
+ /// the case, this function returns a [`String`] instead of modifying the
+ /// parameter in-place.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = "hello";
+ ///
+ /// assert_eq!("HELLO", s.to_uppercase());
+ /// ```
+ ///
+ /// Scripts without case are not changed:
+ ///
+ /// ```
+ /// let new_year = "农历新年";
+ ///
+ /// assert_eq!(new_year, new_year.to_uppercase());
+ /// ```
+ ///
+ /// One character can become multiple:
+ /// ```
+ /// let s = "tschüß";
+ ///
+ /// assert_eq!("TSCHÜSS", s.to_uppercase());
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[must_use = "this returns the uppercase string as a new String, \
+ without modifying the original"]
+ #[stable(feature = "unicode_case_mapping", since = "1.2.0")]
+ pub fn to_uppercase(&self) -> String {
+ let mut s = String::with_capacity(self.len());
+ for c in self[..].chars() {
+ match conversions::to_upper(c) {
+ [a, '\0', _] => s.push(a),
+ [a, b, '\0'] => {
+ s.push(a);
+ s.push(b);
+ }
+ [a, b, c] => {
+ s.push(a);
+ s.push(b);
+ s.push(c);
+ }
+ }
+ }
+ s
+ }
+
+ /// Converts a [`Box<str>`] into a [`String`] without copying or allocating.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let string = String::from("birthday gift");
+ /// let boxed_str = string.clone().into_boxed_str();
+ ///
+ /// assert_eq!(boxed_str.into_string(), string);
+ /// ```
+ #[stable(feature = "box_str", since = "1.4.0")]
+ #[rustc_allow_incoherent_impl]
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[inline]
+ pub fn into_string(self: Box<str>) -> String {
+ let slice = Box::<[u8]>::from(self);
+ unsafe { String::from_utf8_unchecked(slice.into_vec()) }
+ }
+
+ /// Creates a new [`String`] by repeating a string `n` times.
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if the capacity would overflow.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// assert_eq!("abc".repeat(4), String::from("abcabcabcabc"));
+ /// ```
+ ///
+ /// A panic upon overflow:
+ ///
+ /// ```should_panic
+ /// // this will panic at runtime
+ /// let huge = "0123456789abcdef".repeat(usize::MAX);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[must_use]
+ #[stable(feature = "repeat_str", since = "1.16.0")]
+ pub fn repeat(&self, n: usize) -> String {
+ unsafe { String::from_utf8_unchecked(self.as_bytes().repeat(n)) }
+ }
+
+ /// Returns a copy of this string where each character is mapped to its
+ /// ASCII upper case equivalent.
+ ///
+ /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
+ /// but non-ASCII letters are unchanged.
+ ///
+ /// To uppercase the value in-place, use [`make_ascii_uppercase`].
+ ///
+ /// To uppercase ASCII characters in addition to non-ASCII characters, use
+ /// [`to_uppercase`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let s = "Grüße, Jürgen ❤";
+ ///
+ /// assert_eq!("GRüßE, JüRGEN ❤", s.to_ascii_uppercase());
+ /// ```
+ ///
+ /// [`make_ascii_uppercase`]: str::make_ascii_uppercase
+ /// [`to_uppercase`]: #method.to_uppercase
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[must_use = "to uppercase the value in-place, use `make_ascii_uppercase()`"]
+ #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
+ #[inline]
+ pub fn to_ascii_uppercase(&self) -> String {
+ let mut bytes = self.as_bytes().to_vec();
+ bytes.make_ascii_uppercase();
+ // make_ascii_uppercase() preserves the UTF-8 invariant.
+ unsafe { String::from_utf8_unchecked(bytes) }
+ }
+
+ /// Returns a copy of this string where each character is mapped to its
+ /// ASCII lower case equivalent.
+ ///
+ /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
+ /// but non-ASCII letters are unchanged.
+ ///
+ /// To lowercase the value in-place, use [`make_ascii_lowercase`].
+ ///
+ /// To lowercase ASCII characters in addition to non-ASCII characters, use
+ /// [`to_lowercase`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let s = "Grüße, Jürgen ❤";
+ ///
+ /// assert_eq!("grüße, jürgen ❤", s.to_ascii_lowercase());
+ /// ```
+ ///
+ /// [`make_ascii_lowercase`]: str::make_ascii_lowercase
+ /// [`to_lowercase`]: #method.to_lowercase
+ #[cfg(not(no_global_oom_handling))]
+ #[rustc_allow_incoherent_impl]
+ #[must_use = "to lowercase the value in-place, use `make_ascii_lowercase()`"]
+ #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
+ #[inline]
+ pub fn to_ascii_lowercase(&self) -> String {
+ let mut bytes = self.as_bytes().to_vec();
+ bytes.make_ascii_lowercase();
+ // make_ascii_lowercase() preserves the UTF-8 invariant.
+ unsafe { String::from_utf8_unchecked(bytes) }
+ }
+}
+
+/// Converts a boxed slice of bytes to a boxed string slice without checking
+/// that the string contains valid UTF-8.
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// let smile_utf8 = Box::new([226, 152, 186]);
+/// let smile = unsafe { std::str::from_boxed_utf8_unchecked(smile_utf8) };
+///
+/// assert_eq!("☺", &*smile);
+/// ```
+#[stable(feature = "str_box_extras", since = "1.20.0")]
+#[must_use]
+#[inline]
+pub unsafe fn from_boxed_utf8_unchecked(v: Box<[u8]>) -> Box<str> {
+ unsafe { Box::from_raw(Box::into_raw(v) as *mut str) }
+}
diff --git a/rust/alloc/string.rs b/rust/alloc/string.rs
new file mode 100644
index 000000000000..2272c5b7330d
--- /dev/null
+++ b/rust/alloc/string.rs
@@ -0,0 +1,2942 @@
+//! A UTF-8–encoded, growable string.
+//!
+//! This module contains the [`String`] type, the [`ToString`] trait for
+//! converting to strings, and several error types that may result from
+//! working with [`String`]s.
+//!
+//! # Examples
+//!
+//! There are multiple ways to create a new [`String`] from a string literal:
+//!
+//! ```
+//! let s = "Hello".to_string();
+//!
+//! let s = String::from("world");
+//! let s: String = "also this".into();
+//! ```
+//!
+//! You can create a new [`String`] from an existing one by concatenating with
+//! `+`:
+//!
+//! ```
+//! let s = "Hello".to_string();
+//!
+//! let message = s + " world!";
+//! ```
+//!
+//! If you have a vector of valid UTF-8 bytes, you can make a [`String`] out of
+//! it. You can do the reverse too.
+//!
+//! ```
+//! let sparkle_heart = vec![240, 159, 146, 150];
+//!
+//! // We know these bytes are valid, so we'll use `unwrap()`.
+//! let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
+//!
+//! assert_eq!("💖", sparkle_heart);
+//!
+//! let bytes = sparkle_heart.into_bytes();
+//!
+//! assert_eq!(bytes, [240, 159, 146, 150]);
+//! ```
+
+#![stable(feature = "rust1", since = "1.0.0")]
+
+#[cfg(not(no_global_oom_handling))]
+use core::char::{decode_utf16, REPLACEMENT_CHARACTER};
+use core::fmt;
+use core::hash;
+#[cfg(not(no_global_oom_handling))]
+use core::iter::FromIterator;
+use core::iter::{from_fn, FusedIterator};
+#[cfg(not(no_global_oom_handling))]
+use core::ops::Add;
+#[cfg(not(no_global_oom_handling))]
+use core::ops::AddAssign;
+#[cfg(not(no_global_oom_handling))]
+use core::ops::Bound::{Excluded, Included, Unbounded};
+use core::ops::{self, Index, IndexMut, Range, RangeBounds};
+use core::ptr;
+use core::slice;
+#[cfg(not(no_global_oom_handling))]
+use core::str::lossy;
+use core::str::pattern::Pattern;
+
+#[cfg(not(no_global_oom_handling))]
+use crate::borrow::{Cow, ToOwned};
+use crate::boxed::Box;
+use crate::collections::TryReserveError;
+use crate::str::{self, Chars, Utf8Error};
+#[cfg(not(no_global_oom_handling))]
+use crate::str::{from_boxed_utf8_unchecked, FromStr};
+use crate::vec::Vec;
+
+/// A UTF-8–encoded, growable string.
+///
+/// The `String` type is the most common string type that has ownership over the
+/// contents of the string. It has a close relationship with its borrowed
+/// counterpart, the primitive [`str`].
+///
+/// # Examples
+///
+/// You can create a `String` from [a literal string][`&str`] with [`String::from`]:
+///
+/// [`String::from`]: From::from
+///
+/// ```
+/// let hello = String::from("Hello, world!");
+/// ```
+///
+/// You can append a [`char`] to a `String` with the [`push`] method, and
+/// append a [`&str`] with the [`push_str`] method:
+///
+/// ```
+/// let mut hello = String::from("Hello, ");
+///
+/// hello.push('w');
+/// hello.push_str("orld!");
+/// ```
+///
+/// [`push`]: String::push
+/// [`push_str`]: String::push_str
+///
+/// If you have a vector of UTF-8 bytes, you can create a `String` from it with
+/// the [`from_utf8`] method:
+///
+/// ```
+/// // some bytes, in a vector
+/// let sparkle_heart = vec![240, 159, 146, 150];
+///
+/// // We know these bytes are valid, so we'll use `unwrap()`.
+/// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
+///
+/// assert_eq!("💖", sparkle_heart);
+/// ```
+///
+/// [`from_utf8`]: String::from_utf8
+///
+/// # UTF-8
+///
+/// `String`s are always valid UTF-8. If you need a non-UTF-8 string, consider
+/// [`OsString`]. It is similar, but without the UTF-8 constraint. Because UTF-8
+/// is a variable width encoding, `String`s are typically smaller than an array of
+/// the same `chars`:
+///
+/// ```
+/// use std::mem;
+///
+/// // `s` is ASCII which represents each `char` as one byte
+/// let s = "hello";
+/// assert_eq!(s.len(), 5);
+///
+/// // A `char` array with the same contents would be longer because
+/// // every `char` is four bytes
+/// let s = ['h', 'e', 'l', 'l', 'o'];
+/// let size: usize = s.into_iter().map(|c| mem::size_of_val(&c)).sum();
+/// assert_eq!(size, 20);
+///
+/// // However, for non-ASCII strings, the difference will be smaller
+/// // and sometimes they are the same
+/// let s = "💖💖💖💖💖";
+/// assert_eq!(s.len(), 20);
+///
+/// let s = ['💖', '💖', '💖', '💖', '💖'];
+/// let size: usize = s.into_iter().map(|c| mem::size_of_val(&c)).sum();
+/// assert_eq!(size, 20);
+/// ```
+///
+/// This raises interesting questions as to how `s[i]` should work.
+/// What should `i` be here? Several options include byte indices and
+/// `char` indices but, because of UTF-8 encoding, only byte indices
+/// would provide constant time indexing. Getting the `i`th `char`, for
+/// example, is available using [`chars`]:
+///
+/// ```
+/// let s = "hello";
+/// let third_character = s.chars().nth(2);
+/// assert_eq!(third_character, Some('l'));
+///
+/// let s = "💖💖💖💖💖";
+/// let third_character = s.chars().nth(2);
+/// assert_eq!(third_character, Some('💖'));
+/// ```
+///
+/// Next, what should `s[i]` return? Because indexing returns a reference
+/// to underlying data it could be `&u8`, `&[u8]`, or something else similar.
+/// Since we're only providing one index, `&u8` makes the most sense but that
+/// might not be what the user expects and can be explicitly achieved with
+/// [`as_bytes()`]:
+///
+/// ```
+/// // The first byte is 104 - the byte value of `'h'`
+/// let s = "hello";
+/// assert_eq!(s.as_bytes()[0], 104);
+/// // or
+/// assert_eq!(s.as_bytes()[0], b'h');
+///
+/// // The first byte is 240 which isn't obviously useful
+/// let s = "💖💖💖💖💖";
+/// assert_eq!(s.as_bytes()[0], 240);
+/// ```
+///
+/// Due to these ambiguities/restrictions, indexing with a `usize` is simply
+/// forbidden:
+///
+/// ```compile_fail,E0277
+/// let s = "hello";
+///
+/// // The following will not compile!
+/// println!("The first letter of s is {}", s[0]);
+/// ```
+///
+/// It is more clear, however, how `&s[i..j]` should work (that is,
+/// indexing with a range). It should accept byte indices (to be constant-time)
+/// and return a `&str` which is UTF-8 encoded. This is also called "string slicing".
+/// Note this will panic if the byte indices provided are not character
+/// boundaries - see [`is_char_boundary`] for more details. See the implementations
+/// for [`SliceIndex<str>`] for more details on string slicing. For a non-panicking
+/// version of string slicing, see [`get`].
+///
+/// [`OsString`]: ../../std/ffi/struct.OsString.html "ffi::OsString"
+/// [`SliceIndex<str>`]: core::slice::SliceIndex
+/// [`as_bytes()`]: str::as_bytes
+/// [`get`]: str::get
+/// [`is_char_boundary`]: str::is_char_boundary
+///
+/// The [`bytes`] and [`chars`] methods return iterators over the bytes and
+/// codepoints of the string, respectively. To iterate over codepoints along
+/// with byte indices, use [`char_indices`].
+///
+/// [`bytes`]: str::bytes
+/// [`chars`]: str::chars
+/// [`char_indices`]: str::char_indices
+///
+/// # Deref
+///
+/// `String` implements <code>[Deref]<Target = [str]></code>, and so inherits all of [`str`]'s
+/// methods. In addition, this means that you can pass a `String` to a
+/// function which takes a [`&str`] by using an ampersand (`&`):
+///
+/// ```
+/// fn takes_str(s: &str) { }
+///
+/// let s = String::from("Hello");
+///
+/// takes_str(&s);
+/// ```
+///
+/// This will create a [`&str`] from the `String` and pass it in. This
+/// conversion is very inexpensive, and so generally, functions will accept
+/// [`&str`]s as arguments unless they need a `String` for some specific
+/// reason.
+///
+/// In certain cases Rust doesn't have enough information to make this
+/// conversion, known as [`Deref`] coercion. In the following example a string
+/// slice [`&'a str`][`&str`] implements the trait `TraitExample`, and the function
+/// `example_func` takes anything that implements the trait. In this case Rust
+/// would need to make two implicit conversions, which Rust doesn't have the
+/// means to do. For that reason, the following example will not compile.
+///
+/// ```compile_fail,E0277
+/// trait TraitExample {}
+///
+/// impl<'a> TraitExample for &'a str {}
+///
+/// fn example_func<A: TraitExample>(example_arg: A) {}
+///
+/// let example_string = String::from("example_string");
+/// example_func(&example_string);
+/// ```
+///
+/// There are two options that would work instead. The first would be to
+/// change the line `example_func(&example_string);` to
+/// `example_func(example_string.as_str());`, using the method [`as_str()`]
+/// to explicitly extract the string slice containing the string. The second
+/// way changes `example_func(&example_string);` to
+/// `example_func(&*example_string);`. In this case we are dereferencing a
+/// `String` to a [`str`], then referencing the [`str`] back to
+/// [`&str`]. The second way is more idiomatic, however both work to do the
+/// conversion explicitly rather than relying on the implicit conversion.
+///
+/// # Representation
+///
+/// A `String` is made up of three components: a pointer to some bytes, a
+/// length, and a capacity. The pointer points to an internal buffer `String`
+/// uses to store its data. The length is the number of bytes currently stored
+/// in the buffer, and the capacity is the size of the buffer in bytes. As such,
+/// the length will always be less than or equal to the capacity.
+///
+/// This buffer is always stored on the heap.
+///
+/// You can look at these with the [`as_ptr`], [`len`], and [`capacity`]
+/// methods:
+///
+/// ```
+/// use std::mem;
+///
+/// let story = String::from("Once upon a time...");
+///
+// FIXME Update this when vec_into_raw_parts is stabilized
+/// // Prevent automatically dropping the String's data
+/// let mut story = mem::ManuallyDrop::new(story);
+///
+/// let ptr = story.as_mut_ptr();
+/// let len = story.len();
+/// let capacity = story.capacity();
+///
+/// // story has nineteen bytes
+/// assert_eq!(19, len);
+///
+/// // We can re-build a String out of ptr, len, and capacity. This is all
+/// // unsafe because we are responsible for making sure the components are
+/// // valid:
+/// let s = unsafe { String::from_raw_parts(ptr, len, capacity) } ;
+///
+/// assert_eq!(String::from("Once upon a time..."), s);
+/// ```
+///
+/// [`as_ptr`]: str::as_ptr
+/// [`len`]: String::len
+/// [`capacity`]: String::capacity
+///
+/// If a `String` has enough capacity, adding elements to it will not
+/// re-allocate. For example, consider this program:
+///
+/// ```
+/// let mut s = String::new();
+///
+/// println!("{}", s.capacity());
+///
+/// for _ in 0..5 {
+/// s.push_str("hello");
+/// println!("{}", s.capacity());
+/// }
+/// ```
+///
+/// This will output the following:
+///
+/// ```text
+/// 0
+/// 5
+/// 10
+/// 20
+/// 20
+/// 40
+/// ```
+///
+/// At first, we have no memory allocated at all, but as we append to the
+/// string, it increases its capacity appropriately. If we instead use the
+/// [`with_capacity`] method to allocate the correct capacity initially:
+///
+/// ```
+/// let mut s = String::with_capacity(25);
+///
+/// println!("{}", s.capacity());
+///
+/// for _ in 0..5 {
+/// s.push_str("hello");
+/// println!("{}", s.capacity());
+/// }
+/// ```
+///
+/// [`with_capacity`]: String::with_capacity
+///
+/// We end up with a different output:
+///
+/// ```text
+/// 25
+/// 25
+/// 25
+/// 25
+/// 25
+/// 25
+/// ```
+///
+/// Here, there's no need to allocate more memory inside the loop.
+///
+/// [str]: prim@str "str"
+/// [`str`]: prim@str "str"
+/// [`&str`]: prim@str "&str"
+/// [Deref]: core::ops::Deref "ops::Deref"
+/// [`Deref`]: core::ops::Deref "ops::Deref"
+/// [`as_str()`]: String::as_str
+#[derive(PartialOrd, Eq, Ord)]
+#[cfg_attr(not(test), rustc_diagnostic_item = "String")]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct String {
+ vec: Vec<u8>,
+}
+
+/// A possible error value when converting a `String` from a UTF-8 byte vector.
+///
+/// This type is the error type for the [`from_utf8`] method on [`String`]. It
+/// is designed in such a way to carefully avoid reallocations: the
+/// [`into_bytes`] method will give back the byte vector that was used in the
+/// conversion attempt.
+///
+/// [`from_utf8`]: String::from_utf8
+/// [`into_bytes`]: FromUtf8Error::into_bytes
+///
+/// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
+/// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
+/// an analogue to `FromUtf8Error`, and you can get one from a `FromUtf8Error`
+/// through the [`utf8_error`] method.
+///
+/// [`Utf8Error`]: str::Utf8Error "std::str::Utf8Error"
+/// [`std::str`]: core::str "std::str"
+/// [`&str`]: prim@str "&str"
+/// [`utf8_error`]: FromUtf8Error::utf8_error
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// // some invalid bytes, in a vector
+/// let bytes = vec![0, 159];
+///
+/// let value = String::from_utf8(bytes);
+///
+/// assert!(value.is_err());
+/// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[cfg_attr(not(no_global_oom_handling), derive(Clone))]
+#[derive(Debug, PartialEq, Eq)]
+pub struct FromUtf8Error {
+ bytes: Vec<u8>,
+ error: Utf8Error,
+}
+
+/// A possible error value when converting a `String` from a UTF-16 byte slice.
+///
+/// This type is the error type for the [`from_utf16`] method on [`String`].
+///
+/// [`from_utf16`]: String::from_utf16
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// // 𝄞mu<invalid>ic
+/// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
+/// 0xD800, 0x0069, 0x0063];
+///
+/// assert!(String::from_utf16(v).is_err());
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[derive(Debug)]
+pub struct FromUtf16Error(());
+
+impl String {
+ /// Creates a new empty `String`.
+ ///
+ /// Given that the `String` is empty, this will not allocate any initial
+ /// buffer. While that means that this initial operation is very
+ /// inexpensive, it may cause excessive allocation later when you add
+ /// data. If you have an idea of how much data the `String` will hold,
+ /// consider the [`with_capacity`] method to prevent excessive
+ /// re-allocation.
+ ///
+ /// [`with_capacity`]: String::with_capacity
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = String::new();
+ /// ```
+ #[inline]
+ #[rustc_const_stable(feature = "const_string_new", since = "1.39.0")]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[must_use]
+ pub const fn new() -> String {
+ String { vec: Vec::new() }
+ }
+
+ /// Creates a new empty `String` with a particular capacity.
+ ///
+ /// `String`s have an internal buffer to hold their data. The capacity is
+ /// the length of that buffer, and can be queried with the [`capacity`]
+ /// method. This method creates an empty `String`, but one with an initial
+ /// buffer that can hold `capacity` bytes. This is useful when you may be
+ /// appending a bunch of data to the `String`, reducing the number of
+ /// reallocations it needs to do.
+ ///
+ /// [`capacity`]: String::capacity
+ ///
+ /// If the given capacity is `0`, no allocation will occur, and this method
+ /// is identical to the [`new`] method.
+ ///
+ /// [`new`]: String::new
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::with_capacity(10);
+ ///
+ /// // The String contains no chars, even though it has capacity for more
+ /// assert_eq!(s.len(), 0);
+ ///
+ /// // These are all done without reallocating...
+ /// let cap = s.capacity();
+ /// for _ in 0..10 {
+ /// s.push('a');
+ /// }
+ ///
+ /// assert_eq!(s.capacity(), cap);
+ ///
+ /// // ...but this may make the string reallocate
+ /// s.push('a');
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[must_use]
+ pub fn with_capacity(capacity: usize) -> String {
+ String { vec: Vec::with_capacity(capacity) }
+ }
+
+ // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
+ // required for this method definition, is not available. Since we don't
+ // require this method for testing purposes, I'll just stub it
+ // NB see the slice::hack module in slice.rs for more information
+ #[inline]
+ #[cfg(test)]
+ pub fn from_str(_: &str) -> String {
+ panic!("not available with cfg(test)");
+ }
+
+ /// Converts a vector of bytes to a `String`.
+ ///
+ /// A string ([`String`]) is made of bytes ([`u8`]), and a vector of bytes
+ /// ([`Vec<u8>`]) is made of bytes, so this function converts between the
+ /// two. Not all byte slices are valid `String`s, however: `String`
+ /// requires that it is valid UTF-8. `from_utf8()` checks to ensure that
+ /// the bytes are valid UTF-8, and then does the conversion.
+ ///
+ /// If you are sure that the byte slice is valid UTF-8, and you don't want
+ /// to incur the overhead of the validity check, there is an unsafe version
+ /// of this function, [`from_utf8_unchecked`], which has the same behavior
+ /// but skips the check.
+ ///
+ /// This method will take care to not copy the vector, for efficiency's
+ /// sake.
+ ///
+ /// If you need a [`&str`] instead of a `String`, consider
+ /// [`str::from_utf8`].
+ ///
+ /// The inverse of this method is [`into_bytes`].
+ ///
+ /// # Errors
+ ///
+ /// Returns [`Err`] if the slice is not UTF-8 with a description as to why the
+ /// provided bytes are not UTF-8. The vector you moved in is also included.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// // some bytes, in a vector
+ /// let sparkle_heart = vec![240, 159, 146, 150];
+ ///
+ /// // We know these bytes are valid, so we'll use `unwrap()`.
+ /// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
+ ///
+ /// assert_eq!("💖", sparkle_heart);
+ /// ```
+ ///
+ /// Incorrect bytes:
+ ///
+ /// ```
+ /// // some invalid bytes, in a vector
+ /// let sparkle_heart = vec![0, 159, 146, 150];
+ ///
+ /// assert!(String::from_utf8(sparkle_heart).is_err());
+ /// ```
+ ///
+ /// See the docs for [`FromUtf8Error`] for more details on what you can do
+ /// with this error.
+ ///
+ /// [`from_utf8_unchecked`]: String::from_utf8_unchecked
+ /// [`Vec<u8>`]: crate::vec::Vec "Vec"
+ /// [`&str`]: prim@str "&str"
+ /// [`into_bytes`]: String::into_bytes
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn from_utf8(vec: Vec<u8>) -> Result<String, FromUtf8Error> {
+ match str::from_utf8(&vec) {
+ Ok(..) => Ok(String { vec }),
+ Err(e) => Err(FromUtf8Error { bytes: vec, error: e }),
+ }
+ }
+
+ /// Converts a slice of bytes to a string, including invalid characters.
+ ///
+ /// Strings are made of bytes ([`u8`]), and a slice of bytes
+ /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts
+ /// between the two. Not all byte slices are valid strings, however: strings
+ /// are required to be valid UTF-8. During this conversion,
+ /// `from_utf8_lossy()` will replace any invalid UTF-8 sequences with
+ /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD], which looks like this: �
+ ///
+ /// [byteslice]: prim@slice
+ /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
+ ///
+ /// If you are sure that the byte slice is valid UTF-8, and you don't want
+ /// to incur the overhead of the conversion, there is an unsafe version
+ /// of this function, [`from_utf8_unchecked`], which has the same behavior
+ /// but skips the checks.
+ ///
+ /// [`from_utf8_unchecked`]: String::from_utf8_unchecked
+ ///
+ /// This function returns a [`Cow<'a, str>`]. If our byte slice is invalid
+ /// UTF-8, then we need to insert the replacement characters, which will
+ /// change the size of the string, and hence, require a `String`. But if
+ /// it's already valid UTF-8, we don't need a new allocation. This return
+ /// type allows us to handle both cases.
+ ///
+ /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// // some bytes, in a vector
+ /// let sparkle_heart = vec![240, 159, 146, 150];
+ ///
+ /// let sparkle_heart = String::from_utf8_lossy(&sparkle_heart);
+ ///
+ /// assert_eq!("💖", sparkle_heart);
+ /// ```
+ ///
+ /// Incorrect bytes:
+ ///
+ /// ```
+ /// // some invalid bytes
+ /// let input = b"Hello \xF0\x90\x80World";
+ /// let output = String::from_utf8_lossy(input);
+ ///
+ /// assert_eq!("Hello �World", output);
+ /// ```
+ #[must_use]
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn from_utf8_lossy(v: &[u8]) -> Cow<'_, str> {
+ let mut iter = lossy::Utf8Lossy::from_bytes(v).chunks();
+
+ let first_valid = if let Some(chunk) = iter.next() {
+ let lossy::Utf8LossyChunk { valid, broken } = chunk;
+ if broken.is_empty() {
+ debug_assert_eq!(valid.len(), v.len());
+ return Cow::Borrowed(valid);
+ }
+ valid
+ } else {
+ return Cow::Borrowed("");
+ };
+
+ const REPLACEMENT: &str = "\u{FFFD}";
+
+ let mut res = String::with_capacity(v.len());
+ res.push_str(first_valid);
+ res.push_str(REPLACEMENT);
+
+ for lossy::Utf8LossyChunk { valid, broken } in iter {
+ res.push_str(valid);
+ if !broken.is_empty() {
+ res.push_str(REPLACEMENT);
+ }
+ }
+
+ Cow::Owned(res)
+ }
+
+ /// Decode a UTF-16–encoded vector `v` into a `String`, returning [`Err`]
+ /// if `v` contains any invalid data.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// // 𝄞music
+ /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
+ /// 0x0073, 0x0069, 0x0063];
+ /// assert_eq!(String::from("𝄞music"),
+ /// String::from_utf16(v).unwrap());
+ ///
+ /// // 𝄞mu<invalid>ic
+ /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
+ /// 0xD800, 0x0069, 0x0063];
+ /// assert!(String::from_utf16(v).is_err());
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn from_utf16(v: &[u16]) -> Result<String, FromUtf16Error> {
+ // This isn't done via collect::<Result<_, _>>() for performance reasons.
+ // FIXME: the function can be simplified again when #48994 is closed.
+ let mut ret = String::with_capacity(v.len());
+ for c in decode_utf16(v.iter().cloned()) {
+ if let Ok(c) = c {
+ ret.push(c);
+ } else {
+ return Err(FromUtf16Error(()));
+ }
+ }
+ Ok(ret)
+ }
+
+ /// Decode a UTF-16–encoded slice `v` into a `String`, replacing
+ /// invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
+ ///
+ /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
+ /// `from_utf16_lossy` returns a `String` since the UTF-16 to UTF-8
+ /// conversion requires a memory allocation.
+ ///
+ /// [`from_utf8_lossy`]: String::from_utf8_lossy
+ /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
+ /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// // 𝄞mus<invalid>ic<invalid>
+ /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
+ /// 0x0073, 0xDD1E, 0x0069, 0x0063,
+ /// 0xD834];
+ ///
+ /// assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
+ /// String::from_utf16_lossy(v));
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[must_use]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn from_utf16_lossy(v: &[u16]) -> String {
+ decode_utf16(v.iter().cloned()).map(|r| r.unwrap_or(REPLACEMENT_CHARACTER)).collect()
+ }
+
+ /// Decomposes a `String` into its raw components.
+ ///
+ /// Returns the raw pointer to the underlying data, the length of
+ /// the string (in bytes), and the allocated capacity of the data
+ /// (in bytes). These are the same arguments in the same order as
+ /// the arguments to [`from_raw_parts`].
+ ///
+ /// After calling this function, the caller is responsible for the
+ /// memory previously managed by the `String`. The only way to do
+ /// this is to convert the raw pointer, length, and capacity back
+ /// into a `String` with the [`from_raw_parts`] function, allowing
+ /// the destructor to perform the cleanup.
+ ///
+ /// [`from_raw_parts`]: String::from_raw_parts
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(vec_into_raw_parts)]
+ /// let s = String::from("hello");
+ ///
+ /// let (ptr, len, cap) = s.into_raw_parts();
+ ///
+ /// let rebuilt = unsafe { String::from_raw_parts(ptr, len, cap) };
+ /// assert_eq!(rebuilt, "hello");
+ /// ```
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
+ pub fn into_raw_parts(self) -> (*mut u8, usize, usize) {
+ self.vec.into_raw_parts()
+ }
+
+ /// Creates a new `String` from a length, capacity, and pointer.
+ ///
+ /// # Safety
+ ///
+ /// This is highly unsafe, due to the number of invariants that aren't
+ /// checked:
+ ///
+ /// * The memory at `buf` needs to have been previously allocated by the
+ /// same allocator the standard library uses, with a required alignment of exactly 1.
+ /// * `length` needs to be less than or equal to `capacity`.
+ /// * `capacity` needs to be the correct value.
+ /// * The first `length` bytes at `buf` need to be valid UTF-8.
+ ///
+ /// Violating these may cause problems like corrupting the allocator's
+ /// internal data structures. For example, it is normally **not** safe to
+ /// build a `String` from a pointer to a C `char` array containing UTF-8
+ /// _unless_ you are certain that array was originally allocated by the
+ /// Rust standard library's allocator.
+ ///
+ /// The ownership of `buf` is effectively transferred to the
+ /// `String` which may then deallocate, reallocate or change the
+ /// contents of memory pointed to by the pointer at will. Ensure
+ /// that nothing else uses the pointer after calling this
+ /// function.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// use std::mem;
+ ///
+ /// unsafe {
+ /// let s = String::from("hello");
+ ///
+ // FIXME Update this when vec_into_raw_parts is stabilized
+ /// // Prevent automatically dropping the String's data
+ /// let mut s = mem::ManuallyDrop::new(s);
+ ///
+ /// let ptr = s.as_mut_ptr();
+ /// let len = s.len();
+ /// let capacity = s.capacity();
+ ///
+ /// let s = String::from_raw_parts(ptr, len, capacity);
+ ///
+ /// assert_eq!(String::from("hello"), s);
+ /// }
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub unsafe fn from_raw_parts(buf: *mut u8, length: usize, capacity: usize) -> String {
+ unsafe { String { vec: Vec::from_raw_parts(buf, length, capacity) } }
+ }
+
+ /// Converts a vector of bytes to a `String` without checking that the
+ /// string contains valid UTF-8.
+ ///
+ /// See the safe version, [`from_utf8`], for more details.
+ ///
+ /// [`from_utf8`]: String::from_utf8
+ ///
+ /// # Safety
+ ///
+ /// This function is unsafe because it does not check that the bytes passed
+ /// to it are valid UTF-8. If this constraint is violated, it may cause
+ /// memory unsafety issues with future users of the `String`, as the rest of
+ /// the standard library assumes that `String`s are valid UTF-8.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// // some bytes, in a vector
+ /// let sparkle_heart = vec![240, 159, 146, 150];
+ ///
+ /// let sparkle_heart = unsafe {
+ /// String::from_utf8_unchecked(sparkle_heart)
+ /// };
+ ///
+ /// assert_eq!("💖", sparkle_heart);
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub unsafe fn from_utf8_unchecked(bytes: Vec<u8>) -> String {
+ String { vec: bytes }
+ }
+
+ /// Converts a `String` into a byte vector.
+ ///
+ /// This consumes the `String`, so we do not need to copy its contents.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = String::from("hello");
+ /// let bytes = s.into_bytes();
+ ///
+ /// assert_eq!(&[104, 101, 108, 108, 111][..], &bytes[..]);
+ /// ```
+ #[inline]
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn into_bytes(self) -> Vec<u8> {
+ self.vec
+ }
+
+ /// Extracts a string slice containing the entire `String`.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = String::from("foo");
+ ///
+ /// assert_eq!("foo", s.as_str());
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "string_as_str", since = "1.7.0")]
+ pub fn as_str(&self) -> &str {
+ self
+ }
+
+ /// Converts a `String` into a mutable string slice.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("foobar");
+ /// let s_mut_str = s.as_mut_str();
+ ///
+ /// s_mut_str.make_ascii_uppercase();
+ ///
+ /// assert_eq!("FOOBAR", s_mut_str);
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "string_as_str", since = "1.7.0")]
+ pub fn as_mut_str(&mut self) -> &mut str {
+ self
+ }
+
+ /// Appends a given string slice onto the end of this `String`.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("foo");
+ ///
+ /// s.push_str("bar");
+ ///
+ /// assert_eq!("foobar", s);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn push_str(&mut self, string: &str) {
+ self.vec.extend_from_slice(string.as_bytes())
+ }
+
+ /// Copies elements from `src` range to the end of the string.
+ ///
+ /// ## Panics
+ ///
+ /// Panics if the starting point or end point do not lie on a [`char`]
+ /// boundary, or if they're out of bounds.
+ ///
+ /// ## Examples
+ ///
+ /// ```
+ /// #![feature(string_extend_from_within)]
+ /// let mut string = String::from("abcde");
+ ///
+ /// string.extend_from_within(2..);
+ /// assert_eq!(string, "abcdecde");
+ ///
+ /// string.extend_from_within(..2);
+ /// assert_eq!(string, "abcdecdeab");
+ ///
+ /// string.extend_from_within(4..8);
+ /// assert_eq!(string, "abcdecdeabecde");
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[unstable(feature = "string_extend_from_within", issue = "none")]
+ pub fn extend_from_within<R>(&mut self, src: R)
+ where
+ R: RangeBounds<usize>,
+ {
+ let src @ Range { start, end } = slice::range(src, ..self.len());
+
+ assert!(self.is_char_boundary(start));
+ assert!(self.is_char_boundary(end));
+
+ self.vec.extend_from_within(src);
+ }
+
+ /// Returns this `String`'s capacity, in bytes.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = String::with_capacity(10);
+ ///
+ /// assert!(s.capacity() >= 10);
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn capacity(&self) -> usize {
+ self.vec.capacity()
+ }
+
+ /// Ensures that this `String`'s capacity is at least `additional` bytes
+ /// larger than its length.
+ ///
+ /// The capacity may be increased by more than `additional` bytes if it
+ /// chooses, to prevent frequent reallocations.
+ ///
+ /// If you do not want this "at least" behavior, see the [`reserve_exact`]
+ /// method.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity overflows [`usize`].
+ ///
+ /// [`reserve_exact`]: String::reserve_exact
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::new();
+ ///
+ /// s.reserve(10);
+ ///
+ /// assert!(s.capacity() >= 10);
+ /// ```
+ ///
+ /// This might not actually increase the capacity:
+ ///
+ /// ```
+ /// let mut s = String::with_capacity(10);
+ /// s.push('a');
+ /// s.push('b');
+ ///
+ /// // s now has a length of 2 and a capacity of 10
+ /// assert_eq!(2, s.len());
+ /// assert_eq!(10, s.capacity());
+ ///
+ /// // Since we already have an extra 8 capacity, calling this...
+ /// s.reserve(8);
+ ///
+ /// // ... doesn't actually increase.
+ /// assert_eq!(10, s.capacity());
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn reserve(&mut self, additional: usize) {
+ self.vec.reserve(additional)
+ }
+
+ /// Ensures that this `String`'s capacity is `additional` bytes
+ /// larger than its length.
+ ///
+ /// Consider using the [`reserve`] method unless you absolutely know
+ /// better than the allocator.
+ ///
+ /// [`reserve`]: String::reserve
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity overflows `usize`.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::new();
+ ///
+ /// s.reserve_exact(10);
+ ///
+ /// assert!(s.capacity() >= 10);
+ /// ```
+ ///
+ /// This might not actually increase the capacity:
+ ///
+ /// ```
+ /// let mut s = String::with_capacity(10);
+ /// s.push('a');
+ /// s.push('b');
+ ///
+ /// // s now has a length of 2 and a capacity of 10
+ /// assert_eq!(2, s.len());
+ /// assert_eq!(10, s.capacity());
+ ///
+ /// // Since we already have an extra 8 capacity, calling this...
+ /// s.reserve_exact(8);
+ ///
+ /// // ... doesn't actually increase.
+ /// assert_eq!(10, s.capacity());
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn reserve_exact(&mut self, additional: usize) {
+ self.vec.reserve_exact(additional)
+ }
+
+ /// Tries to reserve capacity for at least `additional` more elements to be inserted
+ /// in the given `String`. The collection may reserve more space to avoid
+ /// frequent reallocations. After calling `reserve`, capacity will be
+ /// greater than or equal to `self.len() + additional`. Does nothing if
+ /// capacity is already sufficient.
+ ///
+ /// # Errors
+ ///
+ /// If the capacity overflows, or the allocator reports a failure, then an error
+ /// is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::TryReserveError;
+ ///
+ /// fn process_data(data: &str) -> Result<String, TryReserveError> {
+ /// let mut output = String::new();
+ ///
+ /// // Pre-reserve the memory, exiting if we can't
+ /// output.try_reserve(data.len())?;
+ ///
+ /// // Now we know this can't OOM in the middle of our complex work
+ /// output.push_str(data);
+ ///
+ /// Ok(output)
+ /// }
+ /// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
+ /// ```
+ #[stable(feature = "try_reserve", since = "1.57.0")]
+ pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
+ self.vec.try_reserve(additional)
+ }
+
+ /// Tries to reserve the minimum capacity for exactly `additional` more elements to
+ /// be inserted in the given `String`. After calling `try_reserve_exact`,
+ /// capacity will be greater than or equal to `self.len() + additional`.
+ /// Does nothing if the capacity is already sufficient.
+ ///
+ /// Note that the allocator may give the collection more space than it
+ /// requests. Therefore, capacity can not be relied upon to be precisely
+ /// minimal. Prefer [`try_reserve`] if future insertions are expected.
+ ///
+ /// [`try_reserve`]: String::try_reserve
+ ///
+ /// # Errors
+ ///
+ /// If the capacity overflows, or the allocator reports a failure, then an error
+ /// is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::TryReserveError;
+ ///
+ /// fn process_data(data: &str) -> Result<String, TryReserveError> {
+ /// let mut output = String::new();
+ ///
+ /// // Pre-reserve the memory, exiting if we can't
+ /// output.try_reserve_exact(data.len())?;
+ ///
+ /// // Now we know this can't OOM in the middle of our complex work
+ /// output.push_str(data);
+ ///
+ /// Ok(output)
+ /// }
+ /// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
+ /// ```
+ #[stable(feature = "try_reserve", since = "1.57.0")]
+ pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
+ self.vec.try_reserve_exact(additional)
+ }
+
+ /// Shrinks the capacity of this `String` to match its length.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("foo");
+ ///
+ /// s.reserve(100);
+ /// assert!(s.capacity() >= 100);
+ ///
+ /// s.shrink_to_fit();
+ /// assert_eq!(3, s.capacity());
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn shrink_to_fit(&mut self) {
+ self.vec.shrink_to_fit()
+ }
+
+ /// Shrinks the capacity of this `String` with a lower bound.
+ ///
+ /// The capacity will remain at least as large as both the length
+ /// and the supplied value.
+ ///
+ /// If the current capacity is less than the lower limit, this is a no-op.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut s = String::from("foo");
+ ///
+ /// s.reserve(100);
+ /// assert!(s.capacity() >= 100);
+ ///
+ /// s.shrink_to(10);
+ /// assert!(s.capacity() >= 10);
+ /// s.shrink_to(0);
+ /// assert!(s.capacity() >= 3);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "shrink_to", since = "1.56.0")]
+ pub fn shrink_to(&mut self, min_capacity: usize) {
+ self.vec.shrink_to(min_capacity)
+ }
+
+ /// Appends the given [`char`] to the end of this `String`.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("abc");
+ ///
+ /// s.push('1');
+ /// s.push('2');
+ /// s.push('3');
+ ///
+ /// assert_eq!("abc123", s);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn push(&mut self, ch: char) {
+ match ch.len_utf8() {
+ 1 => self.vec.push(ch as u8),
+ _ => self.vec.extend_from_slice(ch.encode_utf8(&mut [0; 4]).as_bytes()),
+ }
+ }
+
+ /// Returns a byte slice of this `String`'s contents.
+ ///
+ /// The inverse of this method is [`from_utf8`].
+ ///
+ /// [`from_utf8`]: String::from_utf8
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = String::from("hello");
+ ///
+ /// assert_eq!(&[104, 101, 108, 108, 111], s.as_bytes());
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn as_bytes(&self) -> &[u8] {
+ &self.vec
+ }
+
+ /// Shortens this `String` to the specified length.
+ ///
+ /// If `new_len` is greater than the string's current length, this has no
+ /// effect.
+ ///
+ /// Note that this method has no effect on the allocated capacity
+ /// of the string
+ ///
+ /// # Panics
+ ///
+ /// Panics if `new_len` does not lie on a [`char`] boundary.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("hello");
+ ///
+ /// s.truncate(2);
+ ///
+ /// assert_eq!("he", s);
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn truncate(&mut self, new_len: usize) {
+ if new_len <= self.len() {
+ assert!(self.is_char_boundary(new_len));
+ self.vec.truncate(new_len)
+ }
+ }
+
+ /// Removes the last character from the string buffer and returns it.
+ ///
+ /// Returns [`None`] if this `String` is empty.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("foo");
+ ///
+ /// assert_eq!(s.pop(), Some('o'));
+ /// assert_eq!(s.pop(), Some('o'));
+ /// assert_eq!(s.pop(), Some('f'));
+ ///
+ /// assert_eq!(s.pop(), None);
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn pop(&mut self) -> Option<char> {
+ let ch = self.chars().rev().next()?;
+ let newlen = self.len() - ch.len_utf8();
+ unsafe {
+ self.vec.set_len(newlen);
+ }
+ Some(ch)
+ }
+
+ /// Removes a [`char`] from this `String` at a byte position and returns it.
+ ///
+ /// This is an *O*(*n*) operation, as it requires copying every element in the
+ /// buffer.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `idx` is larger than or equal to the `String`'s length,
+ /// or if it does not lie on a [`char`] boundary.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("foo");
+ ///
+ /// assert_eq!(s.remove(0), 'f');
+ /// assert_eq!(s.remove(1), 'o');
+ /// assert_eq!(s.remove(0), 'o');
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn remove(&mut self, idx: usize) -> char {
+ let ch = match self[idx..].chars().next() {
+ Some(ch) => ch,
+ None => panic!("cannot remove a char from the end of a string"),
+ };
+
+ let next = idx + ch.len_utf8();
+ let len = self.len();
+ unsafe {
+ ptr::copy(self.vec.as_ptr().add(next), self.vec.as_mut_ptr().add(idx), len - next);
+ self.vec.set_len(len - (next - idx));
+ }
+ ch
+ }
+
+ /// Remove all matches of pattern `pat` in the `String`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(string_remove_matches)]
+ /// let mut s = String::from("Trees are not green, the sky is not blue.");
+ /// s.remove_matches("not ");
+ /// assert_eq!("Trees are green, the sky is blue.", s);
+ /// ```
+ ///
+ /// Matches will be detected and removed iteratively, so in cases where
+ /// patterns overlap, only the first pattern will be removed:
+ ///
+ /// ```
+ /// #![feature(string_remove_matches)]
+ /// let mut s = String::from("banana");
+ /// s.remove_matches("ana");
+ /// assert_eq!("bna", s);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[unstable(feature = "string_remove_matches", reason = "new API", issue = "72826")]
+ pub fn remove_matches<'a, P>(&'a mut self, pat: P)
+ where
+ P: for<'x> Pattern<'x>,
+ {
+ use core::str::pattern::Searcher;
+
+ let rejections = {
+ let mut searcher = pat.into_searcher(self);
+ // Per Searcher::next:
+ //
+ // A Match result needs to contain the whole matched pattern,
+ // however Reject results may be split up into arbitrary many
+ // adjacent fragments. Both ranges may have zero length.
+ //
+ // In practice the implementation of Searcher::next_match tends to
+ // be more efficient, so we use it here and do some work to invert
+ // matches into rejections since that's what we want to copy below.
+ let mut front = 0;
+ let rejections: Vec<_> = from_fn(|| {
+ let (start, end) = searcher.next_match()?;
+ let prev_front = front;
+ front = end;
+ Some((prev_front, start))
+ })
+ .collect();
+ rejections.into_iter().chain(core::iter::once((front, self.len())))
+ };
+
+ let mut len = 0;
+ let ptr = self.vec.as_mut_ptr();
+
+ for (start, end) in rejections {
+ let count = end - start;
+ if start != len {
+ // SAFETY: per Searcher::next:
+ //
+ // The stream of Match and Reject values up to a Done will
+ // contain index ranges that are adjacent, non-overlapping,
+ // covering the whole haystack, and laying on utf8
+ // boundaries.
+ unsafe {
+ ptr::copy(ptr.add(start), ptr.add(len), count);
+ }
+ }
+ len += count;
+ }
+
+ unsafe {
+ self.vec.set_len(len);
+ }
+ }
+
+ /// Retains only the characters specified by the predicate.
+ ///
+ /// In other words, remove all characters `c` such that `f(c)` returns `false`.
+ /// This method operates in place, visiting each character exactly once in the
+ /// original order, and preserves the order of the retained characters.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut s = String::from("f_o_ob_ar");
+ ///
+ /// s.retain(|c| c != '_');
+ ///
+ /// assert_eq!(s, "foobar");
+ /// ```
+ ///
+ /// Because the elements are visited exactly once in the original order,
+ /// external state may be used to decide which elements to keep.
+ ///
+ /// ```
+ /// let mut s = String::from("abcde");
+ /// let keep = [false, true, true, false, true];
+ /// let mut iter = keep.iter();
+ /// s.retain(|_| *iter.next().unwrap());
+ /// assert_eq!(s, "bce");
+ /// ```
+ #[inline]
+ #[stable(feature = "string_retain", since = "1.26.0")]
+ pub fn retain<F>(&mut self, mut f: F)
+ where
+ F: FnMut(char) -> bool,
+ {
+ struct SetLenOnDrop<'a> {
+ s: &'a mut String,
+ idx: usize,
+ del_bytes: usize,
+ }
+
+ impl<'a> Drop for SetLenOnDrop<'a> {
+ fn drop(&mut self) {
+ let new_len = self.idx - self.del_bytes;
+ debug_assert!(new_len <= self.s.len());
+ unsafe { self.s.vec.set_len(new_len) };
+ }
+ }
+
+ let len = self.len();
+ let mut guard = SetLenOnDrop { s: self, idx: 0, del_bytes: 0 };
+
+ while guard.idx < len {
+ let ch = unsafe { guard.s.get_unchecked(guard.idx..len).chars().next().unwrap() };
+ let ch_len = ch.len_utf8();
+
+ if !f(ch) {
+ guard.del_bytes += ch_len;
+ } else if guard.del_bytes > 0 {
+ unsafe {
+ ptr::copy(
+ guard.s.vec.as_ptr().add(guard.idx),
+ guard.s.vec.as_mut_ptr().add(guard.idx - guard.del_bytes),
+ ch_len,
+ );
+ }
+ }
+
+ // Point idx to the next char
+ guard.idx += ch_len;
+ }
+
+ drop(guard);
+ }
+
+ /// Inserts a character into this `String` at a byte position.
+ ///
+ /// This is an *O*(*n*) operation as it requires copying every element in the
+ /// buffer.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `idx` is larger than the `String`'s length, or if it does not
+ /// lie on a [`char`] boundary.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::with_capacity(3);
+ ///
+ /// s.insert(0, 'f');
+ /// s.insert(1, 'o');
+ /// s.insert(2, 'o');
+ ///
+ /// assert_eq!("foo", s);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn insert(&mut self, idx: usize, ch: char) {
+ assert!(self.is_char_boundary(idx));
+ let mut bits = [0; 4];
+ let bits = ch.encode_utf8(&mut bits).as_bytes();
+
+ unsafe {
+ self.insert_bytes(idx, bits);
+ }
+ }
+
+ #[cfg(not(no_global_oom_handling))]
+ unsafe fn insert_bytes(&mut self, idx: usize, bytes: &[u8]) {
+ let len = self.len();
+ let amt = bytes.len();
+ self.vec.reserve(amt);
+
+ unsafe {
+ ptr::copy(self.vec.as_ptr().add(idx), self.vec.as_mut_ptr().add(idx + amt), len - idx);
+ ptr::copy_nonoverlapping(bytes.as_ptr(), self.vec.as_mut_ptr().add(idx), amt);
+ self.vec.set_len(len + amt);
+ }
+ }
+
+ /// Inserts a string slice into this `String` at a byte position.
+ ///
+ /// This is an *O*(*n*) operation as it requires copying every element in the
+ /// buffer.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `idx` is larger than the `String`'s length, or if it does not
+ /// lie on a [`char`] boundary.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("bar");
+ ///
+ /// s.insert_str(0, "foo");
+ ///
+ /// assert_eq!("foobar", s);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "insert_str", since = "1.16.0")]
+ pub fn insert_str(&mut self, idx: usize, string: &str) {
+ assert!(self.is_char_boundary(idx));
+
+ unsafe {
+ self.insert_bytes(idx, string.as_bytes());
+ }
+ }
+
+ /// Returns a mutable reference to the contents of this `String`.
+ ///
+ /// # Safety
+ ///
+ /// This function is unsafe because the returned `&mut Vec` allows writing
+ /// bytes which are not valid UTF-8. If this constraint is violated, using
+ /// the original `String` after dropping the `&mut Vec` may violate memory
+ /// safety, as the rest of the standard library assumes that `String`s are
+ /// valid UTF-8.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("hello");
+ ///
+ /// unsafe {
+ /// let vec = s.as_mut_vec();
+ /// assert_eq!(&[104, 101, 108, 108, 111][..], &vec[..]);
+ ///
+ /// vec.reverse();
+ /// }
+ /// assert_eq!(s, "olleh");
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub unsafe fn as_mut_vec(&mut self) -> &mut Vec<u8> {
+ &mut self.vec
+ }
+
+ /// Returns the length of this `String`, in bytes, not [`char`]s or
+ /// graphemes. In other words, it might not be what a human considers the
+ /// length of the string.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let a = String::from("foo");
+ /// assert_eq!(a.len(), 3);
+ ///
+ /// let fancy_f = String::from("ƒoo");
+ /// assert_eq!(fancy_f.len(), 4);
+ /// assert_eq!(fancy_f.chars().count(), 3);
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn len(&self) -> usize {
+ self.vec.len()
+ }
+
+ /// Returns `true` if this `String` has a length of zero, and `false` otherwise.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut v = String::new();
+ /// assert!(v.is_empty());
+ ///
+ /// v.push('a');
+ /// assert!(!v.is_empty());
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ /// Splits the string into two at the given byte index.
+ ///
+ /// Returns a newly allocated `String`. `self` contains bytes `[0, at)`, and
+ /// the returned `String` contains bytes `[at, len)`. `at` must be on the
+ /// boundary of a UTF-8 code point.
+ ///
+ /// Note that the capacity of `self` does not change.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `at` is not on a `UTF-8` code point boundary, or if it is beyond the last
+ /// code point of the string.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # fn main() {
+ /// let mut hello = String::from("Hello, World!");
+ /// let world = hello.split_off(7);
+ /// assert_eq!(hello, "Hello, ");
+ /// assert_eq!(world, "World!");
+ /// # }
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "string_split_off", since = "1.16.0")]
+ #[must_use = "use `.truncate()` if you don't need the other half"]
+ pub fn split_off(&mut self, at: usize) -> String {
+ assert!(self.is_char_boundary(at));
+ let other = self.vec.split_off(at);
+ unsafe { String::from_utf8_unchecked(other) }
+ }
+
+ /// Truncates this `String`, removing all contents.
+ ///
+ /// While this means the `String` will have a length of zero, it does not
+ /// touch its capacity.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("foo");
+ ///
+ /// s.clear();
+ ///
+ /// assert!(s.is_empty());
+ /// assert_eq!(0, s.len());
+ /// assert_eq!(3, s.capacity());
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn clear(&mut self) {
+ self.vec.clear()
+ }
+
+ /// Removes the specified range from the string in bulk, returning all
+ /// removed characters as an iterator.
+ ///
+ /// The returned iterator keeps a mutable borrow on the string to optimize
+ /// its implementation.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the starting point or end point do not lie on a [`char`]
+ /// boundary, or if they're out of bounds.
+ ///
+ /// # Leaking
+ ///
+ /// If the returned iterator goes out of scope without being dropped (due to
+ /// [`core::mem::forget`], for example), the string may still contain a copy
+ /// of any drained characters, or may have lost characters arbitrarily,
+ /// including characters outside the range.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("α is alpha, β is beta");
+ /// let beta_offset = s.find('β').unwrap_or(s.len());
+ ///
+ /// // Remove the range up until the β from the string
+ /// let t: String = s.drain(..beta_offset).collect();
+ /// assert_eq!(t, "α is alpha, ");
+ /// assert_eq!(s, "β is beta");
+ ///
+ /// // A full range clears the string, like `clear()` does
+ /// s.drain(..);
+ /// assert_eq!(s, "");
+ /// ```
+ #[stable(feature = "drain", since = "1.6.0")]
+ pub fn drain<R>(&mut self, range: R) -> Drain<'_>
+ where
+ R: RangeBounds<usize>,
+ {
+ // Memory safety
+ //
+ // The String version of Drain does not have the memory safety issues
+ // of the vector version. The data is just plain bytes.
+ // Because the range removal happens in Drop, if the Drain iterator is leaked,
+ // the removal will not happen.
+ let Range { start, end } = slice::range(range, ..self.len());
+ assert!(self.is_char_boundary(start));
+ assert!(self.is_char_boundary(end));
+
+ // Take out two simultaneous borrows. The &mut String won't be accessed
+ // until iteration is over, in Drop.
+ let self_ptr = self as *mut _;
+ // SAFETY: `slice::range` and `is_char_boundary` do the appropriate bounds checks.
+ let chars_iter = unsafe { self.get_unchecked(start..end) }.chars();
+
+ Drain { start, end, iter: chars_iter, string: self_ptr }
+ }
+
+ /// Removes the specified range in the string,
+ /// and replaces it with the given string.
+ /// The given string doesn't need to be the same length as the range.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the starting point or end point do not lie on a [`char`]
+ /// boundary, or if they're out of bounds.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let mut s = String::from("α is alpha, β is beta");
+ /// let beta_offset = s.find('β').unwrap_or(s.len());
+ ///
+ /// // Replace the range up until the β from the string
+ /// s.replace_range(..beta_offset, "Α is capital alpha; ");
+ /// assert_eq!(s, "Α is capital alpha; β is beta");
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "splice", since = "1.27.0")]
+ pub fn replace_range<R>(&mut self, range: R, replace_with: &str)
+ where
+ R: RangeBounds<usize>,
+ {
+ // Memory safety
+ //
+ // Replace_range does not have the memory safety issues of a vector Splice.
+ // of the vector version. The data is just plain bytes.
+
+ // WARNING: Inlining this variable would be unsound (#81138)
+ let start = range.start_bound();
+ match start {
+ Included(&n) => assert!(self.is_char_boundary(n)),
+ Excluded(&n) => assert!(self.is_char_boundary(n + 1)),
+ Unbounded => {}
+ };
+ // WARNING: Inlining this variable would be unsound (#81138)
+ let end = range.end_bound();
+ match end {
+ Included(&n) => assert!(self.is_char_boundary(n + 1)),
+ Excluded(&n) => assert!(self.is_char_boundary(n)),
+ Unbounded => {}
+ };
+
+ // Using `range` again would be unsound (#81138)
+ // We assume the bounds reported by `range` remain the same, but
+ // an adversarial implementation could change between calls
+ unsafe { self.as_mut_vec() }.splice((start, end), replace_with.bytes());
+ }
+
+ /// Converts this `String` into a <code>[Box]<[str]></code>.
+ ///
+ /// This will drop any excess capacity.
+ ///
+ /// [str]: prim@str "str"
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s = String::from("hello");
+ ///
+ /// let b = s.into_boxed_str();
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "box_str", since = "1.4.0")]
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[inline]
+ pub fn into_boxed_str(self) -> Box<str> {
+ let slice = self.vec.into_boxed_slice();
+ unsafe { from_boxed_utf8_unchecked(slice) }
+ }
+}
+
+impl FromUtf8Error {
+ /// Returns a slice of [`u8`]s bytes that were attempted to convert to a `String`.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// // some invalid bytes, in a vector
+ /// let bytes = vec![0, 159];
+ ///
+ /// let value = String::from_utf8(bytes);
+ ///
+ /// assert_eq!(&[0, 159], value.unwrap_err().as_bytes());
+ /// ```
+ #[must_use]
+ #[stable(feature = "from_utf8_error_as_bytes", since = "1.26.0")]
+ pub fn as_bytes(&self) -> &[u8] {
+ &self.bytes[..]
+ }
+
+ /// Returns the bytes that were attempted to convert to a `String`.
+ ///
+ /// This method is carefully constructed to avoid allocation. It will
+ /// consume the error, moving out the bytes, so that a copy of the bytes
+ /// does not need to be made.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// // some invalid bytes, in a vector
+ /// let bytes = vec![0, 159];
+ ///
+ /// let value = String::from_utf8(bytes);
+ ///
+ /// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
+ /// ```
+ #[must_use = "`self` will be dropped if the result is not used"]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn into_bytes(self) -> Vec<u8> {
+ self.bytes
+ }
+
+ /// Fetch a `Utf8Error` to get more details about the conversion failure.
+ ///
+ /// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
+ /// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
+ /// an analogue to `FromUtf8Error`. See its documentation for more details
+ /// on using it.
+ ///
+ /// [`std::str`]: core::str "std::str"
+ /// [`&str`]: prim@str "&str"
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// // some invalid bytes, in a vector
+ /// let bytes = vec![0, 159];
+ ///
+ /// let error = String::from_utf8(bytes).unwrap_err().utf8_error();
+ ///
+ /// // the first byte is invalid here
+ /// assert_eq!(1, error.valid_up_to());
+ /// ```
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn utf8_error(&self) -> Utf8Error {
+ self.error
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl fmt::Display for FromUtf8Error {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Display::fmt(&self.error, f)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl fmt::Display for FromUtf16Error {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Display::fmt("invalid utf-16: lone surrogate found", f)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Clone for String {
+ fn clone(&self) -> Self {
+ String { vec: self.vec.clone() }
+ }
+
+ fn clone_from(&mut self, source: &Self) {
+ self.vec.clone_from(&source.vec);
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl FromIterator<char> for String {
+ fn from_iter<I: IntoIterator<Item = char>>(iter: I) -> String {
+ let mut buf = String::new();
+ buf.extend(iter);
+ buf
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "string_from_iter_by_ref", since = "1.17.0")]
+impl<'a> FromIterator<&'a char> for String {
+ fn from_iter<I: IntoIterator<Item = &'a char>>(iter: I) -> String {
+ let mut buf = String::new();
+ buf.extend(iter);
+ buf
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a> FromIterator<&'a str> for String {
+ fn from_iter<I: IntoIterator<Item = &'a str>>(iter: I) -> String {
+ let mut buf = String::new();
+ buf.extend(iter);
+ buf
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "extend_string", since = "1.4.0")]
+impl FromIterator<String> for String {
+ fn from_iter<I: IntoIterator<Item = String>>(iter: I) -> String {
+ let mut iterator = iter.into_iter();
+
+ // Because we're iterating over `String`s, we can avoid at least
+ // one allocation by getting the first string from the iterator
+ // and appending to it all the subsequent strings.
+ match iterator.next() {
+ None => String::new(),
+ Some(mut buf) => {
+ buf.extend(iterator);
+ buf
+ }
+ }
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "box_str2", since = "1.45.0")]
+impl FromIterator<Box<str>> for String {
+ fn from_iter<I: IntoIterator<Item = Box<str>>>(iter: I) -> String {
+ let mut buf = String::new();
+ buf.extend(iter);
+ buf
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "herd_cows", since = "1.19.0")]
+impl<'a> FromIterator<Cow<'a, str>> for String {
+ fn from_iter<I: IntoIterator<Item = Cow<'a, str>>>(iter: I) -> String {
+ let mut iterator = iter.into_iter();
+
+ // Because we're iterating over CoWs, we can (potentially) avoid at least
+ // one allocation by getting the first item and appending to it all the
+ // subsequent items.
+ match iterator.next() {
+ None => String::new(),
+ Some(cow) => {
+ let mut buf = cow.into_owned();
+ buf.extend(iterator);
+ buf
+ }
+ }
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Extend<char> for String {
+ fn extend<I: IntoIterator<Item = char>>(&mut self, iter: I) {
+ let iterator = iter.into_iter();
+ let (lower_bound, _) = iterator.size_hint();
+ self.reserve(lower_bound);
+ iterator.for_each(move |c| self.push(c));
+ }
+
+ #[inline]
+ fn extend_one(&mut self, c: char) {
+ self.push(c);
+ }
+
+ #[inline]
+ fn extend_reserve(&mut self, additional: usize) {
+ self.reserve(additional);
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "extend_ref", since = "1.2.0")]
+impl<'a> Extend<&'a char> for String {
+ fn extend<I: IntoIterator<Item = &'a char>>(&mut self, iter: I) {
+ self.extend(iter.into_iter().cloned());
+ }
+
+ #[inline]
+ fn extend_one(&mut self, &c: &'a char) {
+ self.push(c);
+ }
+
+ #[inline]
+ fn extend_reserve(&mut self, additional: usize) {
+ self.reserve(additional);
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a> Extend<&'a str> for String {
+ fn extend<I: IntoIterator<Item = &'a str>>(&mut self, iter: I) {
+ iter.into_iter().for_each(move |s| self.push_str(s));
+ }
+
+ #[inline]
+ fn extend_one(&mut self, s: &'a str) {
+ self.push_str(s);
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "box_str2", since = "1.45.0")]
+impl Extend<Box<str>> for String {
+ fn extend<I: IntoIterator<Item = Box<str>>>(&mut self, iter: I) {
+ iter.into_iter().for_each(move |s| self.push_str(&s));
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "extend_string", since = "1.4.0")]
+impl Extend<String> for String {
+ fn extend<I: IntoIterator<Item = String>>(&mut self, iter: I) {
+ iter.into_iter().for_each(move |s| self.push_str(&s));
+ }
+
+ #[inline]
+ fn extend_one(&mut self, s: String) {
+ self.push_str(&s);
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "herd_cows", since = "1.19.0")]
+impl<'a> Extend<Cow<'a, str>> for String {
+ fn extend<I: IntoIterator<Item = Cow<'a, str>>>(&mut self, iter: I) {
+ iter.into_iter().for_each(move |s| self.push_str(&s));
+ }
+
+ #[inline]
+ fn extend_one(&mut self, s: Cow<'a, str>) {
+ self.push_str(&s);
+ }
+}
+
+/// A convenience impl that delegates to the impl for `&str`.
+///
+/// # Examples
+///
+/// ```
+/// assert_eq!(String::from("Hello world").find("world"), Some(6));
+/// ```
+#[unstable(
+ feature = "pattern",
+ reason = "API not fully fleshed out and ready to be stabilized",
+ issue = "27721"
+)]
+impl<'a, 'b> Pattern<'a> for &'b String {
+ type Searcher = <&'b str as Pattern<'a>>::Searcher;
+
+ fn into_searcher(self, haystack: &'a str) -> <&'b str as Pattern<'a>>::Searcher {
+ self[..].into_searcher(haystack)
+ }
+
+ #[inline]
+ fn is_contained_in(self, haystack: &'a str) -> bool {
+ self[..].is_contained_in(haystack)
+ }
+
+ #[inline]
+ fn is_prefix_of(self, haystack: &'a str) -> bool {
+ self[..].is_prefix_of(haystack)
+ }
+
+ #[inline]
+ fn strip_prefix_of(self, haystack: &'a str) -> Option<&'a str> {
+ self[..].strip_prefix_of(haystack)
+ }
+
+ #[inline]
+ fn is_suffix_of(self, haystack: &'a str) -> bool {
+ self[..].is_suffix_of(haystack)
+ }
+
+ #[inline]
+ fn strip_suffix_of(self, haystack: &'a str) -> Option<&'a str> {
+ self[..].strip_suffix_of(haystack)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl PartialEq for String {
+ #[inline]
+ fn eq(&self, other: &String) -> bool {
+ PartialEq::eq(&self[..], &other[..])
+ }
+ #[inline]
+ fn ne(&self, other: &String) -> bool {
+ PartialEq::ne(&self[..], &other[..])
+ }
+}
+
+macro_rules! impl_eq {
+ ($lhs:ty, $rhs: ty) => {
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[allow(unused_lifetimes)]
+ impl<'a, 'b> PartialEq<$rhs> for $lhs {
+ #[inline]
+ fn eq(&self, other: &$rhs) -> bool {
+ PartialEq::eq(&self[..], &other[..])
+ }
+ #[inline]
+ fn ne(&self, other: &$rhs) -> bool {
+ PartialEq::ne(&self[..], &other[..])
+ }
+ }
+
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[allow(unused_lifetimes)]
+ impl<'a, 'b> PartialEq<$lhs> for $rhs {
+ #[inline]
+ fn eq(&self, other: &$lhs) -> bool {
+ PartialEq::eq(&self[..], &other[..])
+ }
+ #[inline]
+ fn ne(&self, other: &$lhs) -> bool {
+ PartialEq::ne(&self[..], &other[..])
+ }
+ }
+ };
+}
+
+impl_eq! { String, str }
+impl_eq! { String, &'a str }
+#[cfg(not(no_global_oom_handling))]
+impl_eq! { Cow<'a, str>, str }
+#[cfg(not(no_global_oom_handling))]
+impl_eq! { Cow<'a, str>, &'b str }
+#[cfg(not(no_global_oom_handling))]
+impl_eq! { Cow<'a, str>, String }
+
+#[stable(feature = "rust1", since = "1.0.0")]
+#[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
+impl const Default for String {
+ /// Creates an empty `String`.
+ #[inline]
+ fn default() -> String {
+ String::new()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl fmt::Display for String {
+ #[inline]
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Display::fmt(&**self, f)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl fmt::Debug for String {
+ #[inline]
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Debug::fmt(&**self, f)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl hash::Hash for String {
+ #[inline]
+ fn hash<H: hash::Hasher>(&self, hasher: &mut H) {
+ (**self).hash(hasher)
+ }
+}
+
+/// Implements the `+` operator for concatenating two strings.
+///
+/// This consumes the `String` on the left-hand side and re-uses its buffer (growing it if
+/// necessary). This is done to avoid allocating a new `String` and copying the entire contents on
+/// every operation, which would lead to *O*(*n*^2) running time when building an *n*-byte string by
+/// repeated concatenation.
+///
+/// The string on the right-hand side is only borrowed; its contents are copied into the returned
+/// `String`.
+///
+/// # Examples
+///
+/// Concatenating two `String`s takes the first by value and borrows the second:
+///
+/// ```
+/// let a = String::from("hello");
+/// let b = String::from(" world");
+/// let c = a + &b;
+/// // `a` is moved and can no longer be used here.
+/// ```
+///
+/// If you want to keep using the first `String`, you can clone it and append to the clone instead:
+///
+/// ```
+/// let a = String::from("hello");
+/// let b = String::from(" world");
+/// let c = a.clone() + &b;
+/// // `a` is still valid here.
+/// ```
+///
+/// Concatenating `&str` slices can be done by converting the first to a `String`:
+///
+/// ```
+/// let a = "hello";
+/// let b = " world";
+/// let c = a.to_string() + b;
+/// ```
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Add<&str> for String {
+ type Output = String;
+
+ #[inline]
+ fn add(mut self, other: &str) -> String {
+ self.push_str(other);
+ self
+ }
+}
+
+/// Implements the `+=` operator for appending to a `String`.
+///
+/// This has the same behavior as the [`push_str`][String::push_str] method.
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "stringaddassign", since = "1.12.0")]
+impl AddAssign<&str> for String {
+ #[inline]
+ fn add_assign(&mut self, other: &str) {
+ self.push_str(other);
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl ops::Index<ops::Range<usize>> for String {
+ type Output = str;
+
+ #[inline]
+ fn index(&self, index: ops::Range<usize>) -> &str {
+ &self[..][index]
+ }
+}
+#[stable(feature = "rust1", since = "1.0.0")]
+impl ops::Index<ops::RangeTo<usize>> for String {
+ type Output = str;
+
+ #[inline]
+ fn index(&self, index: ops::RangeTo<usize>) -> &str {
+ &self[..][index]
+ }
+}
+#[stable(feature = "rust1", since = "1.0.0")]
+impl ops::Index<ops::RangeFrom<usize>> for String {
+ type Output = str;
+
+ #[inline]
+ fn index(&self, index: ops::RangeFrom<usize>) -> &str {
+ &self[..][index]
+ }
+}
+#[stable(feature = "rust1", since = "1.0.0")]
+impl ops::Index<ops::RangeFull> for String {
+ type Output = str;
+
+ #[inline]
+ fn index(&self, _index: ops::RangeFull) -> &str {
+ unsafe { str::from_utf8_unchecked(&self.vec) }
+ }
+}
+#[stable(feature = "inclusive_range", since = "1.26.0")]
+impl ops::Index<ops::RangeInclusive<usize>> for String {
+ type Output = str;
+
+ #[inline]
+ fn index(&self, index: ops::RangeInclusive<usize>) -> &str {
+ Index::index(&**self, index)
+ }
+}
+#[stable(feature = "inclusive_range", since = "1.26.0")]
+impl ops::Index<ops::RangeToInclusive<usize>> for String {
+ type Output = str;
+
+ #[inline]
+ fn index(&self, index: ops::RangeToInclusive<usize>) -> &str {
+ Index::index(&**self, index)
+ }
+}
+
+#[stable(feature = "derefmut_for_string", since = "1.3.0")]
+impl ops::IndexMut<ops::Range<usize>> for String {
+ #[inline]
+ fn index_mut(&mut self, index: ops::Range<usize>) -> &mut str {
+ &mut self[..][index]
+ }
+}
+#[stable(feature = "derefmut_for_string", since = "1.3.0")]
+impl ops::IndexMut<ops::RangeTo<usize>> for String {
+ #[inline]
+ fn index_mut(&mut self, index: ops::RangeTo<usize>) -> &mut str {
+ &mut self[..][index]
+ }
+}
+#[stable(feature = "derefmut_for_string", since = "1.3.0")]
+impl ops::IndexMut<ops::RangeFrom<usize>> for String {
+ #[inline]
+ fn index_mut(&mut self, index: ops::RangeFrom<usize>) -> &mut str {
+ &mut self[..][index]
+ }
+}
+#[stable(feature = "derefmut_for_string", since = "1.3.0")]
+impl ops::IndexMut<ops::RangeFull> for String {
+ #[inline]
+ fn index_mut(&mut self, _index: ops::RangeFull) -> &mut str {
+ unsafe { str::from_utf8_unchecked_mut(&mut *self.vec) }
+ }
+}
+#[stable(feature = "inclusive_range", since = "1.26.0")]
+impl ops::IndexMut<ops::RangeInclusive<usize>> for String {
+ #[inline]
+ fn index_mut(&mut self, index: ops::RangeInclusive<usize>) -> &mut str {
+ IndexMut::index_mut(&mut **self, index)
+ }
+}
+#[stable(feature = "inclusive_range", since = "1.26.0")]
+impl ops::IndexMut<ops::RangeToInclusive<usize>> for String {
+ #[inline]
+ fn index_mut(&mut self, index: ops::RangeToInclusive<usize>) -> &mut str {
+ IndexMut::index_mut(&mut **self, index)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl ops::Deref for String {
+ type Target = str;
+
+ #[inline]
+ fn deref(&self) -> &str {
+ unsafe { str::from_utf8_unchecked(&self.vec) }
+ }
+}
+
+#[stable(feature = "derefmut_for_string", since = "1.3.0")]
+impl ops::DerefMut for String {
+ #[inline]
+ fn deref_mut(&mut self) -> &mut str {
+ unsafe { str::from_utf8_unchecked_mut(&mut *self.vec) }
+ }
+}
+
+/// A type alias for [`Infallible`].
+///
+/// This alias exists for backwards compatibility, and may be eventually deprecated.
+///
+/// [`Infallible`]: core::convert::Infallible "convert::Infallible"
+#[stable(feature = "str_parse_error", since = "1.5.0")]
+pub type ParseError = core::convert::Infallible;
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl FromStr for String {
+ type Err = core::convert::Infallible;
+ #[inline]
+ fn from_str(s: &str) -> Result<String, Self::Err> {
+ Ok(String::from(s))
+ }
+}
+
+/// A trait for converting a value to a `String`.
+///
+/// This trait is automatically implemented for any type which implements the
+/// [`Display`] trait. As such, `ToString` shouldn't be implemented directly:
+/// [`Display`] should be implemented instead, and you get the `ToString`
+/// implementation for free.
+///
+/// [`Display`]: fmt::Display
+#[cfg_attr(not(test), rustc_diagnostic_item = "ToString")]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub trait ToString {
+ /// Converts the given value to a `String`.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let i = 5;
+ /// let five = String::from("5");
+ ///
+ /// assert_eq!(five, i.to_string());
+ /// ```
+ #[rustc_conversion_suggestion]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn to_string(&self) -> String;
+}
+
+/// # Panics
+///
+/// In this implementation, the `to_string` method panics
+/// if the `Display` implementation returns an error.
+/// This indicates an incorrect `Display` implementation
+/// since `fmt::Write for String` never returns an error itself.
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: fmt::Display + ?Sized> ToString for T {
+ // A common guideline is to not inline generic functions. However,
+ // removing `#[inline]` from this method causes non-negligible regressions.
+ // See <https://github.com/rust-lang/rust/pull/74852>, the last attempt
+ // to try to remove it.
+ #[inline]
+ default fn to_string(&self) -> String {
+ let mut buf = String::new();
+ let mut formatter = core::fmt::Formatter::new(&mut buf);
+ // Bypass format_args!() to avoid write_str with zero-length strs
+ fmt::Display::fmt(self, &mut formatter)
+ .expect("a Display implementation returned an error unexpectedly");
+ buf
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "char_to_string_specialization", since = "1.46.0")]
+impl ToString for char {
+ #[inline]
+ fn to_string(&self) -> String {
+ String::from(self.encode_utf8(&mut [0; 4]))
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "u8_to_string_specialization", since = "1.54.0")]
+impl ToString for u8 {
+ #[inline]
+ fn to_string(&self) -> String {
+ let mut buf = String::with_capacity(3);
+ let mut n = *self;
+ if n >= 10 {
+ if n >= 100 {
+ buf.push((b'0' + n / 100) as char);
+ n %= 100;
+ }
+ buf.push((b'0' + n / 10) as char);
+ n %= 10;
+ }
+ buf.push((b'0' + n) as char);
+ buf
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "i8_to_string_specialization", since = "1.54.0")]
+impl ToString for i8 {
+ #[inline]
+ fn to_string(&self) -> String {
+ let mut buf = String::with_capacity(4);
+ if self.is_negative() {
+ buf.push('-');
+ }
+ let mut n = self.unsigned_abs();
+ if n >= 10 {
+ if n >= 100 {
+ buf.push('1');
+ n -= 100;
+ }
+ buf.push((b'0' + n / 10) as char);
+ n %= 10;
+ }
+ buf.push((b'0' + n) as char);
+ buf
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "str_to_string_specialization", since = "1.9.0")]
+impl ToString for str {
+ #[inline]
+ fn to_string(&self) -> String {
+ String::from(self)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "cow_str_to_string_specialization", since = "1.17.0")]
+impl ToString for Cow<'_, str> {
+ #[inline]
+ fn to_string(&self) -> String {
+ self[..].to_owned()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "string_to_string_specialization", since = "1.17.0")]
+impl ToString for String {
+ #[inline]
+ fn to_string(&self) -> String {
+ self.to_owned()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl AsRef<str> for String {
+ #[inline]
+ fn as_ref(&self) -> &str {
+ self
+ }
+}
+
+#[stable(feature = "string_as_mut", since = "1.43.0")]
+impl AsMut<str> for String {
+ #[inline]
+ fn as_mut(&mut self) -> &mut str {
+ self
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl AsRef<[u8]> for String {
+ #[inline]
+ fn as_ref(&self) -> &[u8] {
+ self.as_bytes()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl From<&str> for String {
+ /// Converts a `&str` into a [`String`].
+ ///
+ /// The result is allocated on the heap.
+ #[inline]
+ fn from(s: &str) -> String {
+ s.to_owned()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "from_mut_str_for_string", since = "1.44.0")]
+impl From<&mut str> for String {
+ /// Converts a `&mut str` into a [`String`].
+ ///
+ /// The result is allocated on the heap.
+ #[inline]
+ fn from(s: &mut str) -> String {
+ s.to_owned()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "from_ref_string", since = "1.35.0")]
+impl From<&String> for String {
+ /// Converts a `&String` into a [`String`].
+ ///
+ /// This clones `s` and returns the clone.
+ #[inline]
+ fn from(s: &String) -> String {
+ s.clone()
+ }
+}
+
+// note: test pulls in libstd, which causes errors here
+#[cfg(not(test))]
+#[stable(feature = "string_from_box", since = "1.18.0")]
+impl From<Box<str>> for String {
+ /// Converts the given boxed `str` slice to a [`String`].
+ /// It is notable that the `str` slice is owned.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s1: String = String::from("hello world");
+ /// let s2: Box<str> = s1.into_boxed_str();
+ /// let s3: String = String::from(s2);
+ ///
+ /// assert_eq!("hello world", s3)
+ /// ```
+ fn from(s: Box<str>) -> String {
+ s.into_string()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "box_from_str", since = "1.20.0")]
+impl From<String> for Box<str> {
+ /// Converts the given [`String`] to a boxed `str` slice that is owned.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s1: String = String::from("hello world");
+ /// let s2: Box<str> = Box::from(s1);
+ /// let s3: String = String::from(s2);
+ ///
+ /// assert_eq!("hello world", s3)
+ /// ```
+ fn from(s: String) -> Box<str> {
+ s.into_boxed_str()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "string_from_cow_str", since = "1.14.0")]
+impl<'a> From<Cow<'a, str>> for String {
+ /// Converts a clone-on-write string to an owned
+ /// instance of [`String`].
+ ///
+ /// This extracts the owned string,
+ /// clones the string if it is not already owned.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use std::borrow::Cow;
+ /// // If the string is not owned...
+ /// let cow: Cow<str> = Cow::Borrowed("eggplant");
+ /// // It will allocate on the heap and copy the string.
+ /// let owned: String = String::from(cow);
+ /// assert_eq!(&owned[..], "eggplant");
+ /// ```
+ fn from(s: Cow<'a, str>) -> String {
+ s.into_owned()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a> From<&'a str> for Cow<'a, str> {
+ /// Converts a string slice into a [`Borrowed`] variant.
+ /// No heap allocation is performed, and the string
+ /// is not copied.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use std::borrow::Cow;
+ /// assert_eq!(Cow::from("eggplant"), Cow::Borrowed("eggplant"));
+ /// ```
+ ///
+ /// [`Borrowed`]: crate::borrow::Cow::Borrowed "borrow::Cow::Borrowed"
+ #[inline]
+ fn from(s: &'a str) -> Cow<'a, str> {
+ Cow::Borrowed(s)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a> From<String> for Cow<'a, str> {
+ /// Converts a [`String`] into an [`Owned`] variant.
+ /// No heap allocation is performed, and the string
+ /// is not copied.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use std::borrow::Cow;
+ /// let s = "eggplant".to_string();
+ /// let s2 = "eggplant".to_string();
+ /// assert_eq!(Cow::from(s), Cow::<'static, str>::Owned(s2));
+ /// ```
+ ///
+ /// [`Owned`]: crate::borrow::Cow::Owned "borrow::Cow::Owned"
+ #[inline]
+ fn from(s: String) -> Cow<'a, str> {
+ Cow::Owned(s)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "cow_from_string_ref", since = "1.28.0")]
+impl<'a> From<&'a String> for Cow<'a, str> {
+ /// Converts a [`String`] reference into a [`Borrowed`] variant.
+ /// No heap allocation is performed, and the string
+ /// is not copied.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use std::borrow::Cow;
+ /// let s = "eggplant".to_string();
+ /// assert_eq!(Cow::from(&s), Cow::Borrowed("eggplant"));
+ /// ```
+ ///
+ /// [`Borrowed`]: crate::borrow::Cow::Borrowed "borrow::Cow::Borrowed"
+ #[inline]
+ fn from(s: &'a String) -> Cow<'a, str> {
+ Cow::Borrowed(s.as_str())
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
+impl<'a> FromIterator<char> for Cow<'a, str> {
+ fn from_iter<I: IntoIterator<Item = char>>(it: I) -> Cow<'a, str> {
+ Cow::Owned(FromIterator::from_iter(it))
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
+impl<'a, 'b> FromIterator<&'b str> for Cow<'a, str> {
+ fn from_iter<I: IntoIterator<Item = &'b str>>(it: I) -> Cow<'a, str> {
+ Cow::Owned(FromIterator::from_iter(it))
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
+impl<'a> FromIterator<String> for Cow<'a, str> {
+ fn from_iter<I: IntoIterator<Item = String>>(it: I) -> Cow<'a, str> {
+ Cow::Owned(FromIterator::from_iter(it))
+ }
+}
+
+#[stable(feature = "from_string_for_vec_u8", since = "1.14.0")]
+impl From<String> for Vec<u8> {
+ /// Converts the given [`String`] to a vector [`Vec`] that holds values of type [`u8`].
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// let s1 = String::from("hello world");
+ /// let v1 = Vec::from(s1);
+ ///
+ /// for b in v1 {
+ /// println!("{b}");
+ /// }
+ /// ```
+ fn from(string: String) -> Vec<u8> {
+ string.into_bytes()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl fmt::Write for String {
+ #[inline]
+ fn write_str(&mut self, s: &str) -> fmt::Result {
+ self.push_str(s);
+ Ok(())
+ }
+
+ #[inline]
+ fn write_char(&mut self, c: char) -> fmt::Result {
+ self.push(c);
+ Ok(())
+ }
+}
+
+/// A draining iterator for `String`.
+///
+/// This struct is created by the [`drain`] method on [`String`]. See its
+/// documentation for more.
+///
+/// [`drain`]: String::drain
+#[stable(feature = "drain", since = "1.6.0")]
+pub struct Drain<'a> {
+ /// Will be used as &'a mut String in the destructor
+ string: *mut String,
+ /// Start of part to remove
+ start: usize,
+ /// End of part to remove
+ end: usize,
+ /// Current remaining range to remove
+ iter: Chars<'a>,
+}
+
+#[stable(feature = "collection_debug", since = "1.17.0")]
+impl fmt::Debug for Drain<'_> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_tuple("Drain").field(&self.as_str()).finish()
+ }
+}
+
+#[stable(feature = "drain", since = "1.6.0")]
+unsafe impl Sync for Drain<'_> {}
+#[stable(feature = "drain", since = "1.6.0")]
+unsafe impl Send for Drain<'_> {}
+
+#[stable(feature = "drain", since = "1.6.0")]
+impl Drop for Drain<'_> {
+ fn drop(&mut self) {
+ unsafe {
+ // Use Vec::drain. "Reaffirm" the bounds checks to avoid
+ // panic code being inserted again.
+ let self_vec = (*self.string).as_mut_vec();
+ if self.start <= self.end && self.end <= self_vec.len() {
+ self_vec.drain(self.start..self.end);
+ }
+ }
+ }
+}
+
+impl<'a> Drain<'a> {
+ /// Returns the remaining (sub)string of this iterator as a slice.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut s = String::from("abc");
+ /// let mut drain = s.drain(..);
+ /// assert_eq!(drain.as_str(), "abc");
+ /// let _ = drain.next().unwrap();
+ /// assert_eq!(drain.as_str(), "bc");
+ /// ```
+ #[must_use]
+ #[stable(feature = "string_drain_as_str", since = "1.55.0")]
+ pub fn as_str(&self) -> &str {
+ self.iter.as_str()
+ }
+}
+
+#[stable(feature = "string_drain_as_str", since = "1.55.0")]
+impl<'a> AsRef<str> for Drain<'a> {
+ fn as_ref(&self) -> &str {
+ self.as_str()
+ }
+}
+
+#[stable(feature = "string_drain_as_str", since = "1.55.0")]
+impl<'a> AsRef<[u8]> for Drain<'a> {
+ fn as_ref(&self) -> &[u8] {
+ self.as_str().as_bytes()
+ }
+}
+
+#[stable(feature = "drain", since = "1.6.0")]
+impl Iterator for Drain<'_> {
+ type Item = char;
+
+ #[inline]
+ fn next(&mut self) -> Option<char> {
+ self.iter.next()
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+
+ #[inline]
+ fn last(mut self) -> Option<char> {
+ self.next_back()
+ }
+}
+
+#[stable(feature = "drain", since = "1.6.0")]
+impl DoubleEndedIterator for Drain<'_> {
+ #[inline]
+ fn next_back(&mut self) -> Option<char> {
+ self.iter.next_back()
+ }
+}
+
+#[stable(feature = "fused", since = "1.26.0")]
+impl FusedIterator for Drain<'_> {}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "from_char_for_string", since = "1.46.0")]
+impl From<char> for String {
+ /// Allocates an owned [`String`] from a single character.
+ ///
+ /// # Example
+ /// ```rust
+ /// let c: char = 'a';
+ /// let s: String = String::from(c);
+ /// assert_eq!("a", &s[..]);
+ /// ```
+ #[inline]
+ fn from(c: char) -> Self {
+ c.to_string()
+ }
+}
diff --git a/rust/alloc/vec/drain.rs b/rust/alloc/vec/drain.rs
new file mode 100644
index 000000000000..5cdee0bd4da4
--- /dev/null
+++ b/rust/alloc/vec/drain.rs
@@ -0,0 +1,184 @@
+use crate::alloc::{Allocator, Global};
+use core::fmt;
+use core::iter::{FusedIterator, TrustedLen};
+use core::mem;
+use core::ptr::{self, NonNull};
+use core::slice::{self};
+
+use super::Vec;
+
+/// A draining iterator for `Vec<T>`.
+///
+/// This `struct` is created by [`Vec::drain`].
+/// See its documentation for more.
+///
+/// # Example
+///
+/// ```
+/// let mut v = vec![0, 1, 2];
+/// let iter: std::vec::Drain<_> = v.drain(..);
+/// ```
+#[stable(feature = "drain", since = "1.6.0")]
+pub struct Drain<
+ 'a,
+ T: 'a,
+ #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + 'a = Global,
+> {
+ /// Index of tail to preserve
+ pub(super) tail_start: usize,
+ /// Length of tail
+ pub(super) tail_len: usize,
+ /// Current remaining range to remove
+ pub(super) iter: slice::Iter<'a, T>,
+ pub(super) vec: NonNull<Vec<T, A>>,
+}
+
+#[stable(feature = "collection_debug", since = "1.17.0")]
+impl<T: fmt::Debug, A: Allocator> fmt::Debug for Drain<'_, T, A> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_tuple("Drain").field(&self.iter.as_slice()).finish()
+ }
+}
+
+impl<'a, T, A: Allocator> Drain<'a, T, A> {
+ /// Returns the remaining items of this iterator as a slice.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = vec!['a', 'b', 'c'];
+ /// let mut drain = vec.drain(..);
+ /// assert_eq!(drain.as_slice(), &['a', 'b', 'c']);
+ /// let _ = drain.next().unwrap();
+ /// assert_eq!(drain.as_slice(), &['b', 'c']);
+ /// ```
+ #[must_use]
+ #[stable(feature = "vec_drain_as_slice", since = "1.46.0")]
+ pub fn as_slice(&self) -> &[T] {
+ self.iter.as_slice()
+ }
+
+ /// Returns a reference to the underlying allocator.
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ #[must_use]
+ #[inline]
+ pub fn allocator(&self) -> &A {
+ unsafe { self.vec.as_ref().allocator() }
+ }
+}
+
+#[stable(feature = "vec_drain_as_slice", since = "1.46.0")]
+impl<'a, T, A: Allocator> AsRef<[T]> for Drain<'a, T, A> {
+ fn as_ref(&self) -> &[T] {
+ self.as_slice()
+ }
+}
+
+#[stable(feature = "drain", since = "1.6.0")]
+unsafe impl<T: Sync, A: Sync + Allocator> Sync for Drain<'_, T, A> {}
+#[stable(feature = "drain", since = "1.6.0")]
+unsafe impl<T: Send, A: Send + Allocator> Send for Drain<'_, T, A> {}
+
+#[stable(feature = "drain", since = "1.6.0")]
+impl<T, A: Allocator> Iterator for Drain<'_, T, A> {
+ type Item = T;
+
+ #[inline]
+ fn next(&mut self) -> Option<T> {
+ self.iter.next().map(|elt| unsafe { ptr::read(elt as *const _) })
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+}
+
+#[stable(feature = "drain", since = "1.6.0")]
+impl<T, A: Allocator> DoubleEndedIterator for Drain<'_, T, A> {
+ #[inline]
+ fn next_back(&mut self) -> Option<T> {
+ self.iter.next_back().map(|elt| unsafe { ptr::read(elt as *const _) })
+ }
+}
+
+#[stable(feature = "drain", since = "1.6.0")]
+impl<T, A: Allocator> Drop for Drain<'_, T, A> {
+ fn drop(&mut self) {
+ /// Moves back the un-`Drain`ed elements to restore the original `Vec`.
+ struct DropGuard<'r, 'a, T, A: Allocator>(&'r mut Drain<'a, T, A>);
+
+ impl<'r, 'a, T, A: Allocator> Drop for DropGuard<'r, 'a, T, A> {
+ fn drop(&mut self) {
+ if self.0.tail_len > 0 {
+ unsafe {
+ let source_vec = self.0.vec.as_mut();
+ // memmove back untouched tail, update to new length
+ let start = source_vec.len();
+ let tail = self.0.tail_start;
+ if tail != start {
+ let src = source_vec.as_ptr().add(tail);
+ let dst = source_vec.as_mut_ptr().add(start);
+ ptr::copy(src, dst, self.0.tail_len);
+ }
+ source_vec.set_len(start + self.0.tail_len);
+ }
+ }
+ }
+ }
+
+ let iter = mem::replace(&mut self.iter, (&mut []).iter());
+ let drop_len = iter.len();
+
+ let mut vec = self.vec;
+
+ if mem::size_of::<T>() == 0 {
+ // ZSTs have no identity, so we don't need to move them around, we only need to drop the correct amount.
+ // this can be achieved by manipulating the Vec length instead of moving values out from `iter`.
+ unsafe {
+ let vec = vec.as_mut();
+ let old_len = vec.len();
+ vec.set_len(old_len + drop_len + self.tail_len);
+ vec.truncate(old_len + self.tail_len);
+ }
+
+ return;
+ }
+
+ // ensure elements are moved back into their appropriate places, even when drop_in_place panics
+ let _guard = DropGuard(self);
+
+ if drop_len == 0 {
+ return;
+ }
+
+ // as_slice() must only be called when iter.len() is > 0 because
+ // vec::Splice modifies vec::Drain fields and may grow the vec which would invalidate
+ // the iterator's internal pointers. Creating a reference to deallocated memory
+ // is invalid even when it is zero-length
+ let drop_ptr = iter.as_slice().as_ptr();
+
+ unsafe {
+ // drop_ptr comes from a slice::Iter which only gives us a &[T] but for drop_in_place
+ // a pointer with mutable provenance is necessary. Therefore we must reconstruct
+ // it from the original vec but also avoid creating a &mut to the front since that could
+ // invalidate raw pointers to it which some unsafe code might rely on.
+ let vec_ptr = vec.as_mut().as_mut_ptr();
+ let drop_offset = drop_ptr.sub_ptr(vec_ptr);
+ let to_drop = ptr::slice_from_raw_parts_mut(vec_ptr.add(drop_offset), drop_len);
+ ptr::drop_in_place(to_drop);
+ }
+ }
+}
+
+#[stable(feature = "drain", since = "1.6.0")]
+impl<T, A: Allocator> ExactSizeIterator for Drain<'_, T, A> {
+ fn is_empty(&self) -> bool {
+ self.iter.is_empty()
+ }
+}
+
+#[unstable(feature = "trusted_len", issue = "37572")]
+unsafe impl<T, A: Allocator> TrustedLen for Drain<'_, T, A> {}
+
+#[stable(feature = "fused", since = "1.26.0")]
+impl<T, A: Allocator> FusedIterator for Drain<'_, T, A> {}
diff --git a/rust/alloc/vec/drain_filter.rs b/rust/alloc/vec/drain_filter.rs
new file mode 100644
index 000000000000..3c37c92ae44b
--- /dev/null
+++ b/rust/alloc/vec/drain_filter.rs
@@ -0,0 +1,143 @@
+use crate::alloc::{Allocator, Global};
+use core::ptr::{self};
+use core::slice::{self};
+
+use super::Vec;
+
+/// An iterator which uses a closure to determine if an element should be removed.
+///
+/// This struct is created by [`Vec::drain_filter`].
+/// See its documentation for more.
+///
+/// # Example
+///
+/// ```
+/// #![feature(drain_filter)]
+///
+/// let mut v = vec![0, 1, 2];
+/// let iter: std::vec::DrainFilter<_, _> = v.drain_filter(|x| *x % 2 == 0);
+/// ```
+#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
+#[derive(Debug)]
+pub struct DrainFilter<
+ 'a,
+ T,
+ F,
+ #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
+> where
+ F: FnMut(&mut T) -> bool,
+{
+ pub(super) vec: &'a mut Vec<T, A>,
+ /// The index of the item that will be inspected by the next call to `next`.
+ pub(super) idx: usize,
+ /// The number of items that have been drained (removed) thus far.
+ pub(super) del: usize,
+ /// The original length of `vec` prior to draining.
+ pub(super) old_len: usize,
+ /// The filter test predicate.
+ pub(super) pred: F,
+ /// A flag that indicates a panic has occurred in the filter test predicate.
+ /// This is used as a hint in the drop implementation to prevent consumption
+ /// of the remainder of the `DrainFilter`. Any unprocessed items will be
+ /// backshifted in the `vec`, but no further items will be dropped or
+ /// tested by the filter predicate.
+ pub(super) panic_flag: bool,
+}
+
+impl<T, F, A: Allocator> DrainFilter<'_, T, F, A>
+where
+ F: FnMut(&mut T) -> bool,
+{
+ /// Returns a reference to the underlying allocator.
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ #[inline]
+ pub fn allocator(&self) -> &A {
+ self.vec.allocator()
+ }
+}
+
+#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
+impl<T, F, A: Allocator> Iterator for DrainFilter<'_, T, F, A>
+where
+ F: FnMut(&mut T) -> bool,
+{
+ type Item = T;
+
+ fn next(&mut self) -> Option<T> {
+ unsafe {
+ while self.idx < self.old_len {
+ let i = self.idx;
+ let v = slice::from_raw_parts_mut(self.vec.as_mut_ptr(), self.old_len);
+ self.panic_flag = true;
+ let drained = (self.pred)(&mut v[i]);
+ self.panic_flag = false;
+ // Update the index *after* the predicate is called. If the index
+ // is updated prior and the predicate panics, the element at this
+ // index would be leaked.
+ self.idx += 1;
+ if drained {
+ self.del += 1;
+ return Some(ptr::read(&v[i]));
+ } else if self.del > 0 {
+ let del = self.del;
+ let src: *const T = &v[i];
+ let dst: *mut T = &mut v[i - del];
+ ptr::copy_nonoverlapping(src, dst, 1);
+ }
+ }
+ None
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (0, Some(self.old_len - self.idx))
+ }
+}
+
+#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
+impl<T, F, A: Allocator> Drop for DrainFilter<'_, T, F, A>
+where
+ F: FnMut(&mut T) -> bool,
+{
+ fn drop(&mut self) {
+ struct BackshiftOnDrop<'a, 'b, T, F, A: Allocator>
+ where
+ F: FnMut(&mut T) -> bool,
+ {
+ drain: &'b mut DrainFilter<'a, T, F, A>,
+ }
+
+ impl<'a, 'b, T, F, A: Allocator> Drop for BackshiftOnDrop<'a, 'b, T, F, A>
+ where
+ F: FnMut(&mut T) -> bool,
+ {
+ fn drop(&mut self) {
+ unsafe {
+ if self.drain.idx < self.drain.old_len && self.drain.del > 0 {
+ // This is a pretty messed up state, and there isn't really an
+ // obviously right thing to do. We don't want to keep trying
+ // to execute `pred`, so we just backshift all the unprocessed
+ // elements and tell the vec that they still exist. The backshift
+ // is required to prevent a double-drop of the last successfully
+ // drained item prior to a panic in the predicate.
+ let ptr = self.drain.vec.as_mut_ptr();
+ let src = ptr.add(self.drain.idx);
+ let dst = src.sub(self.drain.del);
+ let tail_len = self.drain.old_len - self.drain.idx;
+ src.copy_to(dst, tail_len);
+ }
+ self.drain.vec.set_len(self.drain.old_len - self.drain.del);
+ }
+ }
+ }
+
+ let backshift = BackshiftOnDrop { drain: self };
+
+ // Attempt to consume any remaining elements if the filter predicate
+ // has not yet panicked. We'll backshift any remaining elements
+ // whether we've already panicked or if the consumption here panics.
+ if !backshift.drain.panic_flag {
+ backshift.drain.for_each(drop);
+ }
+ }
+}
diff --git a/rust/alloc/vec/into_iter.rs b/rust/alloc/vec/into_iter.rs
new file mode 100644
index 000000000000..9b84a1d9b4b6
--- /dev/null
+++ b/rust/alloc/vec/into_iter.rs
@@ -0,0 +1,362 @@
+#[cfg(not(no_global_oom_handling))]
+use super::AsVecIntoIter;
+use crate::alloc::{Allocator, Global};
+use crate::raw_vec::RawVec;
+use core::fmt;
+use core::intrinsics::arith_offset;
+use core::iter::{
+ FusedIterator, InPlaceIterable, SourceIter, TrustedLen, TrustedRandomAccessNoCoerce,
+};
+use core::marker::PhantomData;
+use core::mem::{self, ManuallyDrop};
+use core::ops::Deref;
+use core::ptr::{self, NonNull};
+use core::slice::{self};
+
+/// An iterator that moves out of a vector.
+///
+/// This `struct` is created by the `into_iter` method on [`Vec`](super::Vec)
+/// (provided by the [`IntoIterator`] trait).
+///
+/// # Example
+///
+/// ```
+/// let v = vec![0, 1, 2];
+/// let iter: std::vec::IntoIter<_> = v.into_iter();
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[rustc_insignificant_dtor]
+pub struct IntoIter<
+ T,
+ #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
+> {
+ pub(super) buf: NonNull<T>,
+ pub(super) phantom: PhantomData<T>,
+ pub(super) cap: usize,
+ // the drop impl reconstructs a RawVec from buf, cap and alloc
+ // to avoid dropping the allocator twice we need to wrap it into ManuallyDrop
+ pub(super) alloc: ManuallyDrop<A>,
+ pub(super) ptr: *const T,
+ pub(super) end: *const T,
+}
+
+#[stable(feature = "vec_intoiter_debug", since = "1.13.0")]
+impl<T: fmt::Debug, A: Allocator> fmt::Debug for IntoIter<T, A> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_tuple("IntoIter").field(&self.as_slice()).finish()
+ }
+}
+
+impl<T, A: Allocator> IntoIter<T, A> {
+ /// Returns the remaining items of this iterator as a slice.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let vec = vec!['a', 'b', 'c'];
+ /// let mut into_iter = vec.into_iter();
+ /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
+ /// let _ = into_iter.next().unwrap();
+ /// assert_eq!(into_iter.as_slice(), &['b', 'c']);
+ /// ```
+ #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")]
+ pub fn as_slice(&self) -> &[T] {
+ unsafe { slice::from_raw_parts(self.ptr, self.len()) }
+ }
+
+ /// Returns the remaining items of this iterator as a mutable slice.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let vec = vec!['a', 'b', 'c'];
+ /// let mut into_iter = vec.into_iter();
+ /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
+ /// into_iter.as_mut_slice()[2] = 'z';
+ /// assert_eq!(into_iter.next().unwrap(), 'a');
+ /// assert_eq!(into_iter.next().unwrap(), 'b');
+ /// assert_eq!(into_iter.next().unwrap(), 'z');
+ /// ```
+ #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")]
+ pub fn as_mut_slice(&mut self) -> &mut [T] {
+ unsafe { &mut *self.as_raw_mut_slice() }
+ }
+
+ /// Returns a reference to the underlying allocator.
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ #[inline]
+ pub fn allocator(&self) -> &A {
+ &self.alloc
+ }
+
+ fn as_raw_mut_slice(&mut self) -> *mut [T] {
+ ptr::slice_from_raw_parts_mut(self.ptr as *mut T, self.len())
+ }
+
+ /// Drops remaining elements and relinquishes the backing allocation.
+ ///
+ /// This is roughly equivalent to the following, but more efficient
+ ///
+ /// ```
+ /// # let mut into_iter = Vec::<u8>::with_capacity(10).into_iter();
+ /// (&mut into_iter).for_each(core::mem::drop);
+ /// unsafe { core::ptr::write(&mut into_iter, Vec::new().into_iter()); }
+ /// ```
+ ///
+ /// This method is used by in-place iteration, refer to the vec::in_place_collect
+ /// documentation for an overview.
+ #[cfg(not(no_global_oom_handling))]
+ pub(super) fn forget_allocation_drop_remaining(&mut self) {
+ let remaining = self.as_raw_mut_slice();
+
+ // overwrite the individual fields instead of creating a new
+ // struct and then overwriting &mut self.
+ // this creates less assembly
+ self.cap = 0;
+ self.buf = unsafe { NonNull::new_unchecked(RawVec::NEW.ptr()) };
+ self.ptr = self.buf.as_ptr();
+ self.end = self.buf.as_ptr();
+
+ unsafe {
+ ptr::drop_in_place(remaining);
+ }
+ }
+
+ /// Forgets to Drop the remaining elements while still allowing the backing allocation to be freed.
+ pub(crate) fn forget_remaining_elements(&mut self) {
+ self.ptr = self.end;
+ }
+}
+
+#[stable(feature = "vec_intoiter_as_ref", since = "1.46.0")]
+impl<T, A: Allocator> AsRef<[T]> for IntoIter<T, A> {
+ fn as_ref(&self) -> &[T] {
+ self.as_slice()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+unsafe impl<T: Send, A: Allocator + Send> Send for IntoIter<T, A> {}
+#[stable(feature = "rust1", since = "1.0.0")]
+unsafe impl<T: Sync, A: Allocator + Sync> Sync for IntoIter<T, A> {}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T, A: Allocator> Iterator for IntoIter<T, A> {
+ type Item = T;
+
+ #[inline]
+ fn next(&mut self) -> Option<T> {
+ if self.ptr as *const _ == self.end {
+ None
+ } else if mem::size_of::<T>() == 0 {
+ // purposefully don't use 'ptr.offset' because for
+ // vectors with 0-size elements this would return the
+ // same pointer.
+ self.ptr = unsafe { arith_offset(self.ptr as *const i8, 1) as *mut T };
+
+ // Make up a value of this ZST.
+ Some(unsafe { mem::zeroed() })
+ } else {
+ let old = self.ptr;
+ self.ptr = unsafe { self.ptr.offset(1) };
+
+ Some(unsafe { ptr::read(old) })
+ }
+ }
+
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let exact = if mem::size_of::<T>() == 0 {
+ self.end.addr().wrapping_sub(self.ptr.addr())
+ } else {
+ unsafe { self.end.sub_ptr(self.ptr) }
+ };
+ (exact, Some(exact))
+ }
+
+ #[inline]
+ fn advance_by(&mut self, n: usize) -> Result<(), usize> {
+ let step_size = self.len().min(n);
+ let to_drop = ptr::slice_from_raw_parts_mut(self.ptr as *mut T, step_size);
+ if mem::size_of::<T>() == 0 {
+ // SAFETY: due to unchecked casts of unsigned amounts to signed offsets the wraparound
+ // effectively results in unsigned pointers representing positions 0..usize::MAX,
+ // which is valid for ZSTs.
+ self.ptr = unsafe { arith_offset(self.ptr as *const i8, step_size as isize) as *mut T }
+ } else {
+ // SAFETY: the min() above ensures that step_size is in bounds
+ self.ptr = unsafe { self.ptr.add(step_size) };
+ }
+ // SAFETY: the min() above ensures that step_size is in bounds
+ unsafe {
+ ptr::drop_in_place(to_drop);
+ }
+ if step_size < n {
+ return Err(step_size);
+ }
+ Ok(())
+ }
+
+ #[inline]
+ fn count(self) -> usize {
+ self.len()
+ }
+
+ unsafe fn __iterator_get_unchecked(&mut self, i: usize) -> Self::Item
+ where
+ Self: TrustedRandomAccessNoCoerce,
+ {
+ // SAFETY: the caller must guarantee that `i` is in bounds of the
+ // `Vec<T>`, so `i` cannot overflow an `isize`, and the `self.ptr.add(i)`
+ // is guaranteed to pointer to an element of the `Vec<T>` and
+ // thus guaranteed to be valid to dereference.
+ //
+ // Also note the implementation of `Self: TrustedRandomAccess` requires
+ // that `T: Copy` so reading elements from the buffer doesn't invalidate
+ // them for `Drop`.
+ unsafe {
+ if mem::size_of::<T>() == 0 { mem::zeroed() } else { ptr::read(self.ptr.add(i)) }
+ }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T, A: Allocator> DoubleEndedIterator for IntoIter<T, A> {
+ #[inline]
+ fn next_back(&mut self) -> Option<T> {
+ if self.end == self.ptr {
+ None
+ } else if mem::size_of::<T>() == 0 {
+ // See above for why 'ptr.offset' isn't used
+ self.end = unsafe { arith_offset(self.end as *const i8, -1) as *mut T };
+
+ // Make up a value of this ZST.
+ Some(unsafe { mem::zeroed() })
+ } else {
+ self.end = unsafe { self.end.offset(-1) };
+
+ Some(unsafe { ptr::read(self.end) })
+ }
+ }
+
+ #[inline]
+ fn advance_back_by(&mut self, n: usize) -> Result<(), usize> {
+ let step_size = self.len().min(n);
+ if mem::size_of::<T>() == 0 {
+ // SAFETY: same as for advance_by()
+ self.end = unsafe {
+ arith_offset(self.end as *const i8, step_size.wrapping_neg() as isize) as *mut T
+ }
+ } else {
+ // SAFETY: same as for advance_by()
+ self.end = unsafe { self.end.offset(step_size.wrapping_neg() as isize) };
+ }
+ let to_drop = ptr::slice_from_raw_parts_mut(self.end as *mut T, step_size);
+ // SAFETY: same as for advance_by()
+ unsafe {
+ ptr::drop_in_place(to_drop);
+ }
+ if step_size < n {
+ return Err(step_size);
+ }
+ Ok(())
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T, A: Allocator> ExactSizeIterator for IntoIter<T, A> {
+ fn is_empty(&self) -> bool {
+ self.ptr == self.end
+ }
+}
+
+#[stable(feature = "fused", since = "1.26.0")]
+impl<T, A: Allocator> FusedIterator for IntoIter<T, A> {}
+
+#[unstable(feature = "trusted_len", issue = "37572")]
+unsafe impl<T, A: Allocator> TrustedLen for IntoIter<T, A> {}
+
+#[doc(hidden)]
+#[unstable(issue = "none", feature = "std_internals")]
+#[rustc_unsafe_specialization_marker]
+pub trait NonDrop {}
+
+// T: Copy as approximation for !Drop since get_unchecked does not advance self.ptr
+// and thus we can't implement drop-handling
+#[unstable(issue = "none", feature = "std_internals")]
+impl<T: Copy> NonDrop for T {}
+
+#[doc(hidden)]
+#[unstable(issue = "none", feature = "std_internals")]
+// TrustedRandomAccess (without NoCoerce) must not be implemented because
+// subtypes/supertypes of `T` might not be `NonDrop`
+unsafe impl<T, A: Allocator> TrustedRandomAccessNoCoerce for IntoIter<T, A>
+where
+ T: NonDrop,
+{
+ const MAY_HAVE_SIDE_EFFECT: bool = false;
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "vec_into_iter_clone", since = "1.8.0")]
+impl<T: Clone, A: Allocator + Clone> Clone for IntoIter<T, A> {
+ #[cfg(not(test))]
+ fn clone(&self) -> Self {
+ self.as_slice().to_vec_in(self.alloc.deref().clone()).into_iter()
+ }
+ #[cfg(test)]
+ fn clone(&self) -> Self {
+ crate::slice::to_vec(self.as_slice(), self.alloc.deref().clone()).into_iter()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+unsafe impl<#[may_dangle] T, A: Allocator> Drop for IntoIter<T, A> {
+ fn drop(&mut self) {
+ struct DropGuard<'a, T, A: Allocator>(&'a mut IntoIter<T, A>);
+
+ impl<T, A: Allocator> Drop for DropGuard<'_, T, A> {
+ fn drop(&mut self) {
+ unsafe {
+ // `IntoIter::alloc` is not used anymore after this and will be dropped by RawVec
+ let alloc = ManuallyDrop::take(&mut self.0.alloc);
+ // RawVec handles deallocation
+ let _ = RawVec::from_raw_parts_in(self.0.buf.as_ptr(), self.0.cap, alloc);
+ }
+ }
+ }
+
+ let guard = DropGuard(self);
+ // destroy the remaining elements
+ unsafe {
+ ptr::drop_in_place(guard.0.as_raw_mut_slice());
+ }
+ // now `guard` will be dropped and do the rest
+ }
+}
+
+// In addition to the SAFETY invariants of the following three unsafe traits
+// also refer to the vec::in_place_collect module documentation to get an overview
+#[unstable(issue = "none", feature = "inplace_iteration")]
+#[doc(hidden)]
+unsafe impl<T, A: Allocator> InPlaceIterable for IntoIter<T, A> {}
+
+#[unstable(issue = "none", feature = "inplace_iteration")]
+#[doc(hidden)]
+unsafe impl<T, A: Allocator> SourceIter for IntoIter<T, A> {
+ type Source = Self;
+
+ #[inline]
+ unsafe fn as_inner(&mut self) -> &mut Self::Source {
+ self
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+unsafe impl<T> AsVecIntoIter for IntoIter<T> {
+ type Item = T;
+
+ fn as_into_iter(&mut self) -> &mut IntoIter<Self::Item> {
+ self
+ }
+}
diff --git a/rust/alloc/vec/is_zero.rs b/rust/alloc/vec/is_zero.rs
new file mode 100644
index 000000000000..edf270db81d4
--- /dev/null
+++ b/rust/alloc/vec/is_zero.rs
@@ -0,0 +1,118 @@
+use crate::boxed::Box;
+
+#[rustc_specialization_trait]
+pub(super) unsafe trait IsZero {
+ /// Whether this value's representation is all zeros
+ fn is_zero(&self) -> bool;
+}
+
+macro_rules! impl_is_zero {
+ ($t:ty, $is_zero:expr) => {
+ unsafe impl IsZero for $t {
+ #[inline]
+ fn is_zero(&self) -> bool {
+ $is_zero(*self)
+ }
+ }
+ };
+}
+
+impl_is_zero!(i16, |x| x == 0);
+impl_is_zero!(i32, |x| x == 0);
+impl_is_zero!(i64, |x| x == 0);
+impl_is_zero!(i128, |x| x == 0);
+impl_is_zero!(isize, |x| x == 0);
+
+impl_is_zero!(u16, |x| x == 0);
+impl_is_zero!(u32, |x| x == 0);
+impl_is_zero!(u64, |x| x == 0);
+impl_is_zero!(u128, |x| x == 0);
+impl_is_zero!(usize, |x| x == 0);
+
+impl_is_zero!(bool, |x| x == false);
+impl_is_zero!(char, |x| x == '\0');
+
+impl_is_zero!(f32, |x: f32| x.to_bits() == 0);
+impl_is_zero!(f64, |x: f64| x.to_bits() == 0);
+
+unsafe impl<T> IsZero for *const T {
+ #[inline]
+ fn is_zero(&self) -> bool {
+ (*self).is_null()
+ }
+}
+
+unsafe impl<T> IsZero for *mut T {
+ #[inline]
+ fn is_zero(&self) -> bool {
+ (*self).is_null()
+ }
+}
+
+unsafe impl<T: IsZero, const N: usize> IsZero for [T; N] {
+ #[inline]
+ fn is_zero(&self) -> bool {
+ // Because this is generated as a runtime check, it's not obvious that
+ // it's worth doing if the array is really long. The threshold here
+ // is largely arbitrary, but was picked because as of 2022-05-01 LLVM
+ // can const-fold the check in `vec![[0; 32]; n]` but not in
+ // `vec![[0; 64]; n]`: https://godbolt.org/z/WTzjzfs5b
+ // Feel free to tweak if you have better evidence.
+
+ N <= 32 && self.iter().all(IsZero::is_zero)
+ }
+}
+
+// `Option<&T>` and `Option<Box<T>>` are guaranteed to represent `None` as null.
+// For fat pointers, the bytes that would be the pointer metadata in the `Some`
+// variant are padding in the `None` variant, so ignoring them and
+// zero-initializing instead is ok.
+// `Option<&mut T>` never implements `Clone`, so there's no need for an impl of
+// `SpecFromElem`.
+
+unsafe impl<T: ?Sized> IsZero for Option<&T> {
+ #[inline]
+ fn is_zero(&self) -> bool {
+ self.is_none()
+ }
+}
+
+unsafe impl<T: ?Sized> IsZero for Option<Box<T>> {
+ #[inline]
+ fn is_zero(&self) -> bool {
+ self.is_none()
+ }
+}
+
+// `Option<num::NonZeroU32>` and similar have a representation guarantee that
+// they're the same size as the corresponding `u32` type, as well as a guarantee
+// that transmuting between `NonZeroU32` and `Option<num::NonZeroU32>` works.
+// While the documentation officially makes it UB to transmute from `None`,
+// we're the standard library so we can make extra inferences, and we know that
+// the only niche available to represent `None` is the one that's all zeros.
+
+macro_rules! impl_is_zero_option_of_nonzero {
+ ($($t:ident,)+) => {$(
+ unsafe impl IsZero for Option<core::num::$t> {
+ #[inline]
+ fn is_zero(&self) -> bool {
+ self.is_none()
+ }
+ }
+ )+};
+}
+
+impl_is_zero_option_of_nonzero!(
+ NonZeroU8,
+ NonZeroU16,
+ NonZeroU32,
+ NonZeroU64,
+ NonZeroU128,
+ NonZeroI8,
+ NonZeroI16,
+ NonZeroI32,
+ NonZeroI64,
+ NonZeroI128,
+ NonZeroUsize,
+ NonZeroIsize,
+);
diff --git a/rust/alloc/vec/mod.rs b/rust/alloc/vec/mod.rs
new file mode 100644
index 000000000000..3dc8a4fbba86
--- /dev/null
+++ b/rust/alloc/vec/mod.rs
@@ -0,0 +1,3115 @@
+//! A contiguous growable array type with heap-allocated contents, written
+//! `Vec<T>`.
+//!
+//! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
+//! *O*(1) pop (from the end).
+//!
+//! Vectors ensure they never allocate more than `isize::MAX` bytes.
+//!
+//! # Examples
+//!
+//! You can explicitly create a [`Vec`] with [`Vec::new`]:
+//!
+//! ```
+//! let v: Vec<i32> = Vec::new();
+//! ```
+//!
+//! ...or by using the [`vec!`] macro:
+//!
+//! ```
+//! let v: Vec<i32> = vec![];
+//!
+//! let v = vec![1, 2, 3, 4, 5];
+//!
+//! let v = vec![0; 10]; // ten zeroes
+//! ```
+//!
+//! You can [`push`] values onto the end of a vector (which will grow the vector
+//! as needed):
+//!
+//! ```
+//! let mut v = vec![1, 2];
+//!
+//! v.push(3);
+//! ```
+//!
+//! Popping values works in much the same way:
+//!
+//! ```
+//! let mut v = vec![1, 2];
+//!
+//! let two = v.pop();
+//! ```
+//!
+//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
+//!
+//! ```
+//! let mut v = vec![1, 2, 3];
+//! let three = v[2];
+//! v[1] = v[1] + 5;
+//! ```
+//!
+//! [`push`]: Vec::push
+
+#![stable(feature = "rust1", since = "1.0.0")]
+
+#[cfg(not(no_global_oom_handling))]
+use core::cmp;
+use core::cmp::Ordering;
+use core::convert::TryFrom;
+use core::fmt;
+use core::hash::{Hash, Hasher};
+use core::intrinsics::{arith_offset, assume};
+use core::iter;
+#[cfg(not(no_global_oom_handling))]
+use core::iter::FromIterator;
+use core::marker::PhantomData;
+use core::mem::{self, ManuallyDrop, MaybeUninit};
+use core::ops::{self, Index, IndexMut, Range, RangeBounds};
+use core::ptr::{self, NonNull};
+use core::slice::{self, SliceIndex};
+
+use crate::alloc::{Allocator, Global};
+use crate::borrow::{Cow, ToOwned};
+use crate::boxed::Box;
+use crate::collections::TryReserveError;
+use crate::raw_vec::RawVec;
+
+#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
+pub use self::drain_filter::DrainFilter;
+
+mod drain_filter;
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "vec_splice", since = "1.21.0")]
+pub use self::splice::Splice;
+
+#[cfg(not(no_global_oom_handling))]
+mod splice;
+
+#[stable(feature = "drain", since = "1.6.0")]
+pub use self::drain::Drain;
+
+mod drain;
+
+#[cfg(not(no_global_oom_handling))]
+mod cow;
+
+#[cfg(not(no_global_oom_handling))]
+pub(crate) use self::in_place_collect::AsVecIntoIter;
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use self::into_iter::IntoIter;
+
+mod into_iter;
+
+#[cfg(not(no_global_oom_handling))]
+use self::is_zero::IsZero;
+
+mod is_zero;
+
+#[cfg(not(no_global_oom_handling))]
+mod in_place_collect;
+
+mod partial_eq;
+
+#[cfg(not(no_global_oom_handling))]
+use self::spec_from_elem::SpecFromElem;
+
+#[cfg(not(no_global_oom_handling))]
+mod spec_from_elem;
+
+#[cfg(not(no_global_oom_handling))]
+use self::set_len_on_drop::SetLenOnDrop;
+
+#[cfg(not(no_global_oom_handling))]
+mod set_len_on_drop;
+
+#[cfg(not(no_global_oom_handling))]
+use self::in_place_drop::InPlaceDrop;
+
+#[cfg(not(no_global_oom_handling))]
+mod in_place_drop;
+
+#[cfg(not(no_global_oom_handling))]
+use self::spec_from_iter_nested::SpecFromIterNested;
+
+#[cfg(not(no_global_oom_handling))]
+mod spec_from_iter_nested;
+
+#[cfg(not(no_global_oom_handling))]
+use self::spec_from_iter::SpecFromIter;
+
+#[cfg(not(no_global_oom_handling))]
+mod spec_from_iter;
+
+#[cfg(not(no_global_oom_handling))]
+use self::spec_extend::SpecExtend;
+
+#[cfg(not(no_global_oom_handling))]
+mod spec_extend;
+
+/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
+///
+/// # Examples
+///
+/// ```
+/// let mut vec = Vec::new();
+/// vec.push(1);
+/// vec.push(2);
+///
+/// assert_eq!(vec.len(), 2);
+/// assert_eq!(vec[0], 1);
+///
+/// assert_eq!(vec.pop(), Some(2));
+/// assert_eq!(vec.len(), 1);
+///
+/// vec[0] = 7;
+/// assert_eq!(vec[0], 7);
+///
+/// vec.extend([1, 2, 3].iter().copied());
+///
+/// for x in &vec {
+/// println!("{x}");
+/// }
+/// assert_eq!(vec, [7, 1, 2, 3]);
+/// ```
+///
+/// The [`vec!`] macro is provided for convenient initialization:
+///
+/// ```
+/// let mut vec1 = vec![1, 2, 3];
+/// vec1.push(4);
+/// let vec2 = Vec::from([1, 2, 3, 4]);
+/// assert_eq!(vec1, vec2);
+/// ```
+///
+/// It can also initialize each element of a `Vec<T>` with a given value.
+/// This may be more efficient than performing allocation and initialization
+/// in separate steps, especially when initializing a vector of zeros:
+///
+/// ```
+/// let vec = vec![0; 5];
+/// assert_eq!(vec, [0, 0, 0, 0, 0]);
+///
+/// // The following is equivalent, but potentially slower:
+/// let mut vec = Vec::with_capacity(5);
+/// vec.resize(5, 0);
+/// assert_eq!(vec, [0, 0, 0, 0, 0]);
+/// ```
+///
+/// For more information, see
+/// [Capacity and Reallocation](#capacity-and-reallocation).
+///
+/// Use a `Vec<T>` as an efficient stack:
+///
+/// ```
+/// let mut stack = Vec::new();
+///
+/// stack.push(1);
+/// stack.push(2);
+/// stack.push(3);
+///
+/// while let Some(top) = stack.pop() {
+/// // Prints 3, 2, 1
+/// println!("{top}");
+/// }
+/// ```
+///
+/// # Indexing
+///
+/// The `Vec` type allows to access values by index, because it implements the
+/// [`Index`] trait. An example will be more explicit:
+///
+/// ```
+/// let v = vec![0, 2, 4, 6];
+/// println!("{}", v[1]); // it will display '2'
+/// ```
+///
+/// However be careful: if you try to access an index which isn't in the `Vec`,
+/// your software will panic! You cannot do this:
+///
+/// ```should_panic
+/// let v = vec![0, 2, 4, 6];
+/// println!("{}", v[6]); // it will panic!
+/// ```
+///
+/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
+/// the `Vec`.
+///
+/// # Slicing
+///
+/// A `Vec` can be mutable. On the other hand, slices are read-only objects.
+/// To get a [slice][prim@slice], use [`&`]. Example:
+///
+/// ```
+/// fn read_slice(slice: &[usize]) {
+/// // ...
+/// }
+///
+/// let v = vec![0, 1];
+/// read_slice(&v);
+///
+/// // ... and that's all!
+/// // you can also do it like this:
+/// let u: &[usize] = &v;
+/// // or like this:
+/// let u: &[_] = &v;
+/// ```
+///
+/// In Rust, it's more common to pass slices as arguments rather than vectors
+/// when you just want to provide read access. The same goes for [`String`] and
+/// [`&str`].
+///
+/// # Capacity and reallocation
+///
+/// The capacity of a vector is the amount of space allocated for any future
+/// elements that will be added onto the vector. This is not to be confused with
+/// the *length* of a vector, which specifies the number of actual elements
+/// within the vector. If a vector's length exceeds its capacity, its capacity
+/// will automatically be increased, but its elements will have to be
+/// reallocated.
+///
+/// For example, a vector with capacity 10 and length 0 would be an empty vector
+/// with space for 10 more elements. Pushing 10 or fewer elements onto the
+/// vector will not change its capacity or cause reallocation to occur. However,
+/// if the vector's length is increased to 11, it will have to reallocate, which
+/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
+/// whenever possible to specify how big the vector is expected to get.
+///
+/// # Guarantees
+///
+/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
+/// about its design. This ensures that it's as low-overhead as possible in
+/// the general case, and can be correctly manipulated in primitive ways
+/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
+/// If additional type parameters are added (e.g., to support custom allocators),
+/// overriding their defaults may change the behavior.
+///
+/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
+/// triplet. No more, no less. The order of these fields is completely
+/// unspecified, and you should use the appropriate methods to modify these.
+/// The pointer will never be null, so this type is null-pointer-optimized.
+///
+/// However, the pointer might not actually point to allocated memory. In particular,
+/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
+/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
+/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
+/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
+/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
+/// if <code>[mem::size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
+/// details are very subtle --- if you intend to allocate memory using a `Vec`
+/// and use it for something else (either to pass to unsafe code, or to build your
+/// own memory-backed collection), be sure to deallocate this memory by using
+/// `from_raw_parts` to recover the `Vec` and then dropping it.
+///
+/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
+/// (as defined by the allocator Rust is configured to use by default), and its
+/// pointer points to [`len`] initialized, contiguous elements in order (what
+/// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
+/// logically uninitialized, contiguous elements.
+///
+/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
+/// visualized as below. The top part is the `Vec` struct, it contains a
+/// pointer to the head of the allocation in the heap, length and capacity.
+/// The bottom part is the allocation on the heap, a contiguous memory block.
+///
+/// ```text
+/// ptr len capacity
+/// +--------+--------+--------+
+/// | 0x0123 | 2 | 4 |
+/// +--------+--------+--------+
+/// |
+/// v
+/// Heap +--------+--------+--------+--------+
+/// | 'a' | 'b' | uninit | uninit |
+/// +--------+--------+--------+--------+
+/// ```
+///
+/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
+/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
+/// layout (including the order of fields).
+///
+/// `Vec` will never perform a "small optimization" where elements are actually
+/// stored on the stack for two reasons:
+///
+/// * It would make it more difficult for unsafe code to correctly manipulate
+/// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
+/// only moved, and it would be more difficult to determine if a `Vec` had
+/// actually allocated memory.
+///
+/// * It would penalize the general case, incurring an additional branch
+/// on every access.
+///
+/// `Vec` will never automatically shrink itself, even if completely empty. This
+/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
+/// and then filling it back up to the same [`len`] should incur no calls to
+/// the allocator. If you wish to free up unused memory, use
+/// [`shrink_to_fit`] or [`shrink_to`].
+///
+/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
+/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
+/// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
+/// accurate, and can be relied on. It can even be used to manually free the memory
+/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
+/// when not necessary.
+///
+/// `Vec` does not guarantee any particular growth strategy when reallocating
+/// when full, nor when [`reserve`] is called. The current strategy is basic
+/// and it may prove desirable to use a non-constant growth factor. Whatever
+/// strategy is used will of course guarantee *O*(1) amortized [`push`].
+///
+/// `vec![x; n]`, `vec![a, b, c, d]`, and
+/// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
+/// with exactly the requested capacity. If <code>[len] == [capacity]</code>,
+/// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
+/// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
+///
+/// `Vec` will not specifically overwrite any data that is removed from it,
+/// but also won't specifically preserve it. Its uninitialized memory is
+/// scratch space that it may use however it wants. It will generally just do
+/// whatever is most efficient or otherwise easy to implement. Do not rely on
+/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
+/// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
+/// first, that might not actually happen because the optimizer does not consider
+/// this a side-effect that must be preserved. There is one case which we will
+/// not break, however: using `unsafe` code to write to the excess capacity,
+/// and then increasing the length to match, is always valid.
+///
+/// Currently, `Vec` does not guarantee the order in which elements are dropped.
+/// The order has changed in the past and may change again.
+///
+/// [`get`]: ../../std/vec/struct.Vec.html#method.get
+/// [`get_mut`]: ../../std/vec/struct.Vec.html#method.get_mut
+/// [`String`]: crate::string::String
+/// [`&str`]: type@str
+/// [`shrink_to_fit`]: Vec::shrink_to_fit
+/// [`shrink_to`]: Vec::shrink_to
+/// [capacity]: Vec::capacity
+/// [`capacity`]: Vec::capacity
+/// [mem::size_of::\<T>]: core::mem::size_of
+/// [len]: Vec::len
+/// [`len`]: Vec::len
+/// [`push`]: Vec::push
+/// [`insert`]: Vec::insert
+/// [`reserve`]: Vec::reserve
+/// [`MaybeUninit`]: core::mem::MaybeUninit
+/// [owned slice]: Box
+#[stable(feature = "rust1", since = "1.0.0")]
+#[cfg_attr(not(test), rustc_diagnostic_item = "Vec")]
+#[rustc_insignificant_dtor]
+pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
+ buf: RawVec<T, A>,
+ len: usize,
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Inherent methods
+////////////////////////////////////////////////////////////////////////////////
+
+impl<T> Vec<T> {
+ /// Constructs a new, empty `Vec<T>`.
+ ///
+ /// The vector will not allocate until elements are pushed onto it.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # #![allow(unused_mut)]
+ /// let mut vec: Vec<i32> = Vec::new();
+ /// ```
+ #[inline]
+ #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[must_use]
+ pub const fn new() -> Self {
+ Vec { buf: RawVec::NEW, len: 0 }
+ }
+
+ /// Constructs a new, empty `Vec<T>` with the specified capacity.
+ ///
+ /// The vector will be able to hold exactly `capacity` elements without
+ /// reallocating. If `capacity` is 0, the vector will not allocate.
+ ///
+ /// It is important to note that although the returned vector has the
+ /// *capacity* specified, the vector will have a zero *length*. For an
+ /// explanation of the difference between length and capacity, see
+ /// *[Capacity and reallocation]*.
+ ///
+ /// [Capacity and reallocation]: #capacity-and-reallocation
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity exceeds `isize::MAX` bytes.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = Vec::with_capacity(10);
+ ///
+ /// // The vector contains no items, even though it has capacity for more
+ /// assert_eq!(vec.len(), 0);
+ /// assert_eq!(vec.capacity(), 10);
+ ///
+ /// // These are all done without reallocating...
+ /// for i in 0..10 {
+ /// vec.push(i);
+ /// }
+ /// assert_eq!(vec.len(), 10);
+ /// assert_eq!(vec.capacity(), 10);
+ ///
+ /// // ...but this may make the vector reallocate
+ /// vec.push(11);
+ /// assert_eq!(vec.len(), 11);
+ /// assert!(vec.capacity() >= 11);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[must_use]
+ pub fn with_capacity(capacity: usize) -> Self {
+ Self::with_capacity_in(capacity, Global)
+ }
+
+ /// Creates a `Vec<T>` directly from the raw components of another vector.
+ ///
+ /// # Safety
+ ///
+ /// This is highly unsafe, due to the number of invariants that aren't
+ /// checked:
+ ///
+ /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
+ /// (at least, it's highly likely to be incorrect if it wasn't).
+ /// * `T` needs to have the same alignment as what `ptr` was allocated with.
+ /// (`T` having a less strict alignment is not sufficient, the alignment really
+ /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
+ /// allocated and deallocated with the same layout.)
+ /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
+ /// to be the same size as the pointer was allocated with. (Because similar to
+ /// alignment, [`dealloc`] must be called with the same layout `size`.)
+ /// * `length` needs to be less than or equal to `capacity`.
+ ///
+ /// Violating these may cause problems like corrupting the allocator's
+ /// internal data structures. For example it is normally **not** safe
+ /// to build a `Vec<u8>` from a pointer to a C `char` array with length
+ /// `size_t`, doing so is only safe if the array was initially allocated by
+ /// a `Vec` or `String`.
+ /// It's also not safe to build one from a `Vec<u16>` and its length, because
+ /// the allocator cares about the alignment, and these two types have different
+ /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
+ /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
+ /// these issues, it is often preferable to do casting/transmuting using
+ /// [`slice::from_raw_parts`] instead.
+ ///
+ /// The ownership of `ptr` is effectively transferred to the
+ /// `Vec<T>` which may then deallocate, reallocate or change the
+ /// contents of memory pointed to by the pointer at will. Ensure
+ /// that nothing else uses the pointer after calling this
+ /// function.
+ ///
+ /// [`String`]: crate::string::String
+ /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ptr;
+ /// use std::mem;
+ ///
+ /// let v = vec![1, 2, 3];
+ ///
+ // FIXME Update this when vec_into_raw_parts is stabilized
+ /// // Prevent running `v`'s destructor so we are in complete control
+ /// // of the allocation.
+ /// let mut v = mem::ManuallyDrop::new(v);
+ ///
+ /// // Pull out the various important pieces of information about `v`
+ /// let p = v.as_mut_ptr();
+ /// let len = v.len();
+ /// let cap = v.capacity();
+ ///
+ /// unsafe {
+ /// // Overwrite memory with 4, 5, 6
+ /// for i in 0..len as isize {
+ /// ptr::write(p.offset(i), 4 + i);
+ /// }
+ ///
+ /// // Put everything back together into a Vec
+ /// let rebuilt = Vec::from_raw_parts(p, len, cap);
+ /// assert_eq!(rebuilt, [4, 5, 6]);
+ /// }
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
+ unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
+ }
+}
+
+impl<T, A: Allocator> Vec<T, A> {
+ /// Constructs a new, empty `Vec<T, A>`.
+ ///
+ /// The vector will not allocate until elements are pushed onto it.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api)]
+ ///
+ /// use std::alloc::System;
+ ///
+ /// # #[allow(unused_mut)]
+ /// let mut vec: Vec<i32, _> = Vec::new_in(System);
+ /// ```
+ #[inline]
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ pub const fn new_in(alloc: A) -> Self {
+ Vec { buf: RawVec::new_in(alloc), len: 0 }
+ }
+
+ /// Constructs a new, empty `Vec<T, A>` with the specified capacity with the provided
+ /// allocator.
+ ///
+ /// The vector will be able to hold exactly `capacity` elements without
+ /// reallocating. If `capacity` is 0, the vector will not allocate.
+ ///
+ /// It is important to note that although the returned vector has the
+ /// *capacity* specified, the vector will have a zero *length*. For an
+ /// explanation of the difference between length and capacity, see
+ /// *[Capacity and reallocation]*.
+ ///
+ /// [Capacity and reallocation]: #capacity-and-reallocation
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity exceeds `isize::MAX` bytes.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api)]
+ ///
+ /// use std::alloc::System;
+ ///
+ /// let mut vec = Vec::with_capacity_in(10, System);
+ ///
+ /// // The vector contains no items, even though it has capacity for more
+ /// assert_eq!(vec.len(), 0);
+ /// assert_eq!(vec.capacity(), 10);
+ ///
+ /// // These are all done without reallocating...
+ /// for i in 0..10 {
+ /// vec.push(i);
+ /// }
+ /// assert_eq!(vec.len(), 10);
+ /// assert_eq!(vec.capacity(), 10);
+ ///
+ /// // ...but this may make the vector reallocate
+ /// vec.push(11);
+ /// assert_eq!(vec.len(), 11);
+ /// assert!(vec.capacity() >= 11);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
+ Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
+ }
+
+ /// Creates a `Vec<T, A>` directly from the raw components of another vector.
+ ///
+ /// # Safety
+ ///
+ /// This is highly unsafe, due to the number of invariants that aren't
+ /// checked:
+ ///
+ /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
+ /// (at least, it's highly likely to be incorrect if it wasn't).
+ /// * `T` needs to have the same size and alignment as what `ptr` was allocated with.
+ /// (`T` having a less strict alignment is not sufficient, the alignment really
+ /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
+ /// allocated and deallocated with the same layout.)
+ /// * `length` needs to be less than or equal to `capacity`.
+ /// * `capacity` needs to be the capacity that the pointer was allocated with.
+ ///
+ /// Violating these may cause problems like corrupting the allocator's
+ /// internal data structures. For example it is **not** safe
+ /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
+ /// It's also not safe to build one from a `Vec<u16>` and its length, because
+ /// the allocator cares about the alignment, and these two types have different
+ /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
+ /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
+ ///
+ /// The ownership of `ptr` is effectively transferred to the
+ /// `Vec<T>` which may then deallocate, reallocate or change the
+ /// contents of memory pointed to by the pointer at will. Ensure
+ /// that nothing else uses the pointer after calling this
+ /// function.
+ ///
+ /// [`String`]: crate::string::String
+ /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api)]
+ ///
+ /// use std::alloc::System;
+ ///
+ /// use std::ptr;
+ /// use std::mem;
+ ///
+ /// let mut v = Vec::with_capacity_in(3, System);
+ /// v.push(1);
+ /// v.push(2);
+ /// v.push(3);
+ ///
+ // FIXME Update this when vec_into_raw_parts is stabilized
+ /// // Prevent running `v`'s destructor so we are in complete control
+ /// // of the allocation.
+ /// let mut v = mem::ManuallyDrop::new(v);
+ ///
+ /// // Pull out the various important pieces of information about `v`
+ /// let p = v.as_mut_ptr();
+ /// let len = v.len();
+ /// let cap = v.capacity();
+ /// let alloc = v.allocator();
+ ///
+ /// unsafe {
+ /// // Overwrite memory with 4, 5, 6
+ /// for i in 0..len as isize {
+ /// ptr::write(p.offset(i), 4 + i);
+ /// }
+ ///
+ /// // Put everything back together into a Vec
+ /// let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
+ /// assert_eq!(rebuilt, [4, 5, 6]);
+ /// }
+ /// ```
+ #[inline]
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
+ unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
+ }
+
+ /// Decomposes a `Vec<T>` into its raw components.
+ ///
+ /// Returns the raw pointer to the underlying data, the length of
+ /// the vector (in elements), and the allocated capacity of the
+ /// data (in elements). These are the same arguments in the same
+ /// order as the arguments to [`from_raw_parts`].
+ ///
+ /// After calling this function, the caller is responsible for the
+ /// memory previously managed by the `Vec`. The only way to do
+ /// this is to convert the raw pointer, length, and capacity back
+ /// into a `Vec` with the [`from_raw_parts`] function, allowing
+ /// the destructor to perform the cleanup.
+ ///
+ /// [`from_raw_parts`]: Vec::from_raw_parts
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(vec_into_raw_parts)]
+ /// let v: Vec<i32> = vec![-1, 0, 1];
+ ///
+ /// let (ptr, len, cap) = v.into_raw_parts();
+ ///
+ /// let rebuilt = unsafe {
+ /// // We can now make changes to the components, such as
+ /// // transmuting the raw pointer to a compatible type.
+ /// let ptr = ptr as *mut u32;
+ ///
+ /// Vec::from_raw_parts(ptr, len, cap)
+ /// };
+ /// assert_eq!(rebuilt, [4294967295, 0, 1]);
+ /// ```
+ #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
+ pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
+ let mut me = ManuallyDrop::new(self);
+ (me.as_mut_ptr(), me.len(), me.capacity())
+ }
+
+ /// Decomposes a `Vec<T>` into its raw components.
+ ///
+ /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
+ /// the allocated capacity of the data (in elements), and the allocator. These are the same
+ /// arguments in the same order as the arguments to [`from_raw_parts_in`].
+ ///
+ /// After calling this function, the caller is responsible for the
+ /// memory previously managed by the `Vec`. The only way to do
+ /// this is to convert the raw pointer, length, and capacity back
+ /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
+ /// the destructor to perform the cleanup.
+ ///
+ /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(allocator_api, vec_into_raw_parts)]
+ ///
+ /// use std::alloc::System;
+ ///
+ /// let mut v: Vec<i32, System> = Vec::new_in(System);
+ /// v.push(-1);
+ /// v.push(0);
+ /// v.push(1);
+ ///
+ /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
+ ///
+ /// let rebuilt = unsafe {
+ /// // We can now make changes to the components, such as
+ /// // transmuting the raw pointer to a compatible type.
+ /// let ptr = ptr as *mut u32;
+ ///
+ /// Vec::from_raw_parts_in(ptr, len, cap, alloc)
+ /// };
+ /// assert_eq!(rebuilt, [4294967295, 0, 1]);
+ /// ```
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
+ pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
+ let mut me = ManuallyDrop::new(self);
+ let len = me.len();
+ let capacity = me.capacity();
+ let ptr = me.as_mut_ptr();
+ let alloc = unsafe { ptr::read(me.allocator()) };
+ (ptr, len, capacity, alloc)
+ }
+
+ /// Returns the number of elements the vector can hold without
+ /// reallocating.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let vec: Vec<i32> = Vec::with_capacity(10);
+ /// assert_eq!(vec.capacity(), 10);
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn capacity(&self) -> usize {
+ self.buf.capacity()
+ }
+
+ /// Reserves capacity for at least `additional` more elements to be inserted
+ /// in the given `Vec<T>`. The collection may reserve more space to avoid
+ /// frequent reallocations. After calling `reserve`, capacity will be
+ /// greater than or equal to `self.len() + additional`. Does nothing if
+ /// capacity is already sufficient.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity exceeds `isize::MAX` bytes.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = vec![1];
+ /// vec.reserve(10);
+ /// assert!(vec.capacity() >= 11);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn reserve(&mut self, additional: usize) {
+ self.buf.reserve(self.len, additional);
+ }
+
+ /// Reserves the minimum capacity for exactly `additional` more elements to
+ /// be inserted in the given `Vec<T>`. After calling `reserve_exact`,
+ /// capacity will be greater than or equal to `self.len() + additional`.
+ /// Does nothing if the capacity is already sufficient.
+ ///
+ /// Note that the allocator may give the collection more space than it
+ /// requests. Therefore, capacity can not be relied upon to be precisely
+ /// minimal. Prefer [`reserve`] if future insertions are expected.
+ ///
+ /// [`reserve`]: Vec::reserve
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity exceeds `isize::MAX` bytes.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = vec![1];
+ /// vec.reserve_exact(10);
+ /// assert!(vec.capacity() >= 11);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn reserve_exact(&mut self, additional: usize) {
+ self.buf.reserve_exact(self.len, additional);
+ }
+
+ /// Tries to reserve capacity for at least `additional` more elements to be inserted
+ /// in the given `Vec<T>`. The collection may reserve more space to avoid
+ /// frequent reallocations. After calling `try_reserve`, capacity will be
+ /// greater than or equal to `self.len() + additional`. Does nothing if
+ /// capacity is already sufficient.
+ ///
+ /// # Errors
+ ///
+ /// If the capacity overflows, or the allocator reports a failure, then an error
+ /// is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::TryReserveError;
+ ///
+ /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
+ /// let mut output = Vec::new();
+ ///
+ /// // Pre-reserve the memory, exiting if we can't
+ /// output.try_reserve(data.len())?;
+ ///
+ /// // Now we know this can't OOM in the middle of our complex work
+ /// output.extend(data.iter().map(|&val| {
+ /// val * 2 + 5 // very complicated
+ /// }));
+ ///
+ /// Ok(output)
+ /// }
+ /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
+ /// ```
+ #[stable(feature = "try_reserve", since = "1.57.0")]
+ pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
+ self.buf.try_reserve(self.len, additional)
+ }
+
+ /// Tries to reserve the minimum capacity for exactly `additional`
+ /// elements to be inserted in the given `Vec<T>`. After calling
+ /// `try_reserve_exact`, capacity will be greater than or equal to
+ /// `self.len() + additional` if it returns `Ok(())`.
+ /// Does nothing if the capacity is already sufficient.
+ ///
+ /// Note that the allocator may give the collection more space than it
+ /// requests. Therefore, capacity can not be relied upon to be precisely
+ /// minimal. Prefer [`try_reserve`] if future insertions are expected.
+ ///
+ /// [`try_reserve`]: Vec::try_reserve
+ ///
+ /// # Errors
+ ///
+ /// If the capacity overflows, or the allocator reports a failure, then an error
+ /// is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::TryReserveError;
+ ///
+ /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
+ /// let mut output = Vec::new();
+ ///
+ /// // Pre-reserve the memory, exiting if we can't
+ /// output.try_reserve_exact(data.len())?;
+ ///
+ /// // Now we know this can't OOM in the middle of our complex work
+ /// output.extend(data.iter().map(|&val| {
+ /// val * 2 + 5 // very complicated
+ /// }));
+ ///
+ /// Ok(output)
+ /// }
+ /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
+ /// ```
+ #[stable(feature = "try_reserve", since = "1.57.0")]
+ pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
+ self.buf.try_reserve_exact(self.len, additional)
+ }
+
+ /// Shrinks the capacity of the vector as much as possible.
+ ///
+ /// It will drop down as close as possible to the length but the allocator
+ /// may still inform the vector that there is space for a few more elements.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = Vec::with_capacity(10);
+ /// vec.extend([1, 2, 3]);
+ /// assert_eq!(vec.capacity(), 10);
+ /// vec.shrink_to_fit();
+ /// assert!(vec.capacity() >= 3);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn shrink_to_fit(&mut self) {
+ // The capacity is never less than the length, and there's nothing to do when
+ // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
+ // by only calling it with a greater capacity.
+ if self.capacity() > self.len {
+ self.buf.shrink_to_fit(self.len);
+ }
+ }
+
+ /// Shrinks the capacity of the vector with a lower bound.
+ ///
+ /// The capacity will remain at least as large as both the length
+ /// and the supplied value.
+ ///
+ /// If the current capacity is less than the lower limit, this is a no-op.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = Vec::with_capacity(10);
+ /// vec.extend([1, 2, 3]);
+ /// assert_eq!(vec.capacity(), 10);
+ /// vec.shrink_to(4);
+ /// assert!(vec.capacity() >= 4);
+ /// vec.shrink_to(0);
+ /// assert!(vec.capacity() >= 3);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "shrink_to", since = "1.56.0")]
+ pub fn shrink_to(&mut self, min_capacity: usize) {
+ if self.capacity() > min_capacity {
+ self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
+ }
+ }
+
+ /// Converts the vector into [`Box<[T]>`][owned slice].
+ ///
+ /// Note that this will drop any excess capacity.
+ ///
+ /// [owned slice]: Box
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = vec![1, 2, 3];
+ ///
+ /// let slice = v.into_boxed_slice();
+ /// ```
+ ///
+ /// Any excess capacity is removed:
+ ///
+ /// ```
+ /// let mut vec = Vec::with_capacity(10);
+ /// vec.extend([1, 2, 3]);
+ ///
+ /// assert_eq!(vec.capacity(), 10);
+ /// let slice = vec.into_boxed_slice();
+ /// assert_eq!(slice.into_vec().capacity(), 3);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn into_boxed_slice(mut self) -> Box<[T], A> {
+ unsafe {
+ self.shrink_to_fit();
+ let me = ManuallyDrop::new(self);
+ let buf = ptr::read(&me.buf);
+ let len = me.len();
+ buf.into_box(len).assume_init()
+ }
+ }
+
+ /// Shortens the vector, keeping the first `len` elements and dropping
+ /// the rest.
+ ///
+ /// If `len` is greater than the vector's current length, this has no
+ /// effect.
+ ///
+ /// The [`drain`] method can emulate `truncate`, but causes the excess
+ /// elements to be returned instead of dropped.
+ ///
+ /// Note that this method has no effect on the allocated capacity
+ /// of the vector.
+ ///
+ /// # Examples
+ ///
+ /// Truncating a five element vector to two elements:
+ ///
+ /// ```
+ /// let mut vec = vec![1, 2, 3, 4, 5];
+ /// vec.truncate(2);
+ /// assert_eq!(vec, [1, 2]);
+ /// ```
+ ///
+ /// No truncation occurs when `len` is greater than the vector's current
+ /// length:
+ ///
+ /// ```
+ /// let mut vec = vec![1, 2, 3];
+ /// vec.truncate(8);
+ /// assert_eq!(vec, [1, 2, 3]);
+ /// ```
+ ///
+ /// Truncating when `len == 0` is equivalent to calling the [`clear`]
+ /// method.
+ ///
+ /// ```
+ /// let mut vec = vec![1, 2, 3];
+ /// vec.truncate(0);
+ /// assert_eq!(vec, []);
+ /// ```
+ ///
+ /// [`clear`]: Vec::clear
+ /// [`drain`]: Vec::drain
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn truncate(&mut self, len: usize) {
+ // This is safe because:
+ //
+ // * the slice passed to `drop_in_place` is valid; the `len > self.len`
+ // case avoids creating an invalid slice, and
+ // * the `len` of the vector is shrunk before calling `drop_in_place`,
+ // such that no value will be dropped twice in case `drop_in_place`
+ // were to panic once (if it panics twice, the program aborts).
+ unsafe {
+ // Note: It's intentional that this is `>` and not `>=`.
+ // Changing it to `>=` has negative performance
+ // implications in some cases. See #78884 for more.
+ if len > self.len {
+ return;
+ }
+ let remaining_len = self.len - len;
+ let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
+ self.len = len;
+ ptr::drop_in_place(s);
+ }
+ }
+
+ /// Extracts a slice containing the entire vector.
+ ///
+ /// Equivalent to `&s[..]`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::io::{self, Write};
+ /// let buffer = vec![1, 2, 3, 5, 8];
+ /// io::sink().write(buffer.as_slice()).unwrap();
+ /// ```
+ #[inline]
+ #[stable(feature = "vec_as_slice", since = "1.7.0")]
+ pub fn as_slice(&self) -> &[T] {
+ self
+ }
+
+ /// Extracts a mutable slice of the entire vector.
+ ///
+ /// Equivalent to `&mut s[..]`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::io::{self, Read};
+ /// let mut buffer = vec![0; 3];
+ /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
+ /// ```
+ #[inline]
+ #[stable(feature = "vec_as_slice", since = "1.7.0")]
+ pub fn as_mut_slice(&mut self) -> &mut [T] {
+ self
+ }
+
+ /// Returns a raw pointer to the vector's buffer.
+ ///
+ /// The caller must ensure that the vector outlives the pointer this
+ /// function returns, or else it will end up pointing to garbage.
+ /// Modifying the vector may cause its buffer to be reallocated,
+ /// which would also make any pointers to it invalid.
+ ///
+ /// The caller must also ensure that the memory the pointer (non-transitively) points to
+ /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
+ /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let x = vec![1, 2, 4];
+ /// let x_ptr = x.as_ptr();
+ ///
+ /// unsafe {
+ /// for i in 0..x.len() {
+ /// assert_eq!(*x_ptr.add(i), 1 << i);
+ /// }
+ /// }
+ /// ```
+ ///
+ /// [`as_mut_ptr`]: Vec::as_mut_ptr
+ #[stable(feature = "vec_as_ptr", since = "1.37.0")]
+ #[inline]
+ pub fn as_ptr(&self) -> *const T {
+ // We shadow the slice method of the same name to avoid going through
+ // `deref`, which creates an intermediate reference.
+ let ptr = self.buf.ptr();
+ unsafe {
+ assume(!ptr.is_null());
+ }
+ ptr
+ }
+
+ /// Returns an unsafe mutable pointer to the vector's buffer.
+ ///
+ /// The caller must ensure that the vector outlives the pointer this
+ /// function returns, or else it will end up pointing to garbage.
+ /// Modifying the vector may cause its buffer to be reallocated,
+ /// which would also make any pointers to it invalid.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// // Allocate vector big enough for 4 elements.
+ /// let size = 4;
+ /// let mut x: Vec<i32> = Vec::with_capacity(size);
+ /// let x_ptr = x.as_mut_ptr();
+ ///
+ /// // Initialize elements via raw pointer writes, then set length.
+ /// unsafe {
+ /// for i in 0..size {
+ /// *x_ptr.add(i) = i as i32;
+ /// }
+ /// x.set_len(size);
+ /// }
+ /// assert_eq!(&*x, &[0, 1, 2, 3]);
+ /// ```
+ #[stable(feature = "vec_as_ptr", since = "1.37.0")]
+ #[inline]
+ pub fn as_mut_ptr(&mut self) -> *mut T {
+ // We shadow the slice method of the same name to avoid going through
+ // `deref_mut`, which creates an intermediate reference.
+ let ptr = self.buf.ptr();
+ unsafe {
+ assume(!ptr.is_null());
+ }
+ ptr
+ }
+
+ /// Returns a reference to the underlying allocator.
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ #[inline]
+ pub fn allocator(&self) -> &A {
+ self.buf.allocator()
+ }
+
+ /// Forces the length of the vector to `new_len`.
+ ///
+ /// This is a low-level operation that maintains none of the normal
+ /// invariants of the type. Normally changing the length of a vector
+ /// is done using one of the safe operations instead, such as
+ /// [`truncate`], [`resize`], [`extend`], or [`clear`].
+ ///
+ /// [`truncate`]: Vec::truncate
+ /// [`resize`]: Vec::resize
+ /// [`extend`]: Extend::extend
+ /// [`clear`]: Vec::clear
+ ///
+ /// # Safety
+ ///
+ /// - `new_len` must be less than or equal to [`capacity()`].
+ /// - The elements at `old_len..new_len` must be initialized.
+ ///
+ /// [`capacity()`]: Vec::capacity
+ ///
+ /// # Examples
+ ///
+ /// This method can be useful for situations in which the vector
+ /// is serving as a buffer for other code, particularly over FFI:
+ ///
+ /// ```no_run
+ /// # #![allow(dead_code)]
+ /// # // This is just a minimal skeleton for the doc example;
+ /// # // don't use this as a starting point for a real library.
+ /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
+ /// # const Z_OK: i32 = 0;
+ /// # extern "C" {
+ /// # fn deflateGetDictionary(
+ /// # strm: *mut std::ffi::c_void,
+ /// # dictionary: *mut u8,
+ /// # dictLength: *mut usize,
+ /// # ) -> i32;
+ /// # }
+ /// # impl StreamWrapper {
+ /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
+ /// // Per the FFI method's docs, "32768 bytes is always enough".
+ /// let mut dict = Vec::with_capacity(32_768);
+ /// let mut dict_length = 0;
+ /// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
+ /// // 1. `dict_length` elements were initialized.
+ /// // 2. `dict_length` <= the capacity (32_768)
+ /// // which makes `set_len` safe to call.
+ /// unsafe {
+ /// // Make the FFI call...
+ /// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
+ /// if r == Z_OK {
+ /// // ...and update the length to what was initialized.
+ /// dict.set_len(dict_length);
+ /// Some(dict)
+ /// } else {
+ /// None
+ /// }
+ /// }
+ /// }
+ /// # }
+ /// ```
+ ///
+ /// While the following example is sound, there is a memory leak since
+ /// the inner vectors were not freed prior to the `set_len` call:
+ ///
+ /// ```
+ /// let mut vec = vec![vec![1, 0, 0],
+ /// vec![0, 1, 0],
+ /// vec![0, 0, 1]];
+ /// // SAFETY:
+ /// // 1. `old_len..0` is empty so no elements need to be initialized.
+ /// // 2. `0 <= capacity` always holds whatever `capacity` is.
+ /// unsafe {
+ /// vec.set_len(0);
+ /// }
+ /// ```
+ ///
+ /// Normally, here, one would use [`clear`] instead to correctly drop
+ /// the contents and thus not leak memory.
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub unsafe fn set_len(&mut self, new_len: usize) {
+ debug_assert!(new_len <= self.capacity());
+
+ self.len = new_len;
+ }
+
+ /// Removes an element from the vector and returns it.
+ ///
+ /// The removed element is replaced by the last element of the vector.
+ ///
+ /// This does not preserve ordering, but is *O*(1).
+ /// If you need to preserve the element order, use [`remove`] instead.
+ ///
+ /// [`remove`]: Vec::remove
+ ///
+ /// # Panics
+ ///
+ /// Panics if `index` is out of bounds.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = vec!["foo", "bar", "baz", "qux"];
+ ///
+ /// assert_eq!(v.swap_remove(1), "bar");
+ /// assert_eq!(v, ["foo", "qux", "baz"]);
+ ///
+ /// assert_eq!(v.swap_remove(0), "foo");
+ /// assert_eq!(v, ["baz", "qux"]);
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn swap_remove(&mut self, index: usize) -> T {
+ #[cold]
+ #[inline(never)]
+ fn assert_failed(index: usize, len: usize) -> ! {
+ panic!("swap_remove index (is {index}) should be < len (is {len})");
+ }
+
+ let len = self.len();
+ if index >= len {
+ assert_failed(index, len);
+ }
+ unsafe {
+ // We replace self[index] with the last element. Note that if the
+ // bounds check above succeeds there must be a last element (which
+ // can be self[index] itself).
+ let value = ptr::read(self.as_ptr().add(index));
+ let base_ptr = self.as_mut_ptr();
+ ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
+ self.set_len(len - 1);
+ value
+ }
+ }
+
+ /// Inserts an element at position `index` within the vector, shifting all
+ /// elements after it to the right.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `index > len`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = vec![1, 2, 3];
+ /// vec.insert(1, 4);
+ /// assert_eq!(vec, [1, 4, 2, 3]);
+ /// vec.insert(4, 5);
+ /// assert_eq!(vec, [1, 4, 2, 3, 5]);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn insert(&mut self, index: usize, element: T) {
+ #[cold]
+ #[inline(never)]
+ fn assert_failed(index: usize, len: usize) -> ! {
+ panic!("insertion index (is {index}) should be <= len (is {len})");
+ }
+
+ let len = self.len();
+ if index > len {
+ assert_failed(index, len);
+ }
+
+ // space for the new element
+ if len == self.buf.capacity() {
+ self.reserve(1);
+ }
+
+ unsafe {
+ // infallible
+ // The spot to put the new value
+ {
+ let p = self.as_mut_ptr().add(index);
+ // Shift everything over to make space. (Duplicating the
+ // `index`th element into two consecutive places.)
+ ptr::copy(p, p.offset(1), len - index);
+ // Write it in, overwriting the first copy of the `index`th
+ // element.
+ ptr::write(p, element);
+ }
+ self.set_len(len + 1);
+ }
+ }
+
+ /// Removes and returns the element at position `index` within the vector,
+ /// shifting all elements after it to the left.
+ ///
+ /// Note: Because this shifts over the remaining elements, it has a
+ /// worst-case performance of *O*(*n*). If you don't need the order of elements
+ /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
+ /// elements from the beginning of the `Vec`, consider using
+ /// [`VecDeque::pop_front`] instead.
+ ///
+ /// [`swap_remove`]: Vec::swap_remove
+ /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
+ ///
+ /// # Panics
+ ///
+ /// Panics if `index` is out of bounds.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = vec![1, 2, 3];
+ /// assert_eq!(v.remove(1), 2);
+ /// assert_eq!(v, [1, 3]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[track_caller]
+ pub fn remove(&mut self, index: usize) -> T {
+ #[cold]
+ #[inline(never)]
+ #[track_caller]
+ fn assert_failed(index: usize, len: usize) -> ! {
+ panic!("removal index (is {index}) should be < len (is {len})");
+ }
+
+ let len = self.len();
+ if index >= len {
+ assert_failed(index, len);
+ }
+ unsafe {
+ // infallible
+ let ret;
+ {
+ // the place we are taking from.
+ let ptr = self.as_mut_ptr().add(index);
+ // copy it out, unsafely having a copy of the value on
+ // the stack and in the vector at the same time.
+ ret = ptr::read(ptr);
+
+ // Shift everything down to fill in that spot.
+ ptr::copy(ptr.offset(1), ptr, len - index - 1);
+ }
+ self.set_len(len - 1);
+ ret
+ }
+ }
+
+ /// Retains only the elements specified by the predicate.
+ ///
+ /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
+ /// This method operates in place, visiting each element exactly once in the
+ /// original order, and preserves the order of the retained elements.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = vec![1, 2, 3, 4];
+ /// vec.retain(|&x| x % 2 == 0);
+ /// assert_eq!(vec, [2, 4]);
+ /// ```
+ ///
+ /// Because the elements are visited exactly once in the original order,
+ /// external state may be used to decide which elements to keep.
+ ///
+ /// ```
+ /// let mut vec = vec![1, 2, 3, 4, 5];
+ /// let keep = [false, true, true, false, true];
+ /// let mut iter = keep.iter();
+ /// vec.retain(|_| *iter.next().unwrap());
+ /// assert_eq!(vec, [2, 3, 5]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn retain<F>(&mut self, mut f: F)
+ where
+ F: FnMut(&T) -> bool,
+ {
+ self.retain_mut(|elem| f(elem));
+ }
+
+ /// Retains only the elements specified by the predicate, passing a mutable reference to it.
+ ///
+ /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
+ /// This method operates in place, visiting each element exactly once in the
+ /// original order, and preserves the order of the retained elements.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = vec![1, 2, 3, 4];
+ /// vec.retain_mut(|x| if *x > 3 {
+ /// false
+ /// } else {
+ /// *x += 1;
+ /// true
+ /// });
+ /// assert_eq!(vec, [2, 3, 4]);
+ /// ```
+ #[stable(feature = "vec_retain_mut", since = "1.61.0")]
+ pub fn retain_mut<F>(&mut self, mut f: F)
+ where
+ F: FnMut(&mut T) -> bool,
+ {
+ let original_len = self.len();
+ // Avoid double drop if the drop guard is not executed,
+ // since we may make some holes during the process.
+ unsafe { self.set_len(0) };
+
+ // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
+ // |<- processed len ->| ^- next to check
+ // |<- deleted cnt ->|
+ // |<- original_len ->|
+ // Kept: Elements which predicate returns true on.
+ // Hole: Moved or dropped element slot.
+ // Unchecked: Unchecked valid elements.
+ //
+ // This drop guard will be invoked when predicate or `drop` of element panicked.
+ // It shifts unchecked elements to cover holes and `set_len` to the correct length.
+ // In cases when predicate and `drop` never panick, it will be optimized out.
+ struct BackshiftOnDrop<'a, T, A: Allocator> {
+ v: &'a mut Vec<T, A>,
+ processed_len: usize,
+ deleted_cnt: usize,
+ original_len: usize,
+ }
+
+ impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
+ fn drop(&mut self) {
+ if self.deleted_cnt > 0 {
+ // SAFETY: Trailing unchecked items must be valid since we never touch them.
+ unsafe {
+ ptr::copy(
+ self.v.as_ptr().add(self.processed_len),
+ self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
+ self.original_len - self.processed_len,
+ );
+ }
+ }
+ // SAFETY: After filling holes, all items are in contiguous memory.
+ unsafe {
+ self.v.set_len(self.original_len - self.deleted_cnt);
+ }
+ }
+ }
+
+ let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
+
+ fn process_loop<F, T, A: Allocator, const DELETED: bool>(
+ original_len: usize,
+ f: &mut F,
+ g: &mut BackshiftOnDrop<'_, T, A>,
+ ) where
+ F: FnMut(&mut T) -> bool,
+ {
+ while g.processed_len != original_len {
+ // SAFETY: Unchecked element must be valid.
+ let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
+ if !f(cur) {
+ // Advance early to avoid double drop if `drop_in_place` panicked.
+ g.processed_len += 1;
+ g.deleted_cnt += 1;
+ // SAFETY: We never touch this element again after dropped.
+ unsafe { ptr::drop_in_place(cur) };
+ // We already advanced the counter.
+ if DELETED {
+ continue;
+ } else {
+ break;
+ }
+ }
+ if DELETED {
+ // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
+ // We use copy for move, and never touch this element again.
+ unsafe {
+ let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
+ ptr::copy_nonoverlapping(cur, hole_slot, 1);
+ }
+ }
+ g.processed_len += 1;
+ }
+ }
+
+ // Stage 1: Nothing was deleted.
+ process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
+
+ // Stage 2: Some elements were deleted.
+ process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
+
+ // All item are processed. This can be optimized to `set_len` by LLVM.
+ drop(g);
+ }
+
+ /// Removes all but the first of consecutive elements in the vector that resolve to the same
+ /// key.
+ ///
+ /// If the vector is sorted, this removes all duplicates.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = vec![10, 20, 21, 30, 20];
+ ///
+ /// vec.dedup_by_key(|i| *i / 10);
+ ///
+ /// assert_eq!(vec, [10, 20, 30, 20]);
+ /// ```
+ #[stable(feature = "dedup_by", since = "1.16.0")]
+ #[inline]
+ pub fn dedup_by_key<F, K>(&mut self, mut key: F)
+ where
+ F: FnMut(&mut T) -> K,
+ K: PartialEq,
+ {
+ self.dedup_by(|a, b| key(a) == key(b))
+ }
+
+ /// Removes all but the first of consecutive elements in the vector satisfying a given equality
+ /// relation.
+ ///
+ /// The `same_bucket` function is passed references to two elements from the vector and
+ /// must determine if the elements compare equal. The elements are passed in opposite order
+ /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
+ ///
+ /// If the vector is sorted, this removes all duplicates.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
+ ///
+ /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
+ ///
+ /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
+ /// ```
+ #[stable(feature = "dedup_by", since = "1.16.0")]
+ pub fn dedup_by<F>(&mut self, mut same_bucket: F)
+ where
+ F: FnMut(&mut T, &mut T) -> bool,
+ {
+ let len = self.len();
+ if len <= 1 {
+ return;
+ }
+
+ /* INVARIANT: vec.len() > read >= write > write-1 >= 0 */
+ struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
+ /* Offset of the element we want to check if it is duplicate */
+ read: usize,
+
+ /* Offset of the place where we want to place the non-duplicate
+ * when we find it. */
+ write: usize,
+
+ /* The Vec that would need correction if `same_bucket` panicked */
+ vec: &'a mut Vec<T, A>,
+ }
+
+ impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
+ fn drop(&mut self) {
+ /* This code gets executed when `same_bucket` panics */
+
+ /* SAFETY: invariant guarantees that `read - write`
+ * and `len - read` never overflow and that the copy is always
+ * in-bounds. */
+ unsafe {
+ let ptr = self.vec.as_mut_ptr();
+ let len = self.vec.len();
+
+ /* How many items were left when `same_bucket` panicked.
+ * Basically vec[read..].len() */
+ let items_left = len.wrapping_sub(self.read);
+
+ /* Pointer to first item in vec[write..write+items_left] slice */
+ let dropped_ptr = ptr.add(self.write);
+ /* Pointer to first item in vec[read..] slice */
+ let valid_ptr = ptr.add(self.read);
+
+ /* Copy `vec[read..]` to `vec[write..write+items_left]`.
+ * The slices can overlap, so `copy_nonoverlapping` cannot be used */
+ ptr::copy(valid_ptr, dropped_ptr, items_left);
+
+ /* How many items have been already dropped
+ * Basically vec[read..write].len() */
+ let dropped = self.read.wrapping_sub(self.write);
+
+ self.vec.set_len(len - dropped);
+ }
+ }
+ }
+
+ let mut gap = FillGapOnDrop { read: 1, write: 1, vec: self };
+ let ptr = gap.vec.as_mut_ptr();
+
+ /* Drop items while going through Vec, it should be more efficient than
+ * doing slice partition_dedup + truncate */
+
+ /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
+ * are always in-bounds and read_ptr never aliases prev_ptr */
+ unsafe {
+ while gap.read < len {
+ let read_ptr = ptr.add(gap.read);
+ let prev_ptr = ptr.add(gap.write.wrapping_sub(1));
+
+ if same_bucket(&mut *read_ptr, &mut *prev_ptr) {
+ // Increase `gap.read` now since the drop may panic.
+ gap.read += 1;
+ /* We have found duplicate, drop it in-place */
+ ptr::drop_in_place(read_ptr);
+ } else {
+ let write_ptr = ptr.add(gap.write);
+
+ /* Because `read_ptr` can be equal to `write_ptr`, we either
+ * have to use `copy` or conditional `copy_nonoverlapping`.
+ * Looks like the first option is faster. */
+ ptr::copy(read_ptr, write_ptr, 1);
+
+ /* We have filled that place, so go further */
+ gap.write += 1;
+ gap.read += 1;
+ }
+ }
+
+ /* Technically we could let `gap` clean up with its Drop, but
+ * when `same_bucket` is guaranteed to not panic, this bloats a little
+ * the codegen, so we just do it manually */
+ gap.vec.set_len(gap.write);
+ mem::forget(gap);
+ }
+ }
+
+ /// Appends an element to the back of a collection.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity exceeds `isize::MAX` bytes.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = vec![1, 2];
+ /// vec.push(3);
+ /// assert_eq!(vec, [1, 2, 3]);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn push(&mut self, value: T) {
+ // This will panic or abort if we would allocate > isize::MAX bytes
+ // or if the length increment would overflow for zero-sized types.
+ if self.len == self.buf.capacity() {
+ self.buf.reserve_for_push(self.len);
+ }
+ unsafe {
+ let end = self.as_mut_ptr().add(self.len);
+ ptr::write(end, value);
+ self.len += 1;
+ }
+ }
+
+ /// Removes the last element from a vector and returns it, or [`None`] if it
+ /// is empty.
+ ///
+ /// If you'd like to pop the first element, consider using
+ /// [`VecDeque::pop_front`] instead.
+ ///
+ /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = vec![1, 2, 3];
+ /// assert_eq!(vec.pop(), Some(3));
+ /// assert_eq!(vec, [1, 2]);
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn pop(&mut self) -> Option<T> {
+ if self.len == 0 {
+ None
+ } else {
+ unsafe {
+ self.len -= 1;
+ Some(ptr::read(self.as_ptr().add(self.len())))
+ }
+ }
+ }
+
+ /// Moves all the elements of `other` into `self`, leaving `other` empty.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the number of elements in the vector overflows a `usize`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = vec![1, 2, 3];
+ /// let mut vec2 = vec![4, 5, 6];
+ /// vec.append(&mut vec2);
+ /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
+ /// assert_eq!(vec2, []);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "append", since = "1.4.0")]
+ pub fn append(&mut self, other: &mut Self) {
+ unsafe {
+ self.append_elements(other.as_slice() as _);
+ other.set_len(0);
+ }
+ }
+
+ /// Appends elements to `self` from other buffer.
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ unsafe fn append_elements(&mut self, other: *const [T]) {
+ let count = unsafe { (*other).len() };
+ self.reserve(count);
+ let len = self.len();
+ unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
+ self.len += count;
+ }
+
+ /// Removes the specified range from the vector in bulk, returning all
+ /// removed elements as an iterator. If the iterator is dropped before
+ /// being fully consumed, it drops the remaining removed elements.
+ ///
+ /// The returned iterator keeps a mutable borrow on the vector to optimize
+ /// its implementation.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the starting point is greater than the end point or if
+ /// the end point is greater than the length of the vector.
+ ///
+ /// # Leaking
+ ///
+ /// If the returned iterator goes out of scope without being dropped (due to
+ /// [`mem::forget`], for example), the vector may have lost and leaked
+ /// elements arbitrarily, including elements outside the range.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = vec![1, 2, 3];
+ /// let u: Vec<_> = v.drain(1..).collect();
+ /// assert_eq!(v, &[1]);
+ /// assert_eq!(u, &[2, 3]);
+ ///
+ /// // A full range clears the vector, like `clear()` does
+ /// v.drain(..);
+ /// assert_eq!(v, &[]);
+ /// ```
+ #[stable(feature = "drain", since = "1.6.0")]
+ pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
+ where
+ R: RangeBounds<usize>,
+ {
+ // Memory safety
+ //
+ // When the Drain is first created, it shortens the length of
+ // the source vector to make sure no uninitialized or moved-from elements
+ // are accessible at all if the Drain's destructor never gets to run.
+ //
+ // Drain will ptr::read out the values to remove.
+ // When finished, remaining tail of the vec is copied back to cover
+ // the hole, and the vector length is restored to the new length.
+ //
+ let len = self.len();
+ let Range { start, end } = slice::range(range, ..len);
+
+ unsafe {
+ // set self.vec length's to start, to be safe in case Drain is leaked
+ self.set_len(start);
+ // Use the borrow in the IterMut to indicate borrowing behavior of the
+ // whole Drain iterator (like &mut T).
+ let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start), end - start);
+ Drain {
+ tail_start: end,
+ tail_len: len - end,
+ iter: range_slice.iter(),
+ vec: NonNull::from(self),
+ }
+ }
+ }
+
+ /// Clears the vector, removing all values.
+ ///
+ /// Note that this method has no effect on the allocated capacity
+ /// of the vector.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = vec![1, 2, 3];
+ ///
+ /// v.clear();
+ ///
+ /// assert!(v.is_empty());
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn clear(&mut self) {
+ let elems: *mut [T] = self.as_mut_slice();
+
+ // SAFETY:
+ // - `elems` comes directly from `as_mut_slice` and is therefore valid.
+ // - Setting `self.len` before calling `drop_in_place` means that,
+ // if an element's `Drop` impl panics, the vector's `Drop` impl will
+ // do nothing (leaking the rest of the elements) instead of dropping
+ // some twice.
+ unsafe {
+ self.len = 0;
+ ptr::drop_in_place(elems);
+ }
+ }
+
+ /// Returns the number of elements in the vector, also referred to
+ /// as its 'length'.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let a = vec![1, 2, 3];
+ /// assert_eq!(a.len(), 3);
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn len(&self) -> usize {
+ self.len
+ }
+
+ /// Returns `true` if the vector contains no elements.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = Vec::new();
+ /// assert!(v.is_empty());
+ ///
+ /// v.push(1);
+ /// assert!(!v.is_empty());
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ /// Splits the collection into two at the given index.
+ ///
+ /// Returns a newly allocated vector containing the elements in the range
+ /// `[at, len)`. After the call, the original vector will be left containing
+ /// the elements `[0, at)` with its previous capacity unchanged.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `at > len`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = vec![1, 2, 3];
+ /// let vec2 = vec.split_off(1);
+ /// assert_eq!(vec, [1]);
+ /// assert_eq!(vec2, [2, 3]);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[must_use = "use `.truncate()` if you don't need the other half"]
+ #[stable(feature = "split_off", since = "1.4.0")]
+ pub fn split_off(&mut self, at: usize) -> Self
+ where
+ A: Clone,
+ {
+ #[cold]
+ #[inline(never)]
+ fn assert_failed(at: usize, len: usize) -> ! {
+ panic!("`at` split index (is {at}) should be <= len (is {len})");
+ }
+
+ if at > self.len() {
+ assert_failed(at, self.len());
+ }
+
+ if at == 0 {
+ // the new vector can take over the original buffer and avoid the copy
+ return mem::replace(
+ self,
+ Vec::with_capacity_in(self.capacity(), self.allocator().clone()),
+ );
+ }
+
+ let other_len = self.len - at;
+ let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
+
+ // Unsafely `set_len` and copy items to `other`.
+ unsafe {
+ self.set_len(at);
+ other.set_len(other_len);
+
+ ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
+ }
+ other
+ }
+
+ /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
+ ///
+ /// If `new_len` is greater than `len`, the `Vec` is extended by the
+ /// difference, with each additional slot filled with the result of
+ /// calling the closure `f`. The return values from `f` will end up
+ /// in the `Vec` in the order they have been generated.
+ ///
+ /// If `new_len` is less than `len`, the `Vec` is simply truncated.
+ ///
+ /// This method uses a closure to create new values on every push. If
+ /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
+ /// want to use the [`Default`] trait to generate values, you can
+ /// pass [`Default::default`] as the second argument.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = vec![1, 2, 3];
+ /// vec.resize_with(5, Default::default);
+ /// assert_eq!(vec, [1, 2, 3, 0, 0]);
+ ///
+ /// let mut vec = vec![];
+ /// let mut p = 1;
+ /// vec.resize_with(4, || { p *= 2; p });
+ /// assert_eq!(vec, [2, 4, 8, 16]);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "vec_resize_with", since = "1.33.0")]
+ pub fn resize_with<F>(&mut self, new_len: usize, f: F)
+ where
+ F: FnMut() -> T,
+ {
+ let len = self.len();
+ if new_len > len {
+ self.extend_with(new_len - len, ExtendFunc(f));
+ } else {
+ self.truncate(new_len);
+ }
+ }
+
+ /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
+ /// `&'a mut [T]`. Note that the type `T` must outlive the chosen lifetime
+ /// `'a`. If the type has only static references, or none at all, then this
+ /// may be chosen to be `'static`.
+ ///
+ /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
+ /// so the leaked allocation may include unused capacity that is not part
+ /// of the returned slice.
+ ///
+ /// This function is mainly useful for data that lives for the remainder of
+ /// the program's life. Dropping the returned reference will cause a memory
+ /// leak.
+ ///
+ /// # Examples
+ ///
+ /// Simple usage:
+ ///
+ /// ```
+ /// let x = vec![1, 2, 3];
+ /// let static_ref: &'static mut [usize] = x.leak();
+ /// static_ref[0] += 1;
+ /// assert_eq!(static_ref, &[2, 2, 3]);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "vec_leak", since = "1.47.0")]
+ #[inline]
+ pub fn leak<'a>(self) -> &'a mut [T]
+ where
+ A: 'a,
+ {
+ let mut me = ManuallyDrop::new(self);
+ unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
+ }
+
+ /// Returns the remaining spare capacity of the vector as a slice of
+ /// `MaybeUninit<T>`.
+ ///
+ /// The returned slice can be used to fill the vector with data (e.g. by
+ /// reading from a file) before marking the data as initialized using the
+ /// [`set_len`] method.
+ ///
+ /// [`set_len`]: Vec::set_len
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// // Allocate vector big enough for 10 elements.
+ /// let mut v = Vec::with_capacity(10);
+ ///
+ /// // Fill in the first 3 elements.
+ /// let uninit = v.spare_capacity_mut();
+ /// uninit[0].write(0);
+ /// uninit[1].write(1);
+ /// uninit[2].write(2);
+ ///
+ /// // Mark the first 3 elements of the vector as being initialized.
+ /// unsafe {
+ /// v.set_len(3);
+ /// }
+ ///
+ /// assert_eq!(&v, &[0, 1, 2]);
+ /// ```
+ #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
+ #[inline]
+ pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
+ // Note:
+ // This method is not implemented in terms of `split_at_spare_mut`,
+ // to prevent invalidation of pointers to the buffer.
+ unsafe {
+ slice::from_raw_parts_mut(
+ self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
+ self.buf.capacity() - self.len,
+ )
+ }
+ }
+
+ /// Returns vector content as a slice of `T`, along with the remaining spare
+ /// capacity of the vector as a slice of `MaybeUninit<T>`.
+ ///
+ /// The returned spare capacity slice can be used to fill the vector with data
+ /// (e.g. by reading from a file) before marking the data as initialized using
+ /// the [`set_len`] method.
+ ///
+ /// [`set_len`]: Vec::set_len
+ ///
+ /// Note that this is a low-level API, which should be used with care for
+ /// optimization purposes. If you need to append data to a `Vec`
+ /// you can use [`push`], [`extend`], [`extend_from_slice`],
+ /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
+ /// [`resize_with`], depending on your exact needs.
+ ///
+ /// [`push`]: Vec::push
+ /// [`extend`]: Vec::extend
+ /// [`extend_from_slice`]: Vec::extend_from_slice
+ /// [`extend_from_within`]: Vec::extend_from_within
+ /// [`insert`]: Vec::insert
+ /// [`append`]: Vec::append
+ /// [`resize`]: Vec::resize
+ /// [`resize_with`]: Vec::resize_with
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(vec_split_at_spare)]
+ ///
+ /// let mut v = vec![1, 1, 2];
+ ///
+ /// // Reserve additional space big enough for 10 elements.
+ /// v.reserve(10);
+ ///
+ /// let (init, uninit) = v.split_at_spare_mut();
+ /// let sum = init.iter().copied().sum::<u32>();
+ ///
+ /// // Fill in the next 4 elements.
+ /// uninit[0].write(sum);
+ /// uninit[1].write(sum * 2);
+ /// uninit[2].write(sum * 3);
+ /// uninit[3].write(sum * 4);
+ ///
+ /// // Mark the 4 elements of the vector as being initialized.
+ /// unsafe {
+ /// let len = v.len();
+ /// v.set_len(len + 4);
+ /// }
+ ///
+ /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
+ /// ```
+ #[unstable(feature = "vec_split_at_spare", issue = "81944")]
+ #[inline]
+ pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
+ // SAFETY:
+ // - len is ignored and so never changed
+ let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
+ (init, spare)
+ }
+
+ /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
+ ///
+ /// This method provides unique access to all vec parts at once in `extend_from_within`.
+ unsafe fn split_at_spare_mut_with_len(
+ &mut self,
+ ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
+ let ptr = self.as_mut_ptr();
+ // SAFETY:
+ // - `ptr` is guaranteed to be valid for `self.len` elements
+ // - but the allocation extends out to `self.buf.capacity()` elements, possibly
+ // uninitialized
+ let spare_ptr = unsafe { ptr.add(self.len) };
+ let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>();
+ let spare_len = self.buf.capacity() - self.len;
+
+ // SAFETY:
+ // - `ptr` is guaranteed to be valid for `self.len` elements
+ // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
+ unsafe {
+ let initialized = slice::from_raw_parts_mut(ptr, self.len);
+ let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
+
+ (initialized, spare, &mut self.len)
+ }
+ }
+}
+
+impl<T: Clone, A: Allocator> Vec<T, A> {
+ /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
+ ///
+ /// If `new_len` is greater than `len`, the `Vec` is extended by the
+ /// difference, with each additional slot filled with `value`.
+ /// If `new_len` is less than `len`, the `Vec` is simply truncated.
+ ///
+ /// This method requires `T` to implement [`Clone`],
+ /// in order to be able to clone the passed value.
+ /// If you need more flexibility (or want to rely on [`Default`] instead of
+ /// [`Clone`]), use [`Vec::resize_with`].
+ /// If you only need to resize to a smaller size, use [`Vec::truncate`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = vec!["hello"];
+ /// vec.resize(3, "world");
+ /// assert_eq!(vec, ["hello", "world", "world"]);
+ ///
+ /// let mut vec = vec![1, 2, 3, 4];
+ /// vec.resize(2, 0);
+ /// assert_eq!(vec, [1, 2]);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "vec_resize", since = "1.5.0")]
+ pub fn resize(&mut self, new_len: usize, value: T) {
+ let len = self.len();
+
+ if new_len > len {
+ self.extend_with(new_len - len, ExtendElement(value))
+ } else {
+ self.truncate(new_len);
+ }
+ }
+
+ /// Clones and appends all elements in a slice to the `Vec`.
+ ///
+ /// Iterates over the slice `other`, clones each element, and then appends
+ /// it to this `Vec`. The `other` slice is traversed in-order.
+ ///
+ /// Note that this function is same as [`extend`] except that it is
+ /// specialized to work with slices instead. If and when Rust gets
+ /// specialization this function will likely be deprecated (but still
+ /// available).
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = vec![1];
+ /// vec.extend_from_slice(&[2, 3, 4]);
+ /// assert_eq!(vec, [1, 2, 3, 4]);
+ /// ```
+ ///
+ /// [`extend`]: Vec::extend
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
+ pub fn extend_from_slice(&mut self, other: &[T]) {
+ self.spec_extend(other.iter())
+ }
+
+ /// Copies elements from `src` range to the end of the vector.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the starting point is greater than the end point or if
+ /// the end point is greater than the length of the vector.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = vec![0, 1, 2, 3, 4];
+ ///
+ /// vec.extend_from_within(2..);
+ /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4]);
+ ///
+ /// vec.extend_from_within(..2);
+ /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1]);
+ ///
+ /// vec.extend_from_within(4..8);
+ /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1, 4, 2, 3, 4]);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
+ pub fn extend_from_within<R>(&mut self, src: R)
+ where
+ R: RangeBounds<usize>,
+ {
+ let range = slice::range(src, ..self.len());
+ self.reserve(range.len());
+
+ // SAFETY:
+ // - `slice::range` guarantees that the given range is valid for indexing self
+ unsafe {
+ self.spec_extend_from_within(range);
+ }
+ }
+}
+
+impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
+ /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the length of the resulting vector would overflow a `usize`.
+ ///
+ /// This is only possible when flattening a vector of arrays of zero-sized
+ /// types, and thus tends to be irrelevant in practice. If
+ /// `size_of::<T>() > 0`, this will never panic.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(slice_flatten)]
+ ///
+ /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
+ /// assert_eq!(vec.pop(), Some([7, 8, 9]));
+ ///
+ /// let mut flattened = vec.into_flattened();
+ /// assert_eq!(flattened.pop(), Some(6));
+ /// ```
+ #[unstable(feature = "slice_flatten", issue = "95629")]
+ pub fn into_flattened(self) -> Vec<T, A> {
+ let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
+ let (new_len, new_cap) = if mem::size_of::<T>() == 0 {
+ (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
+ } else {
+ // SAFETY:
+ // - `cap * N` cannot overflow because the allocation is already in
+ // the address space.
+ // - Each `[T; N]` has `N` valid elements, so there are `len * N`
+ // valid elements in the allocation.
+ unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
+ };
+ // SAFETY:
+ // - `ptr` was allocated by `self`
+ // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
+ // - `new_cap` refers to the same sized allocation as `cap` because
+ // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
+ // - `len` <= `cap`, so `len * N` <= `cap * N`.
+ unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
+ }
+}
+
+// This code generalizes `extend_with_{element,default}`.
+trait ExtendWith<T> {
+ fn next(&mut self) -> T;
+ fn last(self) -> T;
+}
+
+struct ExtendElement<T>(T);
+impl<T: Clone> ExtendWith<T> for ExtendElement<T> {
+ fn next(&mut self) -> T {
+ self.0.clone()
+ }
+ fn last(self) -> T {
+ self.0
+ }
+}
+
+struct ExtendFunc<F>(F);
+impl<T, F: FnMut() -> T> ExtendWith<T> for ExtendFunc<F> {
+ fn next(&mut self) -> T {
+ (self.0)()
+ }
+ fn last(mut self) -> T {
+ (self.0)()
+ }
+}
+
+impl<T, A: Allocator> Vec<T, A> {
+ #[cfg(not(no_global_oom_handling))]
+ /// Extend the vector by `n` values, using the given generator.
+ fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) {
+ self.reserve(n);
+
+ unsafe {
+ let mut ptr = self.as_mut_ptr().add(self.len());
+ // Use SetLenOnDrop to work around bug where compiler
+ // might not realize the store through `ptr` through self.set_len()
+ // don't alias.
+ let mut local_len = SetLenOnDrop::new(&mut self.len);
+
+ // Write all elements except the last one
+ for _ in 1..n {
+ ptr::write(ptr, value.next());
+ ptr = ptr.offset(1);
+ // Increment the length in every step in case next() panics
+ local_len.increment_len(1);
+ }
+
+ if n > 0 {
+ // We can write the last element directly without cloning needlessly
+ ptr::write(ptr, value.last());
+ local_len.increment_len(1);
+ }
+
+ // len set by scope guard
+ }
+ }
+}
+
+impl<T: PartialEq, A: Allocator> Vec<T, A> {
+ /// Removes consecutive repeated elements in the vector according to the
+ /// [`PartialEq`] trait implementation.
+ ///
+ /// If the vector is sorted, this removes all duplicates.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut vec = vec![1, 2, 2, 3, 2];
+ ///
+ /// vec.dedup();
+ ///
+ /// assert_eq!(vec, [1, 2, 3, 2]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn dedup(&mut self) {
+ self.dedup_by(|a, b| a == b)
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Internal methods and functions
+////////////////////////////////////////////////////////////////////////////////
+
+#[doc(hidden)]
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
+ <T as SpecFromElem>::from_elem(elem, n, Global)
+}
+
+#[doc(hidden)]
+#[cfg(not(no_global_oom_handling))]
+#[unstable(feature = "allocator_api", issue = "32838")]
+pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
+ <T as SpecFromElem>::from_elem(elem, n, alloc)
+}
+
+trait ExtendFromWithinSpec {
+ /// # Safety
+ ///
+ /// - `src` needs to be valid index
+ /// - `self.capacity() - self.len()` must be `>= src.len()`
+ unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
+}
+
+impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
+ default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
+ // SAFETY:
+ // - len is increased only after initializing elements
+ let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
+
+ // SAFETY:
+ // - caller guaratees that src is a valid index
+ let to_clone = unsafe { this.get_unchecked(src) };
+
+ iter::zip(to_clone, spare)
+ .map(|(src, dst)| dst.write(src.clone()))
+ // Note:
+ // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
+ // - len is increased after each element to prevent leaks (see issue #82533)
+ .for_each(|_| *len += 1);
+ }
+}
+
+impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
+ unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
+ let count = src.len();
+ {
+ let (init, spare) = self.split_at_spare_mut();
+
+ // SAFETY:
+ // - caller guaratees that `src` is a valid index
+ let source = unsafe { init.get_unchecked(src) };
+
+ // SAFETY:
+ // - Both pointers are created from unique slice references (`&mut [_]`)
+ // so they are valid and do not overlap.
+ // - Elements are :Copy so it's OK to to copy them, without doing
+ // anything with the original values
+ // - `count` is equal to the len of `source`, so source is valid for
+ // `count` reads
+ // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
+ // is valid for `count` writes
+ unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
+ }
+
+ // SAFETY:
+ // - The elements were just initialized by `copy_nonoverlapping`
+ self.len += count;
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Common trait implementations for Vec
+////////////////////////////////////////////////////////////////////////////////
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T, A: Allocator> ops::Deref for Vec<T, A> {
+ type Target = [T];
+
+ fn deref(&self) -> &[T] {
+ unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
+ fn deref_mut(&mut self) -> &mut [T] {
+ unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+trait SpecCloneFrom {
+ fn clone_from(this: &mut Self, other: &Self);
+}
+
+#[cfg(not(no_global_oom_handling))]
+impl<T: Clone, A: Allocator> SpecCloneFrom for Vec<T, A> {
+ default fn clone_from(this: &mut Self, other: &Self) {
+ // drop anything that will not be overwritten
+ this.truncate(other.len());
+
+ // self.len <= other.len due to the truncate above, so the
+ // slices here are always in-bounds.
+ let (init, tail) = other.split_at(this.len());
+
+ // reuse the contained values' allocations/resources.
+ this.clone_from_slice(init);
+ this.extend_from_slice(tail);
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+impl<T: Copy, A: Allocator> SpecCloneFrom for Vec<T, A> {
+ fn clone_from(this: &mut Self, other: &Self) {
+ this.clear();
+ this.extend_from_slice(other);
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
+ #[cfg(not(test))]
+ fn clone(&self) -> Self {
+ let alloc = self.allocator().clone();
+ <[T]>::to_vec_in(&**self, alloc)
+ }
+
+ // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
+ // required for this method definition, is not available. Instead use the
+ // `slice::to_vec` function which is only available with cfg(test)
+ // NB see the slice::hack module in slice.rs for more information
+ #[cfg(test)]
+ fn clone(&self) -> Self {
+ let alloc = self.allocator().clone();
+ crate::slice::to_vec(&**self, alloc)
+ }
+
+ fn clone_from(&mut self, other: &Self) {
+ SpecCloneFrom::clone_from(self, other)
+ }
+}
+
+/// The hash of a vector is the same as that of the corresponding slice,
+/// as required by the `core::borrow::Borrow` implementation.
+///
+/// ```
+/// #![feature(build_hasher_simple_hash_one)]
+/// use std::hash::BuildHasher;
+///
+/// let b = std::collections::hash_map::RandomState::new();
+/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
+/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
+/// assert_eq!(b.hash_one(v), b.hash_one(s));
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
+ #[inline]
+ fn hash<H: Hasher>(&self, state: &mut H) {
+ Hash::hash(&**self, state)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+#[rustc_on_unimplemented(
+ message = "vector indices are of type `usize` or ranges of `usize`",
+ label = "vector indices are of type `usize` or ranges of `usize`"
+)]
+impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
+ type Output = I::Output;
+
+ #[inline]
+ fn index(&self, index: I) -> &Self::Output {
+ Index::index(&**self, index)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+#[rustc_on_unimplemented(
+ message = "vector indices are of type `usize` or ranges of `usize`",
+ label = "vector indices are of type `usize` or ranges of `usize`"
+)]
+impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
+ #[inline]
+ fn index_mut(&mut self, index: I) -> &mut Self::Output {
+ IndexMut::index_mut(&mut **self, index)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> FromIterator<T> for Vec<T> {
+ #[inline]
+ fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
+ <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T, A: Allocator> IntoIterator for Vec<T, A> {
+ type Item = T;
+ type IntoIter = IntoIter<T, A>;
+
+ /// Creates a consuming iterator, that is, one that moves each value out of
+ /// the vector (from start to end). The vector cannot be used after calling
+ /// this.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = vec!["a".to_string(), "b".to_string()];
+ /// for s in v.into_iter() {
+ /// // s has type String, not &String
+ /// println!("{s}");
+ /// }
+ /// ```
+ #[inline]
+ fn into_iter(self) -> IntoIter<T, A> {
+ unsafe {
+ let mut me = ManuallyDrop::new(self);
+ let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
+ let begin = me.as_mut_ptr();
+ let end = if mem::size_of::<T>() == 0 {
+ arith_offset(begin as *const i8, me.len() as isize) as *const T
+ } else {
+ begin.add(me.len()) as *const T
+ };
+ let cap = me.buf.capacity();
+ IntoIter {
+ buf: NonNull::new_unchecked(begin),
+ phantom: PhantomData,
+ cap,
+ alloc,
+ ptr: begin,
+ end,
+ }
+ }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
+ type Item = &'a T;
+ type IntoIter = slice::Iter<'a, T>;
+
+ fn into_iter(self) -> slice::Iter<'a, T> {
+ self.iter()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
+ type Item = &'a mut T;
+ type IntoIter = slice::IterMut<'a, T>;
+
+ fn into_iter(self) -> slice::IterMut<'a, T> {
+ self.iter_mut()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T, A: Allocator> Extend<T> for Vec<T, A> {
+ #[inline]
+ fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
+ <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
+ }
+
+ #[inline]
+ fn extend_one(&mut self, item: T) {
+ self.push(item);
+ }
+
+ #[inline]
+ fn extend_reserve(&mut self, additional: usize) {
+ self.reserve(additional);
+ }
+}
+
+impl<T, A: Allocator> Vec<T, A> {
+ // leaf method to which various SpecFrom/SpecExtend implementations delegate when
+ // they have no further optimizations to apply
+ #[cfg(not(no_global_oom_handling))]
+ fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
+ // This is the case for a general iterator.
+ //
+ // This function should be the moral equivalent of:
+ //
+ // for item in iterator {
+ // self.push(item);
+ // }
+ while let Some(element) = iterator.next() {
+ let len = self.len();
+ if len == self.capacity() {
+ let (lower, _) = iterator.size_hint();
+ self.reserve(lower.saturating_add(1));
+ }
+ unsafe {
+ ptr::write(self.as_mut_ptr().add(len), element);
+ // Since next() executes user code which can panic we have to bump the length
+ // after each step.
+ // NB can't overflow since we would have had to alloc the address space
+ self.set_len(len + 1);
+ }
+ }
+ }
+
+ /// Creates a splicing iterator that replaces the specified range in the vector
+ /// with the given `replace_with` iterator and yields the removed items.
+ /// `replace_with` does not need to be the same length as `range`.
+ ///
+ /// `range` is removed even if the iterator is not consumed until the end.
+ ///
+ /// It is unspecified how many elements are removed from the vector
+ /// if the `Splice` value is leaked.
+ ///
+ /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
+ ///
+ /// This is optimal if:
+ ///
+ /// * The tail (elements in the vector after `range`) is empty,
+ /// * or `replace_with` yields fewer or equal elements than `range`’s length
+ /// * or the lower bound of its `size_hint()` is exact.
+ ///
+ /// Otherwise, a temporary vector is allocated and the tail is moved twice.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the starting point is greater than the end point or if
+ /// the end point is greater than the length of the vector.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = vec![1, 2, 3, 4];
+ /// let new = [7, 8, 9];
+ /// let u: Vec<_> = v.splice(1..3, new).collect();
+ /// assert_eq!(v, &[1, 7, 8, 9, 4]);
+ /// assert_eq!(u, &[2, 3]);
+ /// ```
+ #[cfg(not(no_global_oom_handling))]
+ #[inline]
+ #[stable(feature = "vec_splice", since = "1.21.0")]
+ pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
+ where
+ R: RangeBounds<usize>,
+ I: IntoIterator<Item = T>,
+ {
+ Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
+ }
+
+ /// Creates an iterator which uses a closure to determine if an element should be removed.
+ ///
+ /// If the closure returns true, then the element is removed and yielded.
+ /// If the closure returns false, the element will remain in the vector and will not be yielded
+ /// by the iterator.
+ ///
+ /// Using this method is equivalent to the following code:
+ ///
+ /// ```
+ /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
+ /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
+ /// let mut i = 0;
+ /// while i < vec.len() {
+ /// if some_predicate(&mut vec[i]) {
+ /// let val = vec.remove(i);
+ /// // your code here
+ /// } else {
+ /// i += 1;
+ /// }
+ /// }
+ ///
+ /// # assert_eq!(vec, vec![1, 4, 5]);
+ /// ```
+ ///
+ /// But `drain_filter` is easier to use. `drain_filter` is also more efficient,
+ /// because it can backshift the elements of the array in bulk.
+ ///
+ /// Note that `drain_filter` also lets you mutate every element in the filter closure,
+ /// regardless of whether you choose to keep or remove it.
+ ///
+ /// # Examples
+ ///
+ /// Splitting an array into evens and odds, reusing the original allocation:
+ ///
+ /// ```
+ /// #![feature(drain_filter)]
+ /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
+ ///
+ /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>();
+ /// let odds = numbers;
+ ///
+ /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
+ /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
+ /// ```
+ #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
+ pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F, A>
+ where
+ F: FnMut(&mut T) -> bool,
+ {
+ let old_len = self.len();
+
+ // Guard against us getting leaked (leak amplification)
+ unsafe {
+ self.set_len(0);
+ }
+
+ DrainFilter { vec: self, idx: 0, del: 0, old_len, pred: filter, panic_flag: false }
+ }
+}
+
+/// Extend implementation that copies elements out of references before pushing them onto the Vec.
+///
+/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
+/// append the entire slice at once.
+///
+/// [`copy_from_slice`]: slice::copy_from_slice
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "extend_ref", since = "1.2.0")]
+impl<'a, T: Copy + 'a, A: Allocator + 'a> Extend<&'a T> for Vec<T, A> {
+ fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
+ self.spec_extend(iter.into_iter())
+ }
+
+ #[inline]
+ fn extend_one(&mut self, &item: &'a T) {
+ self.push(item);
+ }
+
+ #[inline]
+ fn extend_reserve(&mut self, additional: usize) {
+ self.reserve(additional);
+ }
+}
+
+/// Implements comparison of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: PartialOrd, A: Allocator> PartialOrd for Vec<T, A> {
+ #[inline]
+ fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
+ PartialOrd::partial_cmp(&**self, &**other)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
+
+/// Implements ordering of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
+ #[inline]
+ fn cmp(&self, other: &Self) -> Ordering {
+ Ord::cmp(&**self, &**other)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
+ fn drop(&mut self) {
+ unsafe {
+ // use drop for [T]
+ // use a raw slice to refer to the elements of the vector as weakest necessary type;
+ // could avoid questions of validity in certain cases
+ ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
+ }
+ // RawVec handles deallocation
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+#[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
+impl<T> const Default for Vec<T> {
+ /// Creates an empty `Vec<T>`.
+ fn default() -> Vec<T> {
+ Vec::new()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Debug::fmt(&**self, f)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
+ fn as_ref(&self) -> &Vec<T, A> {
+ self
+ }
+}
+
+#[stable(feature = "vec_as_mut", since = "1.5.0")]
+impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
+ fn as_mut(&mut self) -> &mut Vec<T, A> {
+ self
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
+ fn as_ref(&self) -> &[T] {
+ self
+ }
+}
+
+#[stable(feature = "vec_as_mut", since = "1.5.0")]
+impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
+ fn as_mut(&mut self) -> &mut [T] {
+ self
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Clone> From<&[T]> for Vec<T> {
+ /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
+ /// ```
+ #[cfg(not(test))]
+ fn from(s: &[T]) -> Vec<T> {
+ s.to_vec()
+ }
+ #[cfg(test)]
+ fn from(s: &[T]) -> Vec<T> {
+ crate::slice::to_vec(s, Global)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "vec_from_mut", since = "1.19.0")]
+impl<T: Clone> From<&mut [T]> for Vec<T> {
+ /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
+ /// ```
+ #[cfg(not(test))]
+ fn from(s: &mut [T]) -> Vec<T> {
+ s.to_vec()
+ }
+ #[cfg(test)]
+ fn from(s: &mut [T]) -> Vec<T> {
+ crate::slice::to_vec(s, Global)
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "vec_from_array", since = "1.44.0")]
+impl<T, const N: usize> From<[T; N]> for Vec<T> {
+ /// Allocate a `Vec<T>` and move `s`'s items into it.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
+ /// ```
+ #[cfg(not(test))]
+ fn from(s: [T; N]) -> Vec<T> {
+ <[T]>::into_vec(box s)
+ }
+
+ #[cfg(test)]
+ fn from(s: [T; N]) -> Vec<T> {
+ crate::slice::into_vec(box s)
+ }
+}
+
+#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
+impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
+where
+ [T]: ToOwned<Owned = Vec<T>>,
+{
+ /// Convert a clone-on-write slice into a vector.
+ ///
+ /// If `s` already owns a `Vec<T>`, it will be returned directly.
+ /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
+ /// filled by cloning `s`'s items into it.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use std::borrow::Cow;
+ /// let o: Cow<[i32]> = Cow::Owned(vec![1, 2, 3]);
+ /// let b: Cow<[i32]> = Cow::Borrowed(&[1, 2, 3]);
+ /// assert_eq!(Vec::from(o), Vec::from(b));
+ /// ```
+ fn from(s: Cow<'a, [T]>) -> Vec<T> {
+ s.into_owned()
+ }
+}
+
+// note: test pulls in libstd, which causes errors here
+#[cfg(not(test))]
+#[stable(feature = "vec_from_box", since = "1.18.0")]
+impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
+ /// Convert a boxed slice into a vector by transferring ownership of
+ /// the existing heap allocation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
+ /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
+ /// ```
+ fn from(s: Box<[T], A>) -> Self {
+ s.into_vec()
+ }
+}
+
+// note: test pulls in libstd, which causes errors here
+#[cfg(not(no_global_oom_handling))]
+#[cfg(not(test))]
+#[stable(feature = "box_from_vec", since = "1.20.0")]
+impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
+ /// Convert a vector into a boxed slice.
+ ///
+ /// If `v` has excess capacity, its items will be moved into a
+ /// newly-allocated buffer with exactly the right capacity.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
+ /// ```
+ fn from(v: Vec<T, A>) -> Self {
+ v.into_boxed_slice()
+ }
+}
+
+#[cfg(not(no_global_oom_handling))]
+#[stable(feature = "rust1", since = "1.0.0")]
+impl From<&str> for Vec<u8> {
+ /// Allocate a `Vec<u8>` and fill it with a UTF-8 string.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
+ /// ```
+ fn from(s: &str) -> Vec<u8> {
+ From::from(s.as_bytes())
+ }
+}
+
+#[stable(feature = "array_try_from_vec", since = "1.48.0")]
+impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
+ type Error = Vec<T, A>;
+
+ /// Gets the entire contents of the `Vec<T>` as an array,
+ /// if its size exactly matches that of the requested array.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
+ /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
+ /// ```
+ ///
+ /// If the length doesn't match, the input comes back in `Err`:
+ /// ```
+ /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
+ /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
+ /// ```
+ ///
+ /// If you're fine with just getting a prefix of the `Vec<T>`,
+ /// you can call [`.truncate(N)`](Vec::truncate) first.
+ /// ```
+ /// let mut v = String::from("hello world").into_bytes();
+ /// v.sort();
+ /// v.truncate(2);
+ /// let [a, b]: [_; 2] = v.try_into().unwrap();
+ /// assert_eq!(a, b' ');
+ /// assert_eq!(b, b'd');
+ /// ```
+ fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
+ if vec.len() != N {
+ return Err(vec);
+ }
+
+ // SAFETY: `.set_len(0)` is always sound.
+ unsafe { vec.set_len(0) };
+
+ // SAFETY: A `Vec`'s pointer is always aligned properly, and
+ // the alignment the array needs is the same as the items.
+ // We checked earlier that we have sufficient items.
+ // The items will not double-drop as the `set_len`
+ // tells the `Vec` not to also drop them.
+ let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
+ Ok(array)
+ }
+}
diff --git a/rust/alloc/vec/partial_eq.rs b/rust/alloc/vec/partial_eq.rs
new file mode 100644
index 000000000000..b0cf72577a1b
--- /dev/null
+++ b/rust/alloc/vec/partial_eq.rs
@@ -0,0 +1,47 @@
+use crate::alloc::Allocator;
+#[cfg(not(no_global_oom_handling))]
+use crate::borrow::Cow;
+
+use super::Vec;
+
+macro_rules! __impl_slice_eq1 {
+ ([$($vars:tt)*] $lhs:ty, $rhs:ty $(where $ty:ty: $bound:ident)?, #[$stability:meta]) => {
+ #[$stability]
+ impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
+ where
+ T: PartialEq<U>,
+ $($ty: $bound)?
+ {
+ #[inline]
+ fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
+ #[inline]
+ fn ne(&self, other: &$rhs) -> bool { self[..] != other[..] }
+ }
+ }
+}
+
+__impl_slice_eq1! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2>, #[stable(feature = "rust1", since = "1.0.0")] }
+__impl_slice_eq1! { [A: Allocator] Vec<T, A>, &[U], #[stable(feature = "rust1", since = "1.0.0")] }
+__impl_slice_eq1! { [A: Allocator] Vec<T, A>, &mut [U], #[stable(feature = "rust1", since = "1.0.0")] }
+__impl_slice_eq1! { [A: Allocator] &[T], Vec<U, A>, #[stable(feature = "partialeq_vec_for_ref_slice", since = "1.46.0")] }
+__impl_slice_eq1! { [A: Allocator] &mut [T], Vec<U, A>, #[stable(feature = "partialeq_vec_for_ref_slice", since = "1.46.0")] }
+__impl_slice_eq1! { [A: Allocator] Vec<T, A>, [U], #[stable(feature = "partialeq_vec_for_slice", since = "1.48.0")] }
+__impl_slice_eq1! { [A: Allocator] [T], Vec<U, A>, #[stable(feature = "partialeq_vec_for_slice", since = "1.48.0")] }
+#[cfg(not(no_global_oom_handling))]
+__impl_slice_eq1! { [A: Allocator] Cow<'_, [T]>, Vec<U, A> where T: Clone, #[stable(feature = "rust1", since = "1.0.0")] }
+#[cfg(not(no_global_oom_handling))]
+__impl_slice_eq1! { [] Cow<'_, [T]>, &[U] where T: Clone, #[stable(feature = "rust1", since = "1.0.0")] }
+#[cfg(not(no_global_oom_handling))]
+__impl_slice_eq1! { [] Cow<'_, [T]>, &mut [U] where T: Clone, #[stable(feature = "rust1", since = "1.0.0")] }
+__impl_slice_eq1! { [A: Allocator, const N: usize] Vec<T, A>, [U; N], #[stable(feature = "rust1", since = "1.0.0")] }
+__impl_slice_eq1! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N], #[stable(feature = "rust1", since = "1.0.0")] }
+
+// NOTE: some less important impls are omitted to reduce code bloat
+// FIXME(Centril): Reconsider this?
+//__impl_slice_eq1! { [const N: usize] Vec<A>, &mut [B; N], }
+//__impl_slice_eq1! { [const N: usize] [A; N], Vec<B>, }
+//__impl_slice_eq1! { [const N: usize] &[A; N], Vec<B>, }
+//__impl_slice_eq1! { [const N: usize] &mut [A; N], Vec<B>, }
+//__impl_slice_eq1! { [const N: usize] Cow<'a, [A]>, [B; N], }
+//__impl_slice_eq1! { [const N: usize] Cow<'a, [A]>, &[B; N], }
+//__impl_slice_eq1! { [const N: usize] Cow<'a, [A]>, &mut [B; N], }
diff --git a/rust/alloc/vec/set_len_on_drop.rs b/rust/alloc/vec/set_len_on_drop.rs
new file mode 100644
index 000000000000..8b66bc812129
--- /dev/null
+++ b/rust/alloc/vec/set_len_on_drop.rs
@@ -0,0 +1,28 @@
+// Set the length of the vec when the `SetLenOnDrop` value goes out of scope.
+//
+// The idea is: The length field in SetLenOnDrop is a local variable
+// that the optimizer will see does not alias with any stores through the Vec's data
+// pointer. This is a workaround for alias analysis issue #32155
+pub(super) struct SetLenOnDrop<'a> {
+ len: &'a mut usize,
+ local_len: usize,
+}
+
+impl<'a> SetLenOnDrop<'a> {
+ #[inline]
+ pub(super) fn new(len: &'a mut usize) -> Self {
+ SetLenOnDrop { local_len: *len, len }
+ }
+
+ #[inline]
+ pub(super) fn increment_len(&mut self, increment: usize) {
+ self.local_len += increment;
+ }
+}
+
+impl Drop for SetLenOnDrop<'_> {
+ #[inline]
+ fn drop(&mut self) {
+ *self.len = self.local_len;
+ }
+}
diff --git a/rust/alloc/vec/spec_extend.rs b/rust/alloc/vec/spec_extend.rs
new file mode 100644
index 000000000000..506ee0ecfa27
--- /dev/null
+++ b/rust/alloc/vec/spec_extend.rs
@@ -0,0 +1,87 @@
+use crate::alloc::Allocator;
+use core::iter::TrustedLen;
+use core::ptr::{self};
+use core::slice::{self};
+
+use super::{IntoIter, SetLenOnDrop, Vec};
+
+// Specialization trait used for Vec::extend
+pub(super) trait SpecExtend<T, I> {
+ fn spec_extend(&mut self, iter: I);
+}
+
+impl<T, I, A: Allocator> SpecExtend<T, I> for Vec<T, A>
+where
+ I: Iterator<Item = T>,
+{
+ default fn spec_extend(&mut self, iter: I) {
+ self.extend_desugared(iter)
+ }
+}
+
+impl<T, I, A: Allocator> SpecExtend<T, I> for Vec<T, A>
+where
+ I: TrustedLen<Item = T>,
+{
+ default fn spec_extend(&mut self, iterator: I) {
+ // This is the case for a TrustedLen iterator.
+ let (low, high) = iterator.size_hint();
+ if let Some(additional) = high {
+ debug_assert_eq!(
+ low,
+ additional,
+ "TrustedLen iterator's size hint is not exact: {:?}",
+ (low, high)
+ );
+ self.reserve(additional);
+ unsafe {
+ let mut ptr = self.as_mut_ptr().add(self.len());
+ let mut local_len = SetLenOnDrop::new(&mut self.len);
+ iterator.for_each(move |element| {
+ ptr::write(ptr, element);
+ ptr = ptr.offset(1);
+ // Since the loop executes user code which can panic we have to bump the pointer
+ // after each step.
+ // NB can't overflow since we would have had to alloc the address space
+ local_len.increment_len(1);
+ });
+ }
+ } else {
+ // Per TrustedLen contract a `None` upper bound means that the iterator length
+ // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
+ // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
+ // This avoids additional codegen for a fallback code path which would eventually
+ // panic anyway.
+ panic!("capacity overflow");
+ }
+ }
+}
+
+impl<T, A: Allocator> SpecExtend<T, IntoIter<T>> for Vec<T, A> {
+ fn spec_extend(&mut self, mut iterator: IntoIter<T>) {
+ unsafe {
+ self.append_elements(iterator.as_slice() as _);
+ }
+ iterator.forget_remaining_elements();
+ }
+}
+
+impl<'a, T: 'a, I, A: Allocator + 'a> SpecExtend<&'a T, I> for Vec<T, A>
+where
+ I: Iterator<Item = &'a T>,
+ T: Clone,
+{
+ default fn spec_extend(&mut self, iterator: I) {
+ self.spec_extend(iterator.cloned())
+ }
+}
+
+impl<'a, T: 'a, A: Allocator + 'a> SpecExtend<&'a T, slice::Iter<'a, T>> for Vec<T, A>
+where
+ T: Copy,
+{
+ fn spec_extend(&mut self, iterator: slice::Iter<'a, T>) {
+ let slice = iterator.as_slice();
+ unsafe { self.append_elements(slice) };
+ }
+}
--
2.37.1
Having all the new files in place, we now enable Rust support
in the build system, including `Kconfig` entries related to Rust,
the Rust configuration printer, the target specification
generation script, the version detection script and a few
other bits.
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Finn Behrens <[email protected]>
Signed-off-by: Finn Behrens <[email protected]>
Co-developed-by: Adam Bratschi-Kaye <[email protected]>
Signed-off-by: Adam Bratschi-Kaye <[email protected]>
Co-developed-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Co-developed-by: Michael Ellerman <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Co-developed-by: Sven Van Asbroeck <[email protected]>
Signed-off-by: Sven Van Asbroeck <[email protected]>
Co-developed-by: Gary Guo <[email protected]>
Signed-off-by: Gary Guo <[email protected]>
Co-developed-by: Boris-Chengbiao Zhou <[email protected]>
Signed-off-by: Boris-Chengbiao Zhou <[email protected]>
Co-developed-by: Boqun Feng <[email protected]>
Signed-off-by: Boqun Feng <[email protected]>
Co-developed-by: Douglas Su <[email protected]>
Signed-off-by: Douglas Su <[email protected]>
Co-developed-by: Dariusz Sosnowski <[email protected]>
Signed-off-by: Dariusz Sosnowski <[email protected]>
Co-developed-by: Antonio Terceiro <[email protected]>
Signed-off-by: Antonio Terceiro <[email protected]>
Co-developed-by: Daniel Xu <[email protected]>
Signed-off-by: Daniel Xu <[email protected]>
Co-developed-by: Miguel Cano <[email protected]>
Signed-off-by: Miguel Cano <[email protected]>
Co-developed-by: David Gow <[email protected]>
Signed-off-by: David Gow <[email protected]>
Co-developed-by: Tiago Lam <[email protected]>
Signed-off-by: Tiago Lam <[email protected]>
Co-developed-by: Björn Roy Baron <[email protected]>
Signed-off-by: Björn Roy Baron <[email protected]>
Co-developed-by: Martin Rodriguez Reboredo <[email protected]>
Signed-off-by: Martin Rodriguez Reboredo <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
.gitignore | 6 +
.rustfmt.toml | 12 +
Makefile | 172 +++++++-
arch/Kconfig | 6 +
arch/arm/Kconfig | 1 +
arch/arm64/Kconfig | 1 +
arch/powerpc/Kconfig | 1 +
arch/riscv/Kconfig | 1 +
arch/riscv/Makefile | 5 +
arch/um/Kconfig | 1 +
arch/x86/Kconfig | 1 +
arch/x86/Makefile | 10 +
include/linux/compiler_types.h | 6 +-
init/Kconfig | 46 +-
lib/Kconfig.debug | 82 ++++
rust/.gitignore | 10 +
rust/Makefile | 415 +++++++++++++++++++
rust/bindgen_parameters | 21 +
scripts/.gitignore | 1 +
scripts/Kconfig.include | 6 +-
scripts/Makefile | 3 +
scripts/Makefile.build | 60 +++
scripts/Makefile.debug | 10 +
scripts/Makefile.host | 34 +-
scripts/Makefile.lib | 12 +
scripts/Makefile.modfinal | 8 +-
scripts/cc-version.sh | 12 +-
scripts/generate_rust_target.rs | 232 +++++++++++
scripts/is_rust_module.sh | 16 +
scripts/kconfig/confdata.c | 75 ++++
scripts/min-tool-version.sh | 6 +
scripts/rust-is-available-bindgen-libclang.h | 2 +
scripts/rust-is-available.sh | 160 +++++++
33 files changed, 1408 insertions(+), 26 deletions(-)
create mode 100644 .rustfmt.toml
create mode 100644 rust/.gitignore
create mode 100644 rust/Makefile
create mode 100644 rust/bindgen_parameters
create mode 100644 scripts/generate_rust_target.rs
create mode 100755 scripts/is_rust_module.sh
create mode 100644 scripts/rust-is-available-bindgen-libclang.h
create mode 100755 scripts/rust-is-available.sh
diff --git a/.gitignore b/.gitignore
index 265959544978..5da004814678 100644
--- a/.gitignore
+++ b/.gitignore
@@ -37,6 +37,8 @@
*.o
*.o.*
*.patch
+*.rmeta
+*.rsi
*.s
*.so
*.so.dbg
@@ -97,6 +99,7 @@ modules.order
!.gitattributes
!.gitignore
!.mailmap
+!.rustfmt.toml
#
# Generated include files
@@ -162,3 +165,6 @@ x509.genkey
# Documentation toolchain
sphinx_*/
+
+# Rust analyzer configuration
+/rust-project.json
diff --git a/.rustfmt.toml b/.rustfmt.toml
new file mode 100644
index 000000000000..3de5cc497465
--- /dev/null
+++ b/.rustfmt.toml
@@ -0,0 +1,12 @@
+edition = "2021"
+newline_style = "Unix"
+
+# Unstable options that help catching some mistakes in formatting and that we may want to enable
+# when they become stable.
+#
+# They are kept here since they are useful to run from time to time.
+#format_code_in_doc_comments = true
+#reorder_impl_items = true
+#comment_width = 100
+#wrap_comments = true
+#normalize_comments = true
diff --git a/Makefile b/Makefile
index df92892325ae..cd1d545f316b 100644
--- a/Makefile
+++ b/Makefile
@@ -120,6 +120,15 @@ endif
export KBUILD_CHECKSRC
+# Enable "clippy" (a linter) as part of the Rust compilation.
+#
+# Use 'make CLIPPY=1' to enable it.
+ifeq ("$(origin CLIPPY)", "command line")
+ KBUILD_CLIPPY := $(CLIPPY)
+endif
+
+export KBUILD_CLIPPY
+
# Use make M=dir or set the environment variable KBUILD_EXTMOD to specify the
# directory of external module to build. Setting M= takes precedence.
ifeq ("$(origin M)", "command line")
@@ -267,14 +276,14 @@ no-dot-config-targets := $(clean-targets) \
cscope gtags TAGS tags help% %docs check% coccicheck \
$(version_h) headers headers_% archheaders archscripts \
%asm-generic kernelversion %src-pkg dt_binding_check \
- outputmakefile
+ outputmakefile rustavailable rustfmt rustfmtcheck
# Installation targets should not require compiler. Unfortunately, vdso_install
# is an exception where build artifacts may be updated. This must be fixed.
no-compiler-targets := $(no-dot-config-targets) install dtbs_install \
headers_install modules_install kernelrelease image_name
no-sync-config-targets := $(no-dot-config-targets) %install kernelrelease \
image_name
-single-targets := %.a %.i %.ko %.lds %.ll %.lst %.mod %.o %.s %.symtypes %/
+single-targets := %.a %.i %.rsi %.ko %.lds %.ll %.lst %.mod %.o %.s %.symtypes %/
config-build :=
mixed-build :=
@@ -436,6 +445,7 @@ else
HOSTCC = gcc
HOSTCXX = g++
endif
+HOSTRUSTC = rustc
HOSTPKG_CONFIG = pkg-config
KBUILD_USERHOSTCFLAGS := -Wall -Wmissing-prototypes -Wstrict-prototypes \
@@ -444,8 +454,26 @@ KBUILD_USERHOSTCFLAGS := -Wall -Wmissing-prototypes -Wstrict-prototypes \
KBUILD_USERCFLAGS := $(KBUILD_USERHOSTCFLAGS) $(USERCFLAGS)
KBUILD_USERLDFLAGS := $(USERLDFLAGS)
+# These flags apply to all Rust code in the tree, including the kernel and
+# host programs.
+export rust_common_flags := --edition=2021 \
+ -Zbinary_dep_depinfo=y \
+ -Dunsafe_op_in_unsafe_fn -Drust_2018_idioms \
+ -Dunreachable_pub -Dnon_ascii_idents \
+ -Wmissing_docs \
+ -Drustdoc::missing_crate_level_docs \
+ -Dclippy::correctness -Dclippy::style \
+ -Dclippy::suspicious -Dclippy::complexity \
+ -Dclippy::perf \
+ -Dclippy::let_unit_value -Dclippy::mut_mut \
+ -Dclippy::needless_bitwise_bool \
+ -Dclippy::needless_continue \
+ -Wclippy::dbg_macro
+
KBUILD_HOSTCFLAGS := $(KBUILD_USERHOSTCFLAGS) $(HOST_LFS_CFLAGS) $(HOSTCFLAGS)
KBUILD_HOSTCXXFLAGS := -Wall -O2 $(HOST_LFS_CFLAGS) $(HOSTCXXFLAGS)
+KBUILD_HOSTRUSTFLAGS := $(rust_common_flags) -O -Cstrip=debuginfo \
+ -Zallow-features= $(HOSTRUSTFLAGS)
KBUILD_HOSTLDFLAGS := $(HOST_LFS_LDFLAGS) $(HOSTLDFLAGS)
KBUILD_HOSTLDLIBS := $(HOST_LFS_LIBS) $(HOSTLDLIBS)
@@ -470,6 +498,12 @@ OBJDUMP = $(CROSS_COMPILE)objdump
READELF = $(CROSS_COMPILE)readelf
STRIP = $(CROSS_COMPILE)strip
endif
+RUSTC = rustc
+RUSTDOC = rustdoc
+RUSTFMT = rustfmt
+CLIPPY_DRIVER = clippy-driver
+BINDGEN = bindgen
+CARGO = cargo
PAHOLE = pahole
RESOLVE_BTFIDS = $(objtree)/tools/bpf/resolve_btfids/resolve_btfids
LEX = flex
@@ -495,9 +529,11 @@ CHECKFLAGS := -D__linux__ -Dlinux -D__STDC__ -Dunix -D__unix__ \
-Wbitwise -Wno-return-void -Wno-unknown-attribute $(CF)
NOSTDINC_FLAGS :=
CFLAGS_MODULE =
+RUSTFLAGS_MODULE =
AFLAGS_MODULE =
LDFLAGS_MODULE =
CFLAGS_KERNEL =
+RUSTFLAGS_KERNEL =
AFLAGS_KERNEL =
LDFLAGS_vmlinux =
@@ -526,15 +562,42 @@ KBUILD_CFLAGS := -Wall -Wundef -Werror=strict-prototypes -Wno-trigraphs \
-Werror=return-type -Wno-format-security \
-std=gnu11
KBUILD_CPPFLAGS := -D__KERNEL__
+KBUILD_RUSTFLAGS := $(rust_common_flags) \
+ --target=$(objtree)/rust/target.json \
+ -Cpanic=abort -Cembed-bitcode=n -Clto=n \
+ -Cforce-unwind-tables=n -Ccodegen-units=1 \
+ -Csymbol-mangling-version=v0 \
+ -Crelocation-model=static \
+ -Zfunction-sections=n \
+ -Dclippy::float_arithmetic
+
KBUILD_AFLAGS_KERNEL :=
KBUILD_CFLAGS_KERNEL :=
+KBUILD_RUSTFLAGS_KERNEL :=
KBUILD_AFLAGS_MODULE := -DMODULE
KBUILD_CFLAGS_MODULE := -DMODULE
+KBUILD_RUSTFLAGS_MODULE := --cfg MODULE
KBUILD_LDFLAGS_MODULE :=
KBUILD_LDFLAGS :=
CLANG_FLAGS :=
+ifeq ($(KBUILD_CLIPPY),1)
+ RUSTC_OR_CLIPPY_QUIET := CLIPPY
+ RUSTC_OR_CLIPPY = $(CLIPPY_DRIVER)
+else
+ RUSTC_OR_CLIPPY_QUIET := RUSTC
+ RUSTC_OR_CLIPPY = $(RUSTC)
+endif
+
+ifdef RUST_LIB_SRC
+ export RUST_LIB_SRC
+endif
+
+export RUSTC_BOOTSTRAP := 1
+
export ARCH SRCARCH CONFIG_SHELL BASH HOSTCC KBUILD_HOSTCFLAGS CROSS_COMPILE LD CC HOSTPKG_CONFIG
+export RUSTC RUSTDOC RUSTFMT RUSTC_OR_CLIPPY_QUIET RUSTC_OR_CLIPPY BINDGEN CARGO
+export HOSTRUSTC KBUILD_HOSTRUSTFLAGS
export CPP AR NM STRIP OBJCOPY OBJDUMP READELF PAHOLE RESOLVE_BTFIDS LEX YACC AWK INSTALLKERNEL
export PERL PYTHON3 CHECK CHECKFLAGS MAKE UTS_MACHINE HOSTCXX
export KGZIP KBZIP2 KLZOP LZMA LZ4 XZ ZSTD
@@ -543,9 +606,10 @@ export KBUILD_USERCFLAGS KBUILD_USERLDFLAGS
export KBUILD_CPPFLAGS NOSTDINC_FLAGS LINUXINCLUDE OBJCOPYFLAGS KBUILD_LDFLAGS
export KBUILD_CFLAGS CFLAGS_KERNEL CFLAGS_MODULE
+export KBUILD_RUSTFLAGS RUSTFLAGS_KERNEL RUSTFLAGS_MODULE
export KBUILD_AFLAGS AFLAGS_KERNEL AFLAGS_MODULE
-export KBUILD_AFLAGS_MODULE KBUILD_CFLAGS_MODULE KBUILD_LDFLAGS_MODULE
-export KBUILD_AFLAGS_KERNEL KBUILD_CFLAGS_KERNEL
+export KBUILD_AFLAGS_MODULE KBUILD_CFLAGS_MODULE KBUILD_RUSTFLAGS_MODULE KBUILD_LDFLAGS_MODULE
+export KBUILD_AFLAGS_KERNEL KBUILD_CFLAGS_KERNEL KBUILD_RUSTFLAGS_KERNEL
export PAHOLE_FLAGS
# Files to ignore in find ... statements
@@ -726,7 +790,7 @@ $(KCONFIG_CONFIG):
#
# Do not use $(call cmd,...) here. That would suppress prompts from syncconfig,
# so you cannot notice that Kconfig is waiting for the user input.
-%/config/auto.conf %/config/auto.conf.cmd %/generated/autoconf.h: $(KCONFIG_CONFIG)
+%/config/auto.conf %/config/auto.conf.cmd %/generated/autoconf.h %/generated/rustc_cfg: $(KCONFIG_CONFIG)
$(Q)$(kecho) " SYNC $@"
$(Q)$(MAKE) -f $(srctree)/Makefile syncconfig
else # !may-sync-config
@@ -755,12 +819,20 @@ KBUILD_CFLAGS += $(call cc-disable-warning, address-of-packed-member)
ifdef CONFIG_CC_OPTIMIZE_FOR_PERFORMANCE
KBUILD_CFLAGS += -O2
+KBUILD_RUSTFLAGS += -Copt-level=2
else ifdef CONFIG_CC_OPTIMIZE_FOR_PERFORMANCE_O3
KBUILD_CFLAGS += -O3
+KBUILD_RUSTFLAGS += -Copt-level=3
else ifdef CONFIG_CC_OPTIMIZE_FOR_SIZE
KBUILD_CFLAGS += -Os
+KBUILD_RUSTFLAGS += -Copt-level=s
endif
+# Always set `debug-assertions` and `overflow-checks` because their default
+# depends on `opt-level` and `debug-assertions`, respectively.
+KBUILD_RUSTFLAGS += -Cdebug-assertions=$(if $(CONFIG_RUST_DEBUG_ASSERTIONS),y,n)
+KBUILD_RUSTFLAGS += -Coverflow-checks=$(if $(CONFIG_RUST_OVERFLOW_CHECKS),y,n)
+
# Tell gcc to never replace conditional load with a non-conditional one
ifdef CONFIG_CC_IS_GCC
# gcc-10 renamed --param=allow-store-data-races=0 to
@@ -791,6 +863,9 @@ KBUILD_CFLAGS-$(CONFIG_WERROR) += -Werror
KBUILD_CFLAGS-$(CONFIG_CC_NO_ARRAY_BOUNDS) += -Wno-array-bounds
KBUILD_CFLAGS += $(KBUILD_CFLAGS-y) $(CONFIG_CC_IMPLICIT_FALLTHROUGH)
+KBUILD_RUSTFLAGS-$(CONFIG_WERROR) += -Dwarnings
+KBUILD_RUSTFLAGS += $(KBUILD_RUSTFLAGS-y)
+
ifdef CONFIG_CC_IS_CLANG
KBUILD_CPPFLAGS += -Qunused-arguments
# The kernel builds with '-std=gnu11' so use of GNU extensions is acceptable.
@@ -811,12 +886,15 @@ KBUILD_CFLAGS += $(call cc-disable-warning, dangling-pointer)
ifdef CONFIG_FRAME_POINTER
KBUILD_CFLAGS += -fno-omit-frame-pointer -fno-optimize-sibling-calls
+KBUILD_RUSTFLAGS += -Cforce-frame-pointers=y
else
# Some targets (ARM with Thumb2, for example), can't be built with frame
# pointers. For those, we don't have FUNCTION_TRACER automatically
# select FRAME_POINTER. However, FUNCTION_TRACER adds -pg, and this is
# incompatible with -fomit-frame-pointer with current GCC, so we don't use
# -fomit-frame-pointer with FUNCTION_TRACER.
+# In the Rust target specification, "frame-pointer" is set explicitly
+# to "may-omit".
ifndef CONFIG_FUNCTION_TRACER
KBUILD_CFLAGS += -fomit-frame-pointer
endif
@@ -881,8 +959,10 @@ ifdef CONFIG_DEBUG_SECTION_MISMATCH
KBUILD_CFLAGS += -fno-inline-functions-called-once
endif
+# `rustc`'s `-Zfunction-sections` applies to data too (as of 1.59.0).
ifdef CONFIG_LD_DEAD_CODE_DATA_ELIMINATION
KBUILD_CFLAGS_KERNEL += -ffunction-sections -fdata-sections
+KBUILD_RUSTFLAGS_KERNEL += -Zfunction-sections=y
LDFLAGS_vmlinux += --gc-sections
endif
@@ -1025,10 +1105,11 @@ include $(addprefix $(srctree)/, $(include-y))
# Do not add $(call cc-option,...) below this line. When you build the kernel
# from the clean source tree, the GCC plugins do not exist at this point.
-# Add user supplied CPPFLAGS, AFLAGS and CFLAGS as the last assignments
+# Add user supplied CPPFLAGS, AFLAGS, CFLAGS and RUSTFLAGS as the last assignments
KBUILD_CPPFLAGS += $(KCPPFLAGS)
KBUILD_AFLAGS += $(KAFLAGS)
KBUILD_CFLAGS += $(KCFLAGS)
+KBUILD_RUSTFLAGS += $(KRUSTFLAGS)
KBUILD_LDFLAGS_MODULE += --build-id=sha1
LDFLAGS_vmlinux += --build-id=sha1
@@ -1097,6 +1178,7 @@ export MODULES_NSDEPS := $(extmod_prefix)modules.nsdeps
ifeq ($(KBUILD_EXTMOD),)
core-y += kernel/ certs/ mm/ fs/ ipc/ security/ crypto/
core-$(CONFIG_BLOCK) += block/
+core-$(CONFIG_RUST) += rust/
vmlinux-dirs := $(patsubst %/,%,$(filter %/, \
$(core-y) $(core-m) $(drivers-y) $(drivers-m) \
@@ -1201,6 +1283,10 @@ prepare0: archprepare
# All the preparing..
prepare: prepare0
+ifdef CONFIG_RUST
+ $(Q)$(CONFIG_SHELL) $(srctree)/scripts/rust-is-available.sh -v
+ $(Q)$(MAKE) $(build)=rust
+endif
PHONY += remove-stale-files
remove-stale-files:
@@ -1490,7 +1576,7 @@ endif # CONFIG_MODULES
# Directories & files removed with 'make clean'
CLEAN_FILES += include/ksym vmlinux.symvers modules-only.symvers \
modules.builtin modules.builtin.modinfo modules.nsdeps \
- compile_commands.json .thinlto-cache
+ compile_commands.json .thinlto-cache rust/test rust/doc
# Directories & files removed with 'make mrproper'
MRPROPER_FILES += include/config include/generated \
@@ -1501,7 +1587,8 @@ MRPROPER_FILES += include/config include/generated \
certs/signing_key.pem \
certs/x509.genkey \
vmlinux-gdb.py \
- *.spec
+ *.spec \
+ rust/target.json rust/libmacros.so
# clean - Delete most, but leave enough to build external modules
#
@@ -1526,6 +1613,9 @@ $(mrproper-dirs):
mrproper: clean $(mrproper-dirs)
$(call cmd,rmfiles)
+ @find . $(RCS_FIND_IGNORE) \
+ \( -name '*.rmeta' \) \
+ -type f -print | xargs rm -f
# distclean
#
@@ -1613,6 +1703,24 @@ help:
@echo ' kselftest-merge - Merge all the config dependencies of'
@echo ' kselftest to existing .config.'
@echo ''
+ @echo 'Rust targets:'
+ @echo ' rustavailable - Checks whether the Rust toolchain is'
+ @echo ' available and, if not, explains why.'
+ @echo ' rustfmt - Reformat all the Rust code in the kernel'
+ @echo ' rustfmtcheck - Checks if all the Rust code in the kernel'
+ @echo ' is formatted, printing a diff otherwise.'
+ @echo ' rustdoc - Generate Rust documentation'
+ @echo ' (requires kernel .config)'
+ @echo ' rusttest - Runs the Rust tests'
+ @echo ' (requires kernel .config; downloads external repos)'
+ @echo ' rust-analyzer - Generate rust-project.json rust-analyzer support file'
+ @echo ' (requires kernel .config)'
+ @echo ' dir/file.[os] - Build specified target only'
+ @echo ' dir/file.rsi - Build macro expanded source, similar to C preprocessing.'
+ @echo ' Run with RUSTFMT=n to skip reformatting if needed.'
+ @echo ' The output is not intended to be compilable.'
+ @echo ' dir/file.ll - Build the LLVM assembly file'
+ @echo ''
@$(if $(dtstree), \
echo 'Devicetree:'; \
echo '* dtbs - Build device tree blobs for enabled boards'; \
@@ -1685,6 +1793,52 @@ PHONY += $(DOC_TARGETS)
$(DOC_TARGETS):
$(Q)$(MAKE) $(build)=Documentation $@
+
+# Rust targets
+# ---------------------------------------------------------------------------
+
+# "Is Rust available?" target
+PHONY += rustavailable
+rustavailable:
+ $(Q)$(CONFIG_SHELL) $(srctree)/scripts/rust-is-available.sh -v && echo "Rust is available!"
+
+# Documentation target
+#
+# Using the singular to avoid running afoul of `no-dot-config-targets`.
+PHONY += rustdoc
+rustdoc: prepare
+ $(Q)$(MAKE) $(build)=rust $@
+
+# Testing target
+PHONY += rusttest
+rusttest: prepare
+ $(Q)$(MAKE) $(build)=rust $@
+
+# Formatting targets
+PHONY += rustfmt rustfmtcheck
+
+# We skip `rust/alloc` since we want to minimize the diff w.r.t. upstream.
+#
+# We match using absolute paths since `find` does not resolve them
+# when matching, which is a problem when e.g. `srctree` is `..`.
+# We `grep` afterwards in order to remove the directory entry itself.
+rustfmt:
+ $(Q)find $(abs_srctree) -type f -name '*.rs' \
+ -o -path $(abs_srctree)/rust/alloc -prune \
+ -o -path $(abs_objtree)/rust/test -prune \
+ | grep -Fv $(abs_srctree)/rust/alloc \
+ | grep -Fv $(abs_objtree)/rust/test \
+ | grep -Fv generated \
+ | xargs $(RUSTFMT) $(rustfmt_flags)
+
+rustfmtcheck: rustfmt_flags = --check
+rustfmtcheck: rustfmt
+
+# IDE support targets
+PHONY += rust-analyzer
+rust-analyzer:
+ $(Q)$(MAKE) $(build)=rust $@
+
# Misc
# ---------------------------------------------------------------------------
@@ -1852,7 +2006,7 @@ $(clean-dirs):
clean: $(clean-dirs)
$(call cmd,rmfiles)
@find $(or $(KBUILD_EXTMOD), .) $(RCS_FIND_IGNORE) \
- \( -name '*.[aios]' -o -name '*.ko' -o -name '.*.cmd' \
+ \( -name '*.[aios]' -o -name '*.rsi' -o -name '*.ko' -o -name '.*.cmd' \
-o -name '*.ko.*' \
-o -name '*.dtb' -o -name '*.dtbo' -o -name '*.dtb.S' -o -name '*.dt.yaml' \
-o -name '*.dwo' -o -name '*.lst' \
diff --git a/arch/Kconfig b/arch/Kconfig
index 71b9272acb28..d5038cf8dd49 100644
--- a/arch/Kconfig
+++ b/arch/Kconfig
@@ -353,6 +353,12 @@ config HAVE_RSEQ
This symbol should be selected by an architecture if it
supports an implementation of restartable sequences.
+config HAVE_RUST
+ bool
+ help
+ This symbol should be selected by an architecture if it
+ supports Rust.
+
config HAVE_FUNCTION_ARG_ACCESS_API
bool
help
diff --git a/arch/arm/Kconfig b/arch/arm/Kconfig
index 7630ba9cb6cc..147655a4fc27 100644
--- a/arch/arm/Kconfig
+++ b/arch/arm/Kconfig
@@ -116,6 +116,7 @@ config ARM
select MMU_GATHER_RCU_TABLE_FREE if SMP && ARM_LPAE
select HAVE_REGS_AND_STACK_ACCESS_API
select HAVE_RSEQ
+ select HAVE_RUST if CPU_32v6 || CPU_32v6K
select HAVE_STACKPROTECTOR
select HAVE_SYSCALL_TRACEPOINTS
select HAVE_UID16
diff --git a/arch/arm64/Kconfig b/arch/arm64/Kconfig
index 1652a9800ebe..aaeb70358979 100644
--- a/arch/arm64/Kconfig
+++ b/arch/arm64/Kconfig
@@ -201,6 +201,7 @@ config ARM64
select HAVE_FUNCTION_ARG_ACCESS_API
select MMU_GATHER_RCU_TABLE_FREE
select HAVE_RSEQ
+ select HAVE_RUST
select HAVE_STACKPROTECTOR
select HAVE_SYSCALL_TRACEPOINTS
select HAVE_KPROBES
diff --git a/arch/powerpc/Kconfig b/arch/powerpc/Kconfig
index 4d8f26c1399b..edab3cc9edf5 100644
--- a/arch/powerpc/Kconfig
+++ b/arch/powerpc/Kconfig
@@ -243,6 +243,7 @@ config PPC
select HAVE_REGS_AND_STACK_ACCESS_API
select HAVE_RELIABLE_STACKTRACE
select HAVE_RSEQ
+ select HAVE_RUST if PPC64 && CPU_LITTLE_ENDIAN
select HAVE_SETUP_PER_CPU_AREA if PPC64
select HAVE_SOFTIRQ_ON_OWN_STACK
select HAVE_STACKPROTECTOR if PPC32 && $(cc-option,-mstack-protector-guard=tls -mstack-protector-guard-reg=r2)
diff --git a/arch/riscv/Kconfig b/arch/riscv/Kconfig
index fcbb81feb7ad..5b53b41528f6 100644
--- a/arch/riscv/Kconfig
+++ b/arch/riscv/Kconfig
@@ -104,6 +104,7 @@ config RISCV
select HAVE_PERF_REGS
select HAVE_PERF_USER_STACK_DUMP
select HAVE_REGS_AND_STACK_ACCESS_API
+ select HAVE_RUST if 64BIT
select HAVE_FUNCTION_ARG_ACCESS_API
select HAVE_STACKPROTECTOR
select HAVE_SYSCALL_TRACEPOINTS
diff --git a/arch/riscv/Makefile b/arch/riscv/Makefile
index 81029d40a672..24ebe042406e 100644
--- a/arch/riscv/Makefile
+++ b/arch/riscv/Makefile
@@ -26,6 +26,8 @@ ifeq ($(CONFIG_ARCH_RV64I),y)
KBUILD_CFLAGS += -mabi=lp64
KBUILD_AFLAGS += -mabi=lp64
+ KBUILD_RUSTFLAGS += -Ctarget-cpu=generic-rv64
+
KBUILD_LDFLAGS += -melf64lriscv
else
BITS := 32
@@ -33,6 +35,9 @@ else
KBUILD_CFLAGS += -mabi=ilp32
KBUILD_AFLAGS += -mabi=ilp32
+
+ KBUILD_RUSTFLAGS += -Ctarget-cpu=generic-rv32
+
KBUILD_LDFLAGS += -melf32lriscv
endif
diff --git a/arch/um/Kconfig b/arch/um/Kconfig
index 4ec22e156a2e..6dc06a7bf8b7 100644
--- a/arch/um/Kconfig
+++ b/arch/um/Kconfig
@@ -25,6 +25,7 @@ config UML
select TRACE_IRQFLAGS_SUPPORT
select TTY # Needed for line.c
select HAVE_ARCH_VMAP_STACK
+ select HAVE_RUST if X86_64
config MMU
bool
diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig
index 52a7f91527fe..4d5a3f256cbc 100644
--- a/arch/x86/Kconfig
+++ b/arch/x86/Kconfig
@@ -258,6 +258,7 @@ config X86
select HAVE_STATIC_CALL_INLINE if HAVE_OBJTOOL
select HAVE_PREEMPT_DYNAMIC_CALL
select HAVE_RSEQ
+ select HAVE_RUST if X86_64
select HAVE_SYSCALL_TRACEPOINTS
select HAVE_UACCESS_VALIDATION if HAVE_OBJTOOL
select HAVE_UNSTABLE_SCHED_CLOCK
diff --git a/arch/x86/Makefile b/arch/x86/Makefile
index 7854685c5f25..bab595003f07 100644
--- a/arch/x86/Makefile
+++ b/arch/x86/Makefile
@@ -68,6 +68,7 @@ export BITS
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=53383
#
KBUILD_CFLAGS += -mno-sse -mno-mmx -mno-sse2 -mno-3dnow -mno-avx
+KBUILD_RUSTFLAGS += -Ctarget-feature=-sse,-sse2,-sse3,-ssse3,-sse4.1,-sse4.2,-avx,-avx2
ifeq ($(CONFIG_X86_KERNEL_IBT),y)
#
@@ -155,8 +156,17 @@ else
cflags-$(CONFIG_GENERIC_CPU) += -mtune=generic
KBUILD_CFLAGS += $(cflags-y)
+ rustflags-$(CONFIG_MK8) += -Ctarget-cpu=k8
+ rustflags-$(CONFIG_MPSC) += -Ctarget-cpu=nocona
+ rustflags-$(CONFIG_MCORE2) += -Ctarget-cpu=core2
+ rustflags-$(CONFIG_MATOM) += -Ctarget-cpu=atom
+ rustflags-$(CONFIG_GENERIC_CPU) += -Ztune-cpu=generic
+ KBUILD_RUSTFLAGS += $(rustflags-y)
+
KBUILD_CFLAGS += -mno-red-zone
KBUILD_CFLAGS += -mcmodel=kernel
+ KBUILD_RUSTFLAGS += -Cno-redzone=y
+ KBUILD_RUSTFLAGS += -Ccode-model=kernel
endif
#
diff --git a/include/linux/compiler_types.h b/include/linux/compiler_types.h
index 4f2a819fd60a..50b3f6b9502e 100644
--- a/include/linux/compiler_types.h
+++ b/include/linux/compiler_types.h
@@ -4,8 +4,12 @@
#ifndef __ASSEMBLY__
+/*
+ * Skipped when running bindgen due to a libclang issue;
+ * see https://github.com/rust-lang/rust-bindgen/issues/2244.
+ */
#if defined(CONFIG_DEBUG_INFO_BTF) && defined(CONFIG_PAHOLE_HAS_BTF_TAG) && \
- __has_attribute(btf_type_tag)
+ __has_attribute(btf_type_tag) && !defined(__BINDGEN__)
# define BTF_TYPE_TAG(value) __attribute__((btf_type_tag(#value)))
#else
# define BTF_TYPE_TAG(value) /* nothing */
diff --git a/init/Kconfig b/init/Kconfig
index c7900e8975f1..6f62dbea8283 100644
--- a/init/Kconfig
+++ b/init/Kconfig
@@ -60,6 +60,17 @@ config LLD_VERSION
default $(ld-version) if LD_IS_LLD
default 0
+config RUST_IS_AVAILABLE
+ def_bool $(success,$(srctree)/scripts/rust-is-available.sh)
+ help
+ This shows whether a suitable Rust toolchain is available (found).
+
+ Please see Documentation/rust/quick-start.rst for instructions on how
+ to satify the build requirements of Rust support.
+
+ In particular, the Makefile target 'rustavailable' is useful to check
+ why the Rust toolchain is not being detected.
+
config CC_CAN_LINK
bool
default $(success,$(srctree)/scripts/cc-can-link.sh $(CC) $(CLANG_FLAGS) $(USERCFLAGS) $(USERLDFLAGS) $(m64-flag)) if 64BIT
@@ -151,7 +162,8 @@ config WERROR
default COMPILE_TEST
help
A kernel build should not cause any compiler warnings, and this
- enables the '-Werror' flag to enforce that rule by default.
+ enables the '-Werror' (for C) and '-Dwarnings' (for Rust) flags
+ to enforce that rule by default.
However, if you have a new (or very old) compiler with odd and
unusual warnings, or you have some architecture with problems,
@@ -1898,6 +1910,38 @@ config PROFILING
Say Y here to enable the extended profiling support mechanisms used
by profilers.
+config RUST
+ bool "Rust support"
+ depends on HAVE_RUST
+ depends on RUST_IS_AVAILABLE
+ depends on !MODVERSIONS
+ depends on !GCC_PLUGINS
+ depends on !RANDSTRUCT
+ depends on !DEBUG_INFO_BTF
+ select CONSTRUCTORS
+ help
+ Enables Rust support in the kernel.
+
+ This allows other Rust-related options, like drivers written in Rust,
+ to be selected.
+
+ It is also required to be able to load external kernel modules
+ written in Rust.
+
+ See Documentation/rust/ for more information.
+
+ If unsure, say N.
+
+config RUSTC_VERSION_TEXT
+ string
+ depends on RUST
+ default $(shell,command -v $(RUSTC) >/dev/null 2>&1 && $(RUSTC) --version || echo n)
+
+config BINDGEN_VERSION_TEXT
+ string
+ depends on RUST
+ default $(shell,command -v $(BINDGEN) >/dev/null 2>&1 && $(BINDGEN) --version || echo n)
+
#
# Place an empty function call at each tracepoint site. Can be
# dynamically changed for a probe function.
diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug
index 2e24db4bff19..ae3c43e0092e 100644
--- a/lib/Kconfig.debug
+++ b/lib/Kconfig.debug
@@ -2688,6 +2688,88 @@ config HYPERV_TESTING
endmenu # "Kernel Testing and Coverage"
+menu "Rust hacking"
+
+config RUST_DEBUG_ASSERTIONS
+ bool "Debug assertions"
+ depends on RUST
+ help
+ Enables rustc's `-Cdebug-assertions` codegen option.
+
+ This flag lets you turn `cfg(debug_assertions)` conditional
+ compilation on or off. This can be used to enable extra debugging
+ code in development but not in production. For example, it controls
+ the behavior of the standard library's `debug_assert!` macro.
+
+ Note that this will apply to all Rust code, including `core`.
+
+ If unsure, say N.
+
+config RUST_OVERFLOW_CHECKS
+ bool "Overflow checks"
+ default y
+ depends on RUST
+ help
+ Enables rustc's `-Coverflow-checks` codegen option.
+
+ This flag allows you to control the behavior of runtime integer
+ overflow. When overflow-checks are enabled, a Rust panic will occur
+ on overflow.
+
+ Note that this will apply to all Rust code, including `core`.
+
+ If unsure, say Y.
+
+choice
+ prompt "Build-time assertions"
+ default RUST_BUILD_ASSERT_DENY
+ depends on RUST
+ help
+ Controls how are `build_error!` and `build_assert!` handled during build.
+
+ If calls to them exist in the binary, it may indicate a violated invariant
+ or that the optimizer failed to verify the invariant during compilation.
+ You can choose to abort compilation or ignore them during build and let the
+ check be carried to runtime.
+
+ If optimizations are turned off, you cannot select "Deny".
+
+ If unsure, say "Deny".
+
+config RUST_BUILD_ASSERT_ALLOW
+ bool "Allow"
+ help
+ Unoptimized calls to `build_error!` will be converted to `panic!`
+ and checked at runtime.
+
+config RUST_BUILD_ASSERT_WARN
+ bool "Warn"
+ help
+ Unoptimized calls to `build_error!` will be converted to `panic!`
+ and checked at runtime, but warnings will be generated when building.
+
+config RUST_BUILD_ASSERT_DENY
+ bool "Deny"
+ help
+ Unoptimized calls to `build_error!` will abort compilation.
+
+endchoice
+
+config RUST_KERNEL_KUNIT_TEST
+ bool "KUnit test for the `kernel` crate" if !KUNIT_ALL_TESTS
+ depends on RUST && KUNIT=y
+ default KUNIT_ALL_TESTS
+ help
+ This builds the documentation tests of the `kernel` crate
+ as KUnit tests.
+
+ For more information on KUnit and unit tests in general,
+ please refer to the KUnit documentation in Documentation/dev-tools/kunit/.
+
+ If unsure, say N.
+
+endmenu # "Rust"
+
source "Documentation/Kconfig"
endmenu # Kernel hacking
diff --git a/rust/.gitignore b/rust/.gitignore
new file mode 100644
index 000000000000..89b602d91109
--- /dev/null
+++ b/rust/.gitignore
@@ -0,0 +1,10 @@
+# SPDX-License-Identifier: GPL-2.0
+
+target.json
+bindings_generated.rs
+bindings_helpers_generated.rs
+exports_*_generated.h
+doctests_kernel_generated.rs
+doctests_kernel_generated_kunit.c
+doc/
+test/
diff --git a/rust/Makefile b/rust/Makefile
new file mode 100644
index 000000000000..30ce13fa8dad
--- /dev/null
+++ b/rust/Makefile
@@ -0,0 +1,415 @@
+# SPDX-License-Identifier: GPL-2.0
+
+always-$(CONFIG_RUST) += target.json
+no-clean-files += target.json
+
+obj-$(CONFIG_RUST) += core.o compiler_builtins.o
+always-$(CONFIG_RUST) += exports_core_generated.h
+
+# Missing prototypes are expected in the helpers since these are exported
+# for Rust only, thus there is no header nor prototypes.
+obj-$(CONFIG_RUST) += helpers.o
+CFLAGS_REMOVE_helpers.o = -Wmissing-prototypes -Wmissing-declarations
+
+always-$(CONFIG_RUST) += libmacros.so
+no-clean-files += libmacros.so
+
+always-$(CONFIG_RUST) += bindings/bindings_generated.rs bindings/bindings_helpers_generated.rs
+obj-$(CONFIG_RUST) += alloc.o bindings.o kernel.o
+always-$(CONFIG_RUST) += exports_alloc_generated.h exports_bindings_generated.h \
+ exports_kernel_generated.h
+
+ifdef CONFIG_RUST_BUILD_ASSERT_DENY
+always-$(CONFIG_RUST) += build_error.o
+else
+obj-$(CONFIG_RUST) += build_error.o
+endif
+
+obj-$(CONFIG_RUST) += exports.o
+
+obj-$(CONFIG_RUST_KERNEL_KUNIT_TEST) += doctests_kernel_generated.o
+obj-$(CONFIG_RUST_KERNEL_KUNIT_TEST) += doctests_kernel_generated_kunit.o
+
+# Avoids running `$(RUSTC)` for the sysroot when it may not be available.
+ifdef CONFIG_RUST
+
+# `$(rust_flags)` is passed in case the user added `--sysroot`.
+rustc_sysroot := $(shell $(RUSTC) $(rust_flags) --print sysroot)
+rustc_host_target := $(shell $(RUSTC) --version --verbose | grep -F 'host: ' | cut -d' ' -f2)
+RUST_LIB_SRC ?= $(rustc_sysroot)/lib/rustlib/src/rust/library
+
+ifeq ($(quiet),silent_)
+cargo_quiet=-q
+rust_test_quiet=-q
+rustdoc_test_quiet=--test-args -q
+rustdoc_test_kernel_quiet=>/dev/null
+else ifeq ($(quiet),quiet_)
+rust_test_quiet=-q
+rustdoc_test_quiet=--test-args -q
+rustdoc_test_kernel_quiet=>/dev/null
+else
+cargo_quiet=--verbose
+endif
+
+core-cfgs = \
+ --cfg no_fp_fmt_parse
+
+alloc-cfgs = \
+ --cfg no_global_oom_handling \
+ --cfg no_rc \
+ --cfg no_sync
+
+quiet_cmd_rustdoc = RUSTDOC $(if $(rustdoc_host),H, ) $<
+ cmd_rustdoc = \
+ OBJTREE=$(abspath $(objtree)) \
+ $(RUSTDOC) $(if $(rustdoc_host),$(rust_common_flags),$(rust_flags)) \
+ $(rustc_target_flags) -L$(objtree)/$(obj) \
+ --output $(objtree)/$(obj)/doc \
+ --crate-name $(subst rustdoc-,,$@) \
+ @$(objtree)/include/generated/rustc_cfg $<
+
+# The `html_logo_url` and `html_favicon_url` forms of the `doc` attribute
+# can be used to specify a custom logo. However:
+# - The given value is used as-is, thus it cannot be relative or a local file
+# (unlike the non-custom case) since the generated docs have subfolders.
+# - It requires adding it to every crate.
+# - It requires changing `core` which comes from the sysroot.
+#
+# Using `-Zcrate-attr` would solve the last two points, but not the first.
+# The https://github.com/rust-lang/rfcs/pull/3226 RFC suggests two new
+# command-like flags to solve the issue. Meanwhile, we use the non-custom case
+# and then retouch the generated files.
+rustdoc: rustdoc-core rustdoc-macros rustdoc-compiler_builtins \
+ rustdoc-alloc rustdoc-kernel
+ $(Q)cp $(srctree)/Documentation/images/logo.svg $(objtree)/$(obj)/doc
+ $(Q)cp $(srctree)/Documentation/images/COPYING-logo $(objtree)/$(obj)/doc
+ $(Q)find $(objtree)/$(obj)/doc -name '*.html' -type f -print0 | xargs -0 sed -Ei \
+ -e 's:rust-logo\.svg:logo.svg:g' \
+ -e 's:rust-logo\.png:logo.svg:g' \
+ -e 's:favicon\.svg:logo.svg:g' \
+ -e 's:<link rel="alternate icon" type="image/png" href="[./]*favicon-(16x16|32x32)\.png">::g'
+ $(Q)echo '.logo-container > img { object-fit: contain; }' \
+ >> $(objtree)/$(obj)/doc/rustdoc.css
+
+rustdoc-macros: private rustdoc_host = yes
+rustdoc-macros: private rustc_target_flags = --crate-type proc-macro \
+ --extern proc_macro
+rustdoc-macros: $(src)/macros/lib.rs FORCE
+ $(call if_changed,rustdoc)
+
+rustdoc-core: private rustc_target_flags = $(core-cfgs)
+rustdoc-core: $(RUST_LIB_SRC)/core/src/lib.rs FORCE
+ $(call if_changed,rustdoc)
+
+rustdoc-compiler_builtins: $(src)/compiler_builtins.rs rustdoc-core FORCE
+ $(call if_changed,rustdoc)
+
+# We need to allow `rustdoc::broken_intra_doc_links` because some
+# `no_global_oom_handling` functions refer to non-`no_global_oom_handling`
+# functions. Ideally `rustdoc` would have a way to distinguish broken links
+# due to things that are "configured out" vs. entirely non-existing ones.
+rustdoc-alloc: private rustc_target_flags = $(alloc-cfgs) \
+ -Arustdoc::broken_intra_doc_links
+rustdoc-alloc: $(src)/alloc/lib.rs rustdoc-core rustdoc-compiler_builtins FORCE
+ $(call if_changed,rustdoc)
+
+rustdoc-kernel: private rustc_target_flags = --extern alloc \
+ --extern build_error --extern macros=$(objtree)/$(obj)/libmacros.so \
+ --extern bindings
+rustdoc-kernel: $(src)/kernel/lib.rs rustdoc-core rustdoc-macros \
+ rustdoc-compiler_builtins rustdoc-alloc $(obj)/libmacros.so \
+ $(obj)/bindings.o FORCE
+ $(call if_changed,rustdoc)
+
+quiet_cmd_rustc_test_library = RUSTC TL $<
+ cmd_rustc_test_library = \
+ OBJTREE=$(abspath $(objtree)) \
+ $(RUSTC) $(rust_common_flags) \
+ @$(objtree)/include/generated/rustc_cfg $(rustc_target_flags) \
+ --crate-type $(if $(rustc_test_library_proc),proc-macro,rlib) \
+ --out-dir $(objtree)/$(obj)/test --cfg testlib \
+ --sysroot $(objtree)/$(obj)/test/sysroot \
+ -L$(objtree)/$(obj)/test \
+ --crate-name $(subst rusttest-,,$(subst rusttestlib-,,$@)) $<
+
+rusttestlib-build_error: $(src)/build_error.rs rusttest-prepare FORCE
+ $(call if_changed,rustc_test_library)
+
+rusttestlib-macros: private rustc_target_flags = --extern proc_macro
+rusttestlib-macros: private rustc_test_library_proc = yes
+rusttestlib-macros: $(src)/macros/lib.rs rusttest-prepare FORCE
+ $(call if_changed,rustc_test_library)
+
+rusttestlib-bindings: $(src)/bindings/lib.rs rusttest-prepare FORCE
+ $(call if_changed,rustc_test_library)
+
+quiet_cmd_rustdoc_test = RUSTDOC T $<
+ cmd_rustdoc_test = \
+ OBJTREE=$(abspath $(objtree)) \
+ $(RUSTDOC) --test $(rust_common_flags) \
+ @$(objtree)/include/generated/rustc_cfg \
+ $(rustc_target_flags) $(rustdoc_test_target_flags) \
+ --sysroot $(objtree)/$(obj)/test/sysroot $(rustdoc_test_quiet) \
+ -L$(objtree)/$(obj)/test --output $(objtree)/$(obj)/doc \
+ --crate-name $(subst rusttest-,,$@) $<
+
+quiet_cmd_rustdoc_test_kernel = RUSTDOC TK $<
+ cmd_rustdoc_test_kernel = \
+ rm -rf $(objtree)/$(obj)/test/doctests/kernel; \
+ mkdir -p $(objtree)/$(obj)/test/doctests/kernel; \
+ OBJTREE=$(abspath $(objtree)) \
+ $(RUSTDOC) --test $(rust_flags) \
+ @$(objtree)/include/generated/rustc_cfg \
+ -L$(objtree)/$(obj) --extern alloc --extern kernel \
+ --extern build_error --extern macros \
+ --extern bindings \
+ --no-run --crate-name kernel -Zunstable-options \
+ --test-builder $(srctree)/scripts/rustdoc_test_builder.py \
+ $< $(rustdoc_test_kernel_quiet); \
+ $(srctree)/scripts/rustdoc_test_gen.py
+
+%/doctests_kernel_generated.rs %/doctests_kernel_generated_kunit.c: $(src)/kernel/lib.rs $(obj)/kernel.o FORCE
+ $(call if_changed,rustdoc_test_kernel)
+
+# We cannot use `-Zpanic-abort-tests` because some tests are dynamic,
+# so for the moment we skip `-Cpanic=abort`.
+quiet_cmd_rustc_test = RUSTC T $<
+ cmd_rustc_test = \
+ OBJTREE=$(abspath $(objtree)) \
+ $(RUSTC) --test $(rust_common_flags) \
+ @$(objtree)/include/generated/rustc_cfg \
+ $(rustc_target_flags) --out-dir $(objtree)/$(obj)/test \
+ --sysroot $(objtree)/$(obj)/test/sysroot \
+ -L$(objtree)/$(obj)/test \
+ --crate-name $(subst rusttest-,,$@) $<; \
+ $(objtree)/$(obj)/test/$(subst rusttest-,,$@) $(rust_test_quiet) \
+ $(rustc_test_run_flags)
+
+rusttest: rusttest-macros rusttest-kernel
+
+# This prepares a custom sysroot with our custom `alloc` instead of
+# the standard one.
+#
+# This requires several hacks:
+# - Unlike `core` and `alloc`, `std` depends on more than a dozen crates,
+# including third-party crates that need to be downloaded, plus custom
+# `build.rs` steps. Thus hardcoding things here is not maintainable.
+# - `cargo` knows how to build the standard library, but it is an unstable
+# feature so far (`-Zbuild-std`).
+# - `cargo` only considers the use case of building the standard library
+# to use it in a given package. Thus we need to create a dummy package
+# and pick the generated libraries from there.
+# - Since we only keep a subset of upstream `alloc` in-tree, we need
+# to recreate it on the fly by putting our sources on top.
+# - The usual ways of modifying the dependency graph in `cargo` do not seem
+# to apply for the `-Zbuild-std` steps, thus we have to mislead it
+# by modifying the sources in the sysroot.
+# - To avoid messing with the user's Rust installation, we create a clone
+# of the sysroot. However, `cargo` ignores `RUSTFLAGS` in the `-Zbuild-std`
+# steps, thus we use a wrapper binary passed via `RUSTC` to pass the flag.
+#
+# In the future, we hope to avoid the whole ordeal by either:
+# - Making the `test` crate not depend on `std` (either improving upstream
+# or having our own custom crate).
+# - Making the tests run in kernel space (requires the previous point).
+# - Making `std` and friends be more like a "normal" crate, so that
+# `-Zbuild-std` and related hacks are not needed.
+quiet_cmd_rustsysroot = RUSTSYSROOT
+ cmd_rustsysroot = \
+ rm -rf $(objtree)/$(obj)/test; \
+ mkdir -p $(objtree)/$(obj)/test; \
+ cp -a $(rustc_sysroot) $(objtree)/$(obj)/test/sysroot; \
+ cp -r $(srctree)/$(src)/alloc/* \
+ $(objtree)/$(obj)/test/sysroot/lib/rustlib/src/rust/library/alloc/src; \
+ echo '\#!/bin/sh' > $(objtree)/$(obj)/test/rustc_sysroot; \
+ echo "$(RUSTC) --sysroot=$(abspath $(objtree)/$(obj)/test/sysroot) \"\$$@\"" \
+ >> $(objtree)/$(obj)/test/rustc_sysroot; \
+ chmod u+x $(objtree)/$(obj)/test/rustc_sysroot; \
+ $(CARGO) -q new $(objtree)/$(obj)/test/dummy; \
+ RUSTC=$(objtree)/$(obj)/test/rustc_sysroot $(CARGO) $(cargo_quiet) \
+ test -Zbuild-std --target $(rustc_host_target) \
+ --manifest-path $(objtree)/$(obj)/test/dummy/Cargo.toml; \
+ rm $(objtree)/$(obj)/test/sysroot/lib/rustlib/$(rustc_host_target)/lib/*; \
+ cp $(objtree)/$(obj)/test/dummy/target/$(rustc_host_target)/debug/deps/* \
+ $(objtree)/$(obj)/test/sysroot/lib/rustlib/$(rustc_host_target)/lib
+
+rusttest-prepare: FORCE
+ $(call if_changed,rustsysroot)
+
+rusttest-macros: private rustc_target_flags = --extern proc_macro
+rusttest-macros: private rustdoc_test_target_flags = --crate-type proc-macro
+rusttest-macros: $(src)/macros/lib.rs rusttest-prepare FORCE
+ $(call if_changed,rustc_test)
+ $(call if_changed,rustdoc_test)
+
+rusttest-kernel: private rustc_target_flags = --extern alloc \
+ --extern build_error --extern macros --extern bindings
+rusttest-kernel: $(src)/kernel/lib.rs rusttest-prepare \
+ rusttestlib-build_error rusttestlib-macros rusttestlib-bindings FORCE
+ $(call if_changed,rustc_test)
+ $(call if_changed,rustc_test_library)
+
+filechk_rust_target = $(objtree)/scripts/generate_rust_target < $<
+
+$(obj)/target.json: $(objtree)/include/config/auto.conf FORCE
+ $(call filechk,rust_target)
+
+ifdef CONFIG_CC_IS_CLANG
+bindgen_c_flags = $(c_flags)
+else
+# bindgen relies on libclang to parse C. Ideally, bindgen would support a GCC
+# plugin backend and/or the Clang driver would be perfectly compatible with GCC.
+#
+# For the moment, here we are tweaking the flags on the fly. This is a hack,
+# and some kernel configurations may not work (e.g. `GCC_PLUGIN_RANDSTRUCT`
+# if we end up using one of those structs).
+bindgen_skip_c_flags := -mno-fp-ret-in-387 -mpreferred-stack-boundary=% \
+ -mskip-rax-setup -mgeneral-regs-only -msign-return-address=% \
+ -mindirect-branch=thunk-extern -mindirect-branch-register \
+ -mfunction-return=thunk-extern -mrecord-mcount -mabi=lp64 \
+ -mstack-protector-guard% -mtraceback=no \
+ -mno-pointers-to-nested-functions -mno-string \
+ -mno-strict-align -mstrict-align \
+ -fconserve-stack -falign-jumps=% -falign-loops=% \
+ -femit-struct-debug-baseonly -fno-ipa-cp-clone -fno-ipa-sra \
+ -fno-partial-inlining -fplugin-arg-arm_ssp_per_task_plugin-% \
+ -fno-reorder-blocks -fno-allow-store-data-races -fasan-shadow-offset=% \
+ -fzero-call-used-regs=% -fno-stack-clash-protection \
+ -fno-inline-functions-called-once \
+ --param=% --param asan-%
+
+# Derived from `scripts/Makefile.clang`.
+BINDGEN_TARGET_arm := arm-linux-gnueabi
+BINDGEN_TARGET_arm64 := aarch64-linux-gnu
+BINDGEN_TARGET_powerpc := powerpc64le-linux-gnu
+BINDGEN_TARGET_riscv := riscv64-linux-gnu
+BINDGEN_TARGET_x86 := x86_64-linux-gnu
+BINDGEN_TARGET := $(BINDGEN_TARGET_$(SRCARCH))
+
+# All warnings are inhibited since GCC builds are very experimental,
+# many GCC warnings are not supported by Clang, they may only appear in
+# some configurations, with new GCC versions, etc.
+bindgen_extra_c_flags = -w --target=$(BINDGEN_TARGET)
+
+bindgen_c_flags = $(filter-out $(bindgen_skip_c_flags), $(c_flags)) \
+ $(bindgen_extra_c_flags)
+endif
+
+ifdef CONFIG_LTO
+bindgen_c_flags_lto = $(filter-out $(CC_FLAGS_LTO), $(bindgen_c_flags))
+else
+bindgen_c_flags_lto = $(bindgen_c_flags)
+endif
+
+bindgen_c_flags_final = $(bindgen_c_flags_lto) -D__BINDGEN__
+
+quiet_cmd_bindgen = BINDGEN $@
+ cmd_bindgen = \
+ $(BINDGEN) $< $(bindgen_target_flags) \
+ --use-core --with-derive-default --ctypes-prefix core::ffi --no-layout-tests \
+ --no-debug '.*' \
+ --size_t-is-usize -o $@ -- $(bindgen_c_flags_final) -DMODULE \
+ $(bindgen_target_cflags) $(bindgen_target_extra)
+
+$(obj)/bindings/bindings_generated.rs: private bindgen_target_flags = \
+ $(shell grep -v '^\#\|^$$' $(srctree)/$(src)/bindgen_parameters)
+$(obj)/bindings/bindings_generated.rs: $(src)/bindings/bindings_helper.h \
+ $(src)/bindgen_parameters FORCE
+ $(call if_changed_dep,bindgen)
+
+# See `CFLAGS_REMOVE_helpers.o` above. In addition, Clang on C does not warn
+# with `-Wmissing-declarations` (unlike GCC), so it is not strictly needed here
+# given it is `libclang`; but for consistency, future Clang changes and/or
+# a potential future GCC backend for `bindgen`, we disable it too.
+$(obj)/bindings/bindings_helpers_generated.rs: private bindgen_target_flags = \
+ --blacklist-type '.*' --whitelist-var '' \
+ --whitelist-function 'rust_helper_.*'
+$(obj)/bindings/bindings_helpers_generated.rs: private bindgen_target_cflags = \
+ -I$(objtree)/$(obj) -Wno-missing-prototypes -Wno-missing-declarations
+$(obj)/bindings/bindings_helpers_generated.rs: private bindgen_target_extra = ; \
+ sed -Ei 's/pub fn rust_helper_([a-zA-Z0-9_]*)/#[link_name="rust_helper_\1"]\n pub fn \1/g' $@
+$(obj)/bindings/bindings_helpers_generated.rs: $(src)/helpers.c FORCE
+ $(call if_changed_dep,bindgen)
+
+quiet_cmd_exports = EXPORTS $@
+ cmd_exports = \
+ $(NM) -p --defined-only $< \
+ | grep -E ' (T|R|D) ' | cut -d ' ' -f 3 \
+ | xargs -Isymbol \
+ echo 'EXPORT_SYMBOL_RUST_GPL(symbol);' > $@
+
+$(obj)/exports_core_generated.h: $(obj)/core.o FORCE
+ $(call if_changed,exports)
+
+$(obj)/exports_alloc_generated.h: $(obj)/alloc.o FORCE
+ $(call if_changed,exports)
+
+$(obj)/exports_bindings_generated.h: $(obj)/bindings.o FORCE
+ $(call if_changed,exports)
+
+$(obj)/exports_kernel_generated.h: $(obj)/kernel.o FORCE
+ $(call if_changed,exports)
+
+quiet_cmd_rustc_procmacro = $(RUSTC_OR_CLIPPY_QUIET) P $@
+ cmd_rustc_procmacro = \
+ $(RUSTC_OR_CLIPPY) $(rust_common_flags) \
+ --emit=dep-info,link --extern proc_macro \
+ --crate-type proc-macro --out-dir $(objtree)/$(obj) \
+ --crate-name $(patsubst lib%.so,%,$(notdir $@)) $<; \
+ mv $(objtree)/$(obj)/$(patsubst lib%.so,%,$(notdir $@)).d $(depfile); \
+ sed -i '/^\#/d' $(depfile)
+
+# Procedural macros can only be used with the `rustc` that compiled it.
+# Therefore, to get `libmacros.so` automatically recompiled when the compiler
+# version changes, we add `core.o` as a dependency (even if it is not needed).
+$(obj)/libmacros.so: $(src)/macros/lib.rs $(obj)/core.o FORCE
+ $(call if_changed_dep,rustc_procmacro)
+
+quiet_cmd_rustc_library = $(if $(skip_clippy),RUSTC,$(RUSTC_OR_CLIPPY_QUIET)) L $@
+ cmd_rustc_library = \
+ OBJTREE=$(abspath $(objtree)) \
+ $(if $(skip_clippy),$(RUSTC),$(RUSTC_OR_CLIPPY)) \
+ $(filter-out $(skip_flags),$(rust_flags) $(rustc_target_flags)) \
+ --emit=dep-info,obj,metadata --crate-type rlib \
+ --out-dir $(objtree)/$(obj) -L$(objtree)/$(obj) \
+ --crate-name $(patsubst %.o,%,$(notdir $@)) $<; \
+ mv $(objtree)/$(obj)/$(patsubst %.o,%,$(notdir $@)).d $(depfile); \
+ sed -i '/^\#/d' $(depfile) \
+ $(if $(rustc_objcopy),;$(OBJCOPY) $(rustc_objcopy) $@)
+
+rust-analyzer:
+ $(Q)$(srctree)/scripts/generate_rust_analyzer.py $(srctree) $(objtree) \
+ $(RUST_LIB_SRC) > $(objtree)/rust-project.json
+
+$(obj)/core.o: private skip_clippy = 1
+$(obj)/core.o: private skip_flags = -Dunreachable_pub
+$(obj)/core.o: private rustc_target_flags = $(core-cfgs)
+$(obj)/core.o: $(RUST_LIB_SRC)/core/src/lib.rs $(obj)/target.json FORCE
+ $(call if_changed_dep,rustc_library)
+
+$(obj)/compiler_builtins.o: private rustc_objcopy = -w -W '__*'
+$(obj)/compiler_builtins.o: $(src)/compiler_builtins.rs $(obj)/core.o FORCE
+ $(call if_changed_dep,rustc_library)
+
+$(obj)/alloc.o: private skip_clippy = 1
+$(obj)/alloc.o: private skip_flags = -Dunreachable_pub
+$(obj)/alloc.o: private rustc_target_flags = $(alloc-cfgs)
+$(obj)/alloc.o: $(src)/alloc/lib.rs $(obj)/compiler_builtins.o FORCE
+ $(call if_changed_dep,rustc_library)
+
+$(obj)/build_error.o: $(src)/build_error.rs $(obj)/compiler_builtins.o FORCE
+ $(call if_changed_dep,rustc_library)
+
+$(obj)/bindings.o: $(src)/bindings/lib.rs \
+ $(obj)/compiler_builtins.o \
+ $(obj)/bindings/bindings_generated.rs \
+ $(obj)/bindings/bindings_helpers_generated.rs FORCE
+ $(call if_changed_dep,rustc_library)
+
+$(obj)/kernel.o: private rustc_target_flags = --extern alloc \
+ --extern build_error --extern macros --extern bindings
+$(obj)/kernel.o: $(src)/kernel/lib.rs $(obj)/alloc.o $(obj)/build_error.o \
+ $(obj)/libmacros.so $(obj)/bindings.o FORCE
+ $(call if_changed_dep,rustc_library)
+
+endif # CONFIG_RUST
diff --git a/rust/bindgen_parameters b/rust/bindgen_parameters
new file mode 100644
index 000000000000..be4963bf7203
--- /dev/null
+++ b/rust/bindgen_parameters
@@ -0,0 +1,21 @@
+# SPDX-License-Identifier: GPL-2.0
+
+--opaque-type xregs_state
+--opaque-type desc_struct
+--opaque-type arch_lbr_state
+--opaque-type local_apic
+
+# Packed type cannot transitively contain a `#[repr(align)]` type.
+--opaque-type x86_msi_data
+--opaque-type x86_msi_addr_lo
+
+# `try` is a reserved keyword since Rust 2018; solved in `bindgen` v0.59.2,
+# commit 2aed6b021680 ("context: Escape the try keyword properly").
+--opaque-type kunit_try_catch
+
+# If SMP is disabled, `arch_spinlock_t` is defined as a ZST which triggers a Rust
+# warning. We don't need to peek into it anyway.
+--opaque-type spinlock
+
+# `seccomp`'s comment gets understood as a doctest
+--no-doc-comments
diff --git a/scripts/.gitignore b/scripts/.gitignore
index eed308bef604..b7aec8eb1bd4 100644
--- a/scripts/.gitignore
+++ b/scripts/.gitignore
@@ -1,6 +1,7 @@
# SPDX-License-Identifier: GPL-2.0-only
/asn1_compiler
/bin2c
+/generate_rust_target
/insert-sys-cert
/kallsyms
/module.lds
diff --git a/scripts/Kconfig.include b/scripts/Kconfig.include
index 0496efd6e117..83e850321eb6 100644
--- a/scripts/Kconfig.include
+++ b/scripts/Kconfig.include
@@ -36,12 +36,12 @@ ld-option = $(success,$(LD) -v $(1))
as-instr = $(success,printf "%b\n" "$(1)" | $(CC) $(CLANG_FLAGS) -c -x assembler -o /dev/null -)
# check if $(CC) and $(LD) exist
-$(error-if,$(failure,command -v $(CC)),compiler '$(CC)' not found)
+$(error-if,$(failure,command -v $(CC)),C compiler '$(CC)' not found)
$(error-if,$(failure,command -v $(LD)),linker '$(LD)' not found)
-# Get the compiler name, version, and error out if it is not supported.
+# Get the C compiler name, version, and error out if it is not supported.
cc-info := $(shell,$(srctree)/scripts/cc-version.sh $(CC))
-$(error-if,$(success,test -z "$(cc-info)"),Sorry$(comma) this compiler is not supported.)
+$(error-if,$(success,test -z "$(cc-info)"),Sorry$(comma) this C compiler is not supported.)
cc-name := $(shell,set -- $(cc-info) && echo $1)
cc-version := $(shell,set -- $(cc-info) && echo $2)
diff --git a/scripts/Makefile b/scripts/Makefile
index f084f08ed176..1575af84d557 100644
--- a/scripts/Makefile
+++ b/scripts/Makefile
@@ -10,6 +10,9 @@ hostprogs-always-$(CONFIG_BUILDTIME_TABLE_SORT) += sorttable
hostprogs-always-$(CONFIG_ASN1) += asn1_compiler
hostprogs-always-$(CONFIG_MODULE_SIG_FORMAT) += sign-file
hostprogs-always-$(CONFIG_SYSTEM_EXTRA_CERTIFICATE) += insert-sys-cert
+hostprogs-always-$(CONFIG_RUST) += generate_rust_target
+
+generate_rust_target-rust := y
HOSTCFLAGS_sorttable.o = -I$(srctree)/tools/include
HOSTLDLIBS_sorttable = -lpthread
diff --git a/scripts/Makefile.build b/scripts/Makefile.build
index cac070aee791..5c495713f1b1 100644
--- a/scripts/Makefile.build
+++ b/scripts/Makefile.build
@@ -26,6 +26,7 @@ EXTRA_CPPFLAGS :=
EXTRA_LDFLAGS :=
asflags-y :=
ccflags-y :=
+rustflags-y :=
cppflags-y :=
ldflags-y :=
@@ -271,6 +272,65 @@ quiet_cmd_cc_lst_c = MKLST $@
$(obj)/%.lst: $(src)/%.c FORCE
$(call if_changed_dep,cc_lst_c)
+# Compile Rust sources (.rs)
+# ---------------------------------------------------------------------------
+
+rust_allowed_features := allocator_api,bench_black_box,core_ffi_c,generic_associated_types,const_ptr_offset_from,const_refs_to_cell
+
+rust_common_cmd = \
+ RUST_MODFILE=$(modfile) $(RUSTC_OR_CLIPPY) $(rust_flags) \
+ -Zallow-features=$(rust_allowed_features) \
+ -Zcrate-attr=no_std \
+ -Zcrate-attr='feature($(rust_allowed_features))' \
+ --extern alloc --extern kernel \
+ --crate-type rlib --out-dir $(obj) -L $(objtree)/rust/ \
+ --crate-name $(basename $(notdir $@))
+
+rust_handle_depfile = \
+ mv $(obj)/$(basename $(notdir $@)).d $(depfile); \
+ sed -i '/^\#/d' $(depfile)
+
+# `--emit=obj`, `--emit=asm` and `--emit=llvm-ir` imply a single codegen unit
+# will be used. We explicitly request `-Ccodegen-units=1` in any case, and
+# the compiler shows a warning if it is not 1. However, if we ever stop
+# requesting it explicitly and we start using some other `--emit` that does not
+# imply it (and for which codegen is performed), then we would be out of sync,
+# i.e. the outputs we would get for the different single targets (e.g. `.ll`)
+# would not match each other.
+
+quiet_cmd_rustc_o_rs = $(RUSTC_OR_CLIPPY_QUIET) $(quiet_modtag) $@
+ cmd_rustc_o_rs = \
+ $(rust_common_cmd) --emit=dep-info,obj $<; \
+ $(rust_handle_depfile)
+
+$(obj)/%.o: $(src)/%.rs FORCE
+ $(call if_changed_dep,rustc_o_rs)
+
+quiet_cmd_rustc_rsi_rs = $(RUSTC_OR_CLIPPY_QUIET) $(quiet_modtag) $@
+ cmd_rustc_rsi_rs = \
+ $(rust_common_cmd) --emit=dep-info -Zunpretty=expanded $< >$@; \
+ command -v $(RUSTFMT) >/dev/null && $(RUSTFMT) $@; \
+ $(rust_handle_depfile)
+
+$(obj)/%.rsi: $(src)/%.rs FORCE
+ $(call if_changed_dep,rustc_rsi_rs)
+
+quiet_cmd_rustc_s_rs = $(RUSTC_OR_CLIPPY_QUIET) $(quiet_modtag) $@
+ cmd_rustc_s_rs = \
+ $(rust_common_cmd) --emit=dep-info,asm $<; \
+ $(rust_handle_depfile)
+
+$(obj)/%.s: $(src)/%.rs FORCE
+ $(call if_changed_dep,rustc_s_rs)
+
+quiet_cmd_rustc_ll_rs = $(RUSTC_OR_CLIPPY_QUIET) $(quiet_modtag) $@
+ cmd_rustc_ll_rs = \
+ $(rust_common_cmd) --emit=dep-info,llvm-ir $<; \
+ $(rust_handle_depfile)
+
+$(obj)/%.ll: $(src)/%.rs FORCE
+ $(call if_changed_dep,rustc_ll_rs)
+
# Compile assembler sources (.S)
# ---------------------------------------------------------------------------
diff --git a/scripts/Makefile.debug b/scripts/Makefile.debug
index 9f39b0130551..fe87389d52c0 100644
--- a/scripts/Makefile.debug
+++ b/scripts/Makefile.debug
@@ -1,4 +1,5 @@
DEBUG_CFLAGS :=
+DEBUG_RUSTFLAGS :=
ifdef CONFIG_DEBUG_INFO_SPLIT
DEBUG_CFLAGS += -gsplit-dwarf
@@ -10,6 +11,12 @@ ifndef CONFIG_AS_IS_LLVM
KBUILD_AFLAGS += -Wa,-gdwarf-2
endif
+ifdef CONFIG_DEBUG_INFO_REDUCED
+DEBUG_RUSTFLAGS += -Cdebuginfo=1
+else
+DEBUG_RUSTFLAGS += -Cdebuginfo=2
+endif
+
ifndef CONFIG_DEBUG_INFO_DWARF_TOOLCHAIN_DEFAULT
dwarf-version-$(CONFIG_DEBUG_INFO_DWARF4) := 4
dwarf-version-$(CONFIG_DEBUG_INFO_DWARF5) := 5
@@ -31,3 +38,6 @@ endif
KBUILD_CFLAGS += $(DEBUG_CFLAGS)
export DEBUG_CFLAGS
+
+KBUILD_RUSTFLAGS += $(DEBUG_RUSTFLAGS)
+export DEBUG_RUSTFLAGS
diff --git a/scripts/Makefile.host b/scripts/Makefile.host
index 278b4d6ac945..da133780b751 100644
--- a/scripts/Makefile.host
+++ b/scripts/Makefile.host
@@ -22,6 +22,8 @@ $(obj)/%.tab.c $(obj)/%.tab.h: $(src)/%.y FORCE
# to preprocess a data file.
#
# Both C and C++ are supported, but preferred language is C for such utilities.
+# Rust is also supported, but it may only be used in scenarios where a Rust
+# toolchain is required to be available (e.g. when `CONFIG_RUST` is enabled).
#
# Sample syntax (see Documentation/kbuild/makefiles.rst for reference)
# hostprogs := bin2hex
@@ -37,15 +39,20 @@ $(obj)/%.tab.c $(obj)/%.tab.h: $(src)/%.y FORCE
# qconf-objs := menu.o
# Will compile qconf as a C++ program, and menu as a C program.
# They are linked as C++ code to the executable qconf
+#
+# hostprogs := target
+# target-rust := y
+# Will compile `target` as a Rust program, using `target.rs` as the crate root.
+# The crate may consist of several source files.
# C code
# Executables compiled from a single .c file
host-csingle := $(foreach m,$(hostprogs), \
- $(if $($(m)-objs)$($(m)-cxxobjs),,$(m)))
+ $(if $($(m)-objs)$($(m)-cxxobjs)$($(m)-rust),,$(m)))
# C executables linked based on several .o files
host-cmulti := $(foreach m,$(hostprogs),\
- $(if $($(m)-cxxobjs),,$(if $($(m)-objs),$(m))))
+ $(if $($(m)-cxxobjs)$($(m)-rust),,$(if $($(m)-objs),$(m))))
# Object (.o) files compiled from .c files
host-cobjs := $(sort $(foreach m,$(hostprogs),$($(m)-objs)))
@@ -58,11 +65,17 @@ host-cxxmulti := $(foreach m,$(hostprogs),$(if $($(m)-cxxobjs),$(m)))
# C++ Object (.o) files compiled from .cc files
host-cxxobjs := $(sort $(foreach m,$(host-cxxmulti),$($(m)-cxxobjs)))
+# Rust code
+# Executables compiled from a single Rust crate (which may consist of
+# one or more .rs files)
+host-rust := $(foreach m,$(hostprogs),$(if $($(m)-rust),$(m)))
+
host-csingle := $(addprefix $(obj)/,$(host-csingle))
host-cmulti := $(addprefix $(obj)/,$(host-cmulti))
host-cobjs := $(addprefix $(obj)/,$(host-cobjs))
host-cxxmulti := $(addprefix $(obj)/,$(host-cxxmulti))
host-cxxobjs := $(addprefix $(obj)/,$(host-cxxobjs))
+host-rust := $(addprefix $(obj)/,$(host-rust))
#####
# Handle options to gcc. Support building with separate output directory
@@ -71,6 +84,8 @@ _hostc_flags = $(KBUILD_HOSTCFLAGS) $(HOST_EXTRACFLAGS) \
$(HOSTCFLAGS_$(target-stem).o)
_hostcxx_flags = $(KBUILD_HOSTCXXFLAGS) $(HOST_EXTRACXXFLAGS) \
$(HOSTCXXFLAGS_$(target-stem).o)
+_hostrust_flags = $(KBUILD_HOSTRUSTFLAGS) $(HOST_EXTRARUSTFLAGS) \
+ $(HOSTRUSTFLAGS_$(target-stem))
# $(objtree)/$(obj) for including generated headers from checkin source files
ifeq ($(KBUILD_EXTMOD),)
@@ -82,6 +97,7 @@ endif
hostc_flags = -Wp,-MMD,$(depfile) $(_hostc_flags)
hostcxx_flags = -Wp,-MMD,$(depfile) $(_hostcxx_flags)
+hostrust_flags = $(_hostrust_flags)
#####
# Compile programs on the host
@@ -128,5 +144,17 @@ quiet_cmd_host-cxxobjs = HOSTCXX $@
$(host-cxxobjs): $(obj)/%.o: $(src)/%.cc FORCE
$(call if_changed_dep,host-cxxobjs)
+# Create executable from a single Rust crate (which may consist of
+# one or more `.rs` files)
+# host-rust -> Executable
+quiet_cmd_host-rust = HOSTRUSTC $@
+ cmd_host-rust = \
+ $(HOSTRUSTC) $(hostrust_flags) --emit=dep-info,link \
+ --out-dir=$(obj)/ $<; \
+ mv $(obj)/$(target-stem).d $(depfile); \
+ sed -i '/^\#/d' $(depfile)
+$(host-rust): $(obj)/%: $(src)/%.rs FORCE
+ $(call if_changed_dep,host-rust)
+
targets += $(host-csingle) $(host-cmulti) $(host-cobjs) \
- $(host-cxxmulti) $(host-cxxobjs)
+ $(host-cxxmulti) $(host-cxxobjs) $(host-rust)
diff --git a/scripts/Makefile.lib b/scripts/Makefile.lib
index 3fb6a99e78c4..c88b98b5dc44 100644
--- a/scripts/Makefile.lib
+++ b/scripts/Makefile.lib
@@ -8,6 +8,7 @@ ldflags-y += $(EXTRA_LDFLAGS)
# flags that take effect in current and sub directories
KBUILD_AFLAGS += $(subdir-asflags-y)
KBUILD_CFLAGS += $(subdir-ccflags-y)
+KBUILD_RUSTFLAGS += $(subdir-rustflags-y)
# Figure out what we need to build from the various variables
# ===========================================================================
@@ -128,6 +129,10 @@ _c_flags = $(filter-out $(CFLAGS_REMOVE_$(target-stem).o), \
$(filter-out $(ccflags-remove-y), \
$(KBUILD_CPPFLAGS) $(KBUILD_CFLAGS) $(ccflags-y)) \
$(CFLAGS_$(target-stem).o))
+_rust_flags = $(filter-out $(RUSTFLAGS_REMOVE_$(target-stem).o), \
+ $(filter-out $(rustflags-remove-y), \
+ $(KBUILD_RUSTFLAGS) $(rustflags-y)) \
+ $(RUSTFLAGS_$(target-stem).o))
_a_flags = $(filter-out $(AFLAGS_REMOVE_$(target-stem).o), \
$(filter-out $(asflags-remove-y), \
$(KBUILD_CPPFLAGS) $(KBUILD_AFLAGS) $(asflags-y)) \
@@ -202,6 +207,11 @@ modkern_cflags = \
$(KBUILD_CFLAGS_MODULE) $(CFLAGS_MODULE), \
$(KBUILD_CFLAGS_KERNEL) $(CFLAGS_KERNEL) $(modfile_flags))
+modkern_rustflags = \
+ $(if $(part-of-module), \
+ $(KBUILD_RUSTFLAGS_MODULE) $(RUSTFLAGS_MODULE), \
+ $(KBUILD_RUSTFLAGS_KERNEL) $(RUSTFLAGS_KERNEL))
+
modkern_aflags = $(if $(part-of-module), \
$(KBUILD_AFLAGS_MODULE) $(AFLAGS_MODULE), \
$(KBUILD_AFLAGS_KERNEL) $(AFLAGS_KERNEL))
@@ -211,6 +221,8 @@ c_flags = -Wp,-MMD,$(depfile) $(NOSTDINC_FLAGS) $(LINUXINCLUDE) \
$(_c_flags) $(modkern_cflags) \
$(basename_flags) $(modname_flags)
+rust_flags = $(_rust_flags) $(modkern_rustflags) @$(objtree)/include/generated/rustc_cfg
+
a_flags = -Wp,-MMD,$(depfile) $(NOSTDINC_FLAGS) $(LINUXINCLUDE) \
$(_a_flags) $(modkern_aflags)
diff --git a/scripts/Makefile.modfinal b/scripts/Makefile.modfinal
index 35100e981f4a..9a1fa6aa30fe 100644
--- a/scripts/Makefile.modfinal
+++ b/scripts/Makefile.modfinal
@@ -39,11 +39,13 @@ quiet_cmd_ld_ko_o = LD [M] $@
quiet_cmd_btf_ko = BTF [M] $@
cmd_btf_ko = \
- if [ -f vmlinux ]; then \
+ if [ ! -f vmlinux ]; then \
+ printf "Skipping BTF generation for %s due to unavailability of vmlinux\n" $@ 1>&2; \
+ elif [ -n "$(CONFIG_RUST)" ] && $(srctree)/scripts/is_rust_module.sh $@; then \
+ printf "Skipping BTF generation for %s because it's a Rust module\n" $@ 1>&2; \
+ else \
LLVM_OBJCOPY="$(OBJCOPY)" $(PAHOLE) -J $(PAHOLE_FLAGS) --btf_base vmlinux $@; \
$(RESOLVE_BTFIDS) -b vmlinux $@; \
- else \
- printf "Skipping BTF generation for %s due to unavailability of vmlinux\n" $@ 1>&2; \
fi;
# Same as newer-prereqs, but allows to exclude specified extra dependencies
diff --git a/scripts/cc-version.sh b/scripts/cc-version.sh
index f1952c522466..2401c86fcf53 100755
--- a/scripts/cc-version.sh
+++ b/scripts/cc-version.sh
@@ -1,13 +1,13 @@
#!/bin/sh
# SPDX-License-Identifier: GPL-2.0
#
-# Print the compiler name and its version in a 5 or 6-digit form.
+# Print the C compiler name and its version in a 5 or 6-digit form.
# Also, perform the minimum version check.
set -e
-# Print the compiler name and some version components.
-get_compiler_info()
+# Print the C compiler name and some version components.
+get_c_compiler_info()
{
cat <<- EOF | "$@" -E -P -x c - 2>/dev/null
#if defined(__clang__)
@@ -32,7 +32,7 @@ get_canonical_version()
# $@ instead of $1 because multiple words might be given, e.g. CC="ccache gcc".
orig_args="$@"
-set -- $(get_compiler_info "$@")
+set -- $(get_c_compiler_info "$@")
name=$1
@@ -52,7 +52,7 @@ ICC)
min_version=$($min_tool_version icc)
;;
*)
- echo "$orig_args: unknown compiler" >&2
+ echo "$orig_args: unknown C compiler" >&2
exit 1
;;
esac
@@ -62,7 +62,7 @@ min_cversion=$(get_canonical_version $min_version)
if [ "$cversion" -lt "$min_cversion" ]; then
echo >&2 "***"
- echo >&2 "*** Compiler is too old."
+ echo >&2 "*** C compiler is too old."
echo >&2 "*** Your $name version: $version"
echo >&2 "*** Minimum $name version: $min_version"
echo >&2 "***"
diff --git a/scripts/generate_rust_target.rs b/scripts/generate_rust_target.rs
new file mode 100644
index 000000000000..0a1ba95d74e7
--- /dev/null
+++ b/scripts/generate_rust_target.rs
@@ -0,0 +1,232 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! The custom target specification file generator for `rustc`.
+//!
+//! To configure a target from scratch, a JSON-encoded file has to be passed
+//! to `rustc` (introduced in [RFC 131]). These options and the file itself are
+//! unstable. Eventually, `rustc` should provide a way to do this in a stable
+//! manner. For instance, via command-line arguments. Therefore, this file
+//! should avoid using keys which can be set via `-C` or `-Z` options.
+//!
+//! [RFC 131]: https://rust-lang.github.io/rfcs/0131-target-specification.html
+
+use std::{
+ collections::HashMap,
+ fmt::{Display, Formatter, Result},
+ io::BufRead,
+};
+
+enum Value {
+ Boolean(bool),
+ Number(i32),
+ String(String),
+ Object(Object),
+}
+
+type Object = Vec<(String, Value)>;
+
+/// Minimal "almost JSON" generator (e.g. no `null`s, no arrays, no escaping),
+/// enough for this purpose.
+impl Display for Value {
+ fn fmt(&self, formatter: &mut Formatter<'_>) -> Result {
+ match self {
+ Value::Boolean(boolean) => write!(formatter, "{}", boolean),
+ Value::Number(number) => write!(formatter, "{}", number),
+ Value::String(string) => write!(formatter, "\"{}\"", string),
+ Value::Object(object) => {
+ formatter.write_str("{")?;
+ if let [ref rest @ .., ref last] = object[..] {
+ for (key, value) in rest {
+ write!(formatter, "\"{}\": {},", key, value)?;
+ }
+ write!(formatter, "\"{}\": {}", last.0, last.1)?;
+ }
+ formatter.write_str("}")
+ }
+ }
+ }
+}
+
+struct TargetSpec(Object);
+
+impl TargetSpec {
+ fn new() -> TargetSpec {
+ TargetSpec(Vec::new())
+ }
+}
+
+trait Push<T> {
+ fn push(&mut self, key: &str, value: T);
+}
+
+impl Push<bool> for TargetSpec {
+ fn push(&mut self, key: &str, value: bool) {
+ self.0.push((key.to_string(), Value::Boolean(value)));
+ }
+}
+
+impl Push<i32> for TargetSpec {
+ fn push(&mut self, key: &str, value: i32) {
+ self.0.push((key.to_string(), Value::Number(value)));
+ }
+}
+
+impl Push<String> for TargetSpec {
+ fn push(&mut self, key: &str, value: String) {
+ self.0.push((key.to_string(), Value::String(value)));
+ }
+}
+
+impl Push<&str> for TargetSpec {
+ fn push(&mut self, key: &str, value: &str) {
+ self.push(key, value.to_string());
+ }
+}
+
+impl Push<Object> for TargetSpec {
+ fn push(&mut self, key: &str, value: Object) {
+ self.0.push((key.to_string(), Value::Object(value)));
+ }
+}
+
+impl Display for TargetSpec {
+ fn fmt(&self, formatter: &mut Formatter<'_>) -> Result {
+ // We add some newlines for clarity.
+ formatter.write_str("{\n")?;
+ if let [ref rest @ .., ref last] = self.0[..] {
+ for (key, value) in rest {
+ write!(formatter, " \"{}\": {},\n", key, value)?;
+ }
+ write!(formatter, " \"{}\": {}\n", last.0, last.1)?;
+ }
+ formatter.write_str("}")
+ }
+}
+
+struct KernelConfig(HashMap<String, String>);
+
+impl KernelConfig {
+ /// Parses `include/config/auto.conf` from `stdin`.
+ fn from_stdin() -> KernelConfig {
+ let mut result = HashMap::new();
+
+ let stdin = std::io::stdin();
+ let mut handle = stdin.lock();
+ let mut line = String::new();
+
+ loop {
+ line.clear();
+
+ if handle.read_line(&mut line).unwrap() == 0 {
+ break;
+ }
+
+ if line.starts_with('#') {
+ continue;
+ }
+
+ let (key, value) = line.split_once('=').expect("Missing `=` in line.");
+ result.insert(key.to_string(), value.trim_end_matches('\n').to_string());
+ }
+
+ KernelConfig(result)
+ }
+
+ /// Does the option exist in the configuration (any value)?
+ ///
+ /// The argument must be passed without the `CONFIG_` prefix.
+ /// This avoids repetition and it also avoids `fixdep` making us
+ /// depend on it.
+ fn has(&self, option: &str) -> bool {
+ let option = "CONFIG_".to_owned() + option;
+ self.0.contains_key(&option)
+ }
+}
+
+fn main() {
+ let cfg = KernelConfig::from_stdin();
+ let mut ts = TargetSpec::new();
+
+ // `llvm-target`s are taken from `scripts/Makefile.clang`.
+ if cfg.has("ARM") {
+ ts.push("arch", "arm");
+ ts.push(
+ "data-layout",
+ "e-m:e-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S64",
+ );
+ ts.push("features", "+strict-align,+v6");
+ ts.push("llvm-target", "arm-linux-gnueabi");
+ ts.push("max-atomic-width", 64);
+ ts.push("target-mcount", "\\u0001__gnu_mcount_nc");
+ ts.push("target-pointer-width", "32");
+ } else if cfg.has("ARM64") {
+ ts.push("arch", "aarch64");
+ ts.push(
+ "data-layout",
+ "e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128",
+ );
+ ts.push("disable-redzone", true);
+ ts.push("features", "+strict-align,-neon,-fp-armv8");
+ ts.push("llvm-target", "aarch64-linux-gnu");
+ ts.push("max-atomic-width", 128);
+ ts.push("target-pointer-width", "64");
+ } else if cfg.has("PPC") {
+ ts.push("arch", "powerpc64");
+ ts.push("code-model", "large");
+ ts.push("data-layout", "e-m:e-i64:64-n32:64");
+ ts.push("features", "-altivec,-vsx,-hard-float");
+ ts.push("llvm-target", "powerpc64le-linux-gnu");
+ ts.push("max-atomic-width", 64);
+ ts.push("target-mcount", "_mcount");
+ ts.push("target-pointer-width", "64");
+ } else if cfg.has("RISCV") {
+ if cfg.has("64BIT") {
+ ts.push("arch", "riscv64");
+ ts.push("data-layout", "e-m:e-p:64:64-i64:64-i128:128-n64-S128");
+ ts.push("llvm-target", "riscv64-linux-gnu");
+ ts.push("target-pointer-width", "64");
+ } else {
+ ts.push("arch", "riscv32");
+ ts.push("data-layout", "e-m:e-p:32:32-i64:64-n32-S128");
+ ts.push("llvm-target", "riscv32-linux-gnu");
+ ts.push("target-pointer-width", "32");
+ }
+ ts.push("code-model", "medium");
+ ts.push("disable-redzone", true);
+ let mut features = "+m,+a".to_string();
+ if cfg.has("RISCV_ISA_C") {
+ features += ",+c";
+ }
+ ts.push("features", features);
+ } else if cfg.has("X86_64") {
+ ts.push("arch", "x86_64");
+ ts.push(
+ "data-layout",
+ "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128",
+ );
+ let mut features = "-3dnow,-3dnowa,-mmx,+soft-float".to_string();
+ if cfg.has("RETPOLINE") {
+ features += ",+retpoline-external-thunk";
+ }
+ ts.push("features", features);
+ ts.push("llvm-target", "x86_64-linux-gnu");
+ ts.push("target-pointer-width", "64");
+ } else {
+ panic!("Unsupported architecture");
+ }
+
+ ts.push("emit-debug-gdb-scripts", false);
+ ts.push("frame-pointer", "may-omit");
+ ts.push(
+ "stack-probes",
+ vec![("kind".to_string(), Value::String("none".to_string()))],
+ );
+
+ // Everything else is LE, whether `CPU_LITTLE_ENDIAN` is declared or not
+ // (e.g. x86). It is also `rustc`'s default.
+ if cfg.has("CPU_BIG_ENDIAN") {
+ ts.push("target-endian", "big");
+ }
+
+ println!("{}", ts);
+}
diff --git a/scripts/is_rust_module.sh b/scripts/is_rust_module.sh
new file mode 100755
index 000000000000..28b3831a7593
--- /dev/null
+++ b/scripts/is_rust_module.sh
@@ -0,0 +1,16 @@
+#!/bin/sh
+# SPDX-License-Identifier: GPL-2.0
+#
+# is_rust_module.sh module.ko
+#
+# Returns `0` if `module.ko` is a Rust module, `1` otherwise.
+
+set -e
+
+# Using the `16_` prefix ensures other symbols with the same substring
+# are not picked up (even if it would be unlikely). The last part is
+# used just in case LLVM decides to use the `.` suffix.
+#
+# In the future, checking for the `.comment` section may be another
+# option, see https://github.com/rust-lang/rust/pull/97550.
+${NM} "$*" | grep -qE '^[0-9a-fA-F]+ r _R[^[:space:]]+16___IS_RUST_MODULE[^[:space:]]*$'
diff --git a/scripts/kconfig/confdata.c b/scripts/kconfig/confdata.c
index c4340c90e172..b7c9f1dd5e42 100644
--- a/scripts/kconfig/confdata.c
+++ b/scripts/kconfig/confdata.c
@@ -216,6 +216,13 @@ static const char *conf_get_autoheader_name(void)
return name ? name : "include/generated/autoconf.h";
}
+static const char *conf_get_rustccfg_name(void)
+{
+ char *name = getenv("KCONFIG_RUSTCCFG");
+
+ return name ? name : "include/generated/rustc_cfg";
+}
+
static int conf_set_sym_val(struct symbol *sym, int def, int def_flags, char *p)
{
char *p2;
@@ -605,6 +612,9 @@ static const struct comment_style comment_style_c = {
static void conf_write_heading(FILE *fp, const struct comment_style *cs)
{
+ if (!cs)
+ return;
+
fprintf(fp, "%s\n", cs->prefix);
fprintf(fp, "%s Automatically generated file; DO NOT EDIT.\n",
@@ -745,6 +755,65 @@ static void print_symbol_for_c(FILE *fp, struct symbol *sym)
free(escaped);
}
+static void print_symbol_for_rustccfg(FILE *fp, struct symbol *sym)
+{
+ const char *val;
+ const char *val_prefix = "";
+ char *val_prefixed = NULL;
+ size_t val_prefixed_len;
+ char *escaped = NULL;
+
+ if (sym->type == S_UNKNOWN)
+ return;
+
+ val = sym_get_string_value(sym);
+
+ switch (sym->type) {
+ case S_BOOLEAN:
+ case S_TRISTATE:
+ /*
+ * We do not care about disabled ones, i.e. no need for
+ * what otherwise are "comments" in other printers.
+ */
+ if (*val == 'n')
+ return;
+
+ /*
+ * To have similar functionality to the C macro `IS_ENABLED()`
+ * we provide an empty `--cfg CONFIG_X` here in both `y`
+ * and `m` cases.
+ *
+ * Then, the common `fprintf()` below will also give us
+ * a `--cfg CONFIG_X="y"` or `--cfg CONFIG_X="m"`, which can
+ * be used as the equivalent of `IS_BUILTIN()`/`IS_MODULE()`.
+ */
+ fprintf(fp, "--cfg=%s%s\n", CONFIG_, sym->name);
+ break;
+ case S_HEX:
+ if (val[0] != '0' || (val[1] != 'x' && val[1] != 'X'))
+ val_prefix = "0x";
+ break;
+ default:
+ break;
+ }
+
+ if (strlen(val_prefix) > 0) {
+ val_prefixed_len = strlen(val) + strlen(val_prefix) + 1;
+ val_prefixed = xmalloc(val_prefixed_len);
+ snprintf(val_prefixed, val_prefixed_len, "%s%s", val_prefix, val);
+ val = val_prefixed;
+ }
+
+ /* All values get escaped: the `--cfg` option only takes strings */
+ escaped = escape_string_value(val);
+ val = escaped;
+
+ fprintf(fp, "--cfg=%s%s=%s\n", CONFIG_, sym->name, val);
+
+ free(escaped);
+ free(val_prefixed);
+}
+
/*
* Write out a minimal config.
* All values that has default values are skipped as this is redundant.
@@ -1132,6 +1201,12 @@ int conf_write_autoconf(int overwrite)
if (ret)
return ret;
+ ret = __conf_write_autoconf(conf_get_rustccfg_name(),
+ print_symbol_for_rustccfg,
+ NULL);
+ if (ret)
+ return ret;
+
/*
* Create include/config/auto.conf. This must be the last step because
* Kbuild has a dependency on auto.conf and this marks the successful
diff --git a/scripts/min-tool-version.sh b/scripts/min-tool-version.sh
index 250925aab101..b6593eac5003 100755
--- a/scripts/min-tool-version.sh
+++ b/scripts/min-tool-version.sh
@@ -30,6 +30,12 @@ llvm)
echo 11.0.0
fi
;;
+rustc)
+ echo 1.62.0
+ ;;
+bindgen)
+ echo 0.56.0
+ ;;
*)
echo "$1: unknown tool" >&2
exit 1
diff --git a/scripts/rust-is-available-bindgen-libclang.h b/scripts/rust-is-available-bindgen-libclang.h
new file mode 100644
index 000000000000..0ef6db10d674
--- /dev/null
+++ b/scripts/rust-is-available-bindgen-libclang.h
@@ -0,0 +1,2 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#pragma message("clang version " __clang_version__)
diff --git a/scripts/rust-is-available.sh b/scripts/rust-is-available.sh
new file mode 100755
index 000000000000..0ddad3fcd32c
--- /dev/null
+++ b/scripts/rust-is-available.sh
@@ -0,0 +1,160 @@
+#!/bin/sh
+# SPDX-License-Identifier: GPL-2.0
+#
+# Tests whether a suitable Rust toolchain is available.
+#
+# Pass `-v` for human output and more checks (as warnings).
+
+set -e
+
+min_tool_version=$(dirname $0)/min-tool-version.sh
+
+# Convert the version string x.y.z to a canonical up-to-7-digits form.
+#
+# Note that this function uses one more digit (compared to other
+# instances in other version scripts) to give a bit more space to
+# `rustc` since it will reach 1.100.0 in late 2026.
+get_canonical_version()
+{
+ IFS=.
+ set -- $1
+ echo $((100000 * $1 + 100 * $2 + $3))
+}
+
+# Check that the Rust compiler exists.
+if ! command -v "$RUSTC" >/dev/null; then
+ if [ "$1" = -v ]; then
+ echo >&2 "***"
+ echo >&2 "*** Rust compiler '$RUSTC' could not be found."
+ echo >&2 "***"
+ fi
+ exit 1
+fi
+
+# Check that the Rust bindings generator exists.
+if ! command -v "$BINDGEN" >/dev/null; then
+ if [ "$1" = -v ]; then
+ echo >&2 "***"
+ echo >&2 "*** Rust bindings generator '$BINDGEN' could not be found."
+ echo >&2 "***"
+ fi
+ exit 1
+fi
+
+# Check that the Rust compiler version is suitable.
+#
+# Non-stable and distributions' versions may have a version suffix, e.g. `-dev`.
+rust_compiler_version=$( \
+ LC_ALL=C "$RUSTC" --version 2>/dev/null \
+ | head -n 1 \
+ | grep -oE '[0-9]+\.[0-9]+\.[0-9]+' \
+)
+rust_compiler_min_version=$($min_tool_version rustc)
+rust_compiler_cversion=$(get_canonical_version $rust_compiler_version)
+rust_compiler_min_cversion=$(get_canonical_version $rust_compiler_min_version)
+if [ "$rust_compiler_cversion" -lt "$rust_compiler_min_cversion" ]; then
+ if [ "$1" = -v ]; then
+ echo >&2 "***"
+ echo >&2 "*** Rust compiler '$RUSTC' is too old."
+ echo >&2 "*** Your version: $rust_compiler_version"
+ echo >&2 "*** Minimum version: $rust_compiler_min_version"
+ echo >&2 "***"
+ fi
+ exit 1
+fi
+if [ "$1" = -v ] && [ "$rust_compiler_cversion" -gt "$rust_compiler_min_cversion" ]; then
+ echo >&2 "***"
+ echo >&2 "*** Rust compiler '$RUSTC' is too new. This may or may not work."
+ echo >&2 "*** Your version: $rust_compiler_version"
+ echo >&2 "*** Expected version: $rust_compiler_min_version"
+ echo >&2 "***"
+fi
+
+# Check that the Rust bindings generator is suitable.
+#
+# Non-stable and distributions' versions may have a version suffix, e.g. `-dev`.
+rust_bindings_generator_version=$( \
+ LC_ALL=C "$BINDGEN" --version 2>/dev/null \
+ | head -n 1 \
+ | grep -oE '[0-9]+\.[0-9]+\.[0-9]+' \
+)
+rust_bindings_generator_min_version=$($min_tool_version bindgen)
+rust_bindings_generator_cversion=$(get_canonical_version $rust_bindings_generator_version)
+rust_bindings_generator_min_cversion=$(get_canonical_version $rust_bindings_generator_min_version)
+if [ "$rust_bindings_generator_cversion" -lt "$rust_bindings_generator_min_cversion" ]; then
+ if [ "$1" = -v ]; then
+ echo >&2 "***"
+ echo >&2 "*** Rust bindings generator '$BINDGEN' is too old."
+ echo >&2 "*** Your version: $rust_bindings_generator_version"
+ echo >&2 "*** Minimum version: $rust_bindings_generator_min_version"
+ echo >&2 "***"
+ fi
+ exit 1
+fi
+if [ "$1" = -v ] && [ "$rust_bindings_generator_cversion" -gt "$rust_bindings_generator_min_cversion" ]; then
+ echo >&2 "***"
+ echo >&2 "*** Rust bindings generator '$BINDGEN' is too new. This may or may not work."
+ echo >&2 "*** Your version: $rust_bindings_generator_version"
+ echo >&2 "*** Expected version: $rust_bindings_generator_min_version"
+ echo >&2 "***"
+fi
+
+# Check that the `libclang` used by the Rust bindings generator is suitable.
+bindgen_libclang_version=$( \
+ LC_ALL=C "$BINDGEN" $(dirname $0)/rust-is-available-bindgen-libclang.h 2>&1 >/dev/null \
+ | grep -F 'clang version ' \
+ | grep -oE '[0-9]+\.[0-9]+\.[0-9]+' \
+ | head -n 1 \
+)
+bindgen_libclang_min_version=$($min_tool_version llvm)
+bindgen_libclang_cversion=$(get_canonical_version $bindgen_libclang_version)
+bindgen_libclang_min_cversion=$(get_canonical_version $bindgen_libclang_min_version)
+if [ "$bindgen_libclang_cversion" -lt "$bindgen_libclang_min_cversion" ]; then
+ if [ "$1" = -v ]; then
+ echo >&2 "***"
+ echo >&2 "*** libclang (used by the Rust bindings generator '$BINDGEN') is too old."
+ echo >&2 "*** Your version: $bindgen_libclang_version"
+ echo >&2 "*** Minimum version: $bindgen_libclang_min_version"
+ echo >&2 "***"
+ fi
+ exit 1
+fi
+
+# If the C compiler is Clang, then we can also check whether its version
+# matches the `libclang` version used by the Rust bindings generator.
+#
+# In the future, we might be able to perform a full version check, see
+# https://github.com/rust-lang/rust-bindgen/issues/2138.
+if [ "$1" = -v ]; then
+ cc_name=$($(dirname $0)/cc-version.sh "$CC" | cut -f1 -d' ')
+ if [ "$cc_name" = Clang ]; then
+ clang_version=$( \
+ LC_ALL=C "$CC" --version 2>/dev/null \
+ | sed -nE '1s:.*version ([0-9]+\.[0-9]+\.[0-9]+).*:\1:p'
+ )
+ if [ "$clang_version" != "$bindgen_libclang_version" ]; then
+ echo >&2 "***"
+ echo >&2 "*** libclang (used by the Rust bindings generator '$BINDGEN')"
+ echo >&2 "*** version does not match Clang's. This may be a problem."
+ echo >&2 "*** libclang version: $bindgen_libclang_version"
+ echo >&2 "*** Clang version: $clang_version"
+ echo >&2 "***"
+ fi
+ fi
+fi
+
+# Check that the source code for the `core` standard library exists.
+#
+# `$KRUSTFLAGS` is passed in case the user added `--sysroot`.
+rustc_sysroot=$("$RUSTC" $KRUSTFLAGS --print sysroot)
+rustc_src=${RUST_LIB_SRC:-"$rustc_sysroot/lib/rustlib/src/rust/library"}
+rustc_src_core="$rustc_src/core/src/lib.rs"
+if [ ! -e "$rustc_src_core" ]; then
+ if [ "$1" = -v ]; then
+ echo >&2 "***"
+ echo >&2 "*** Source code for the 'core' standard library could not be found"
+ echo >&2 "*** at '$rustc_src_core'."
+ echo >&2 "***"
+ fi
+ exit 1
+fi
--
2.37.1
From: Wedson Almeida Filho <[email protected]>
The `kernel` crate currently includes all the abstractions that wrap
kernel features written in C.
These abstractions call the C side of the kernel via the generated
bindings with the `bindgen` tool. Modules developed in Rust should
never call the bindings themselves.
In the future, as the abstractions grow in number, we may need
to split this crate into several, possibly following a similar
subdivision in subsystems as the kernel itself and/or moving
the code to the actual subsystems.
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Geoffrey Thomas <[email protected]>
Signed-off-by: Geoffrey Thomas <[email protected]>
Co-developed-by: Finn Behrens <[email protected]>
Signed-off-by: Finn Behrens <[email protected]>
Co-developed-by: Adam Bratschi-Kaye <[email protected]>
Signed-off-by: Adam Bratschi-Kaye <[email protected]>
Co-developed-by: Michael Ellerman <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Co-developed-by: Sumera Priyadarsini <[email protected]>
Signed-off-by: Sumera Priyadarsini <[email protected]>
Co-developed-by: Sven Van Asbroeck <[email protected]>
Signed-off-by: Sven Van Asbroeck <[email protected]>
Co-developed-by: Gary Guo <[email protected]>
Signed-off-by: Gary Guo <[email protected]>
Co-developed-by: Boris-Chengbiao Zhou <[email protected]>
Signed-off-by: Boris-Chengbiao Zhou <[email protected]>
Co-developed-by: Boqun Feng <[email protected]>
Signed-off-by: Boqun Feng <[email protected]>
Co-developed-by: Fox Chen <[email protected]>
Signed-off-by: Fox Chen <[email protected]>
Co-developed-by: Dan Robertson <[email protected]>
Signed-off-by: Dan Robertson <[email protected]>
Co-developed-by: Viktor Garske <[email protected]>
Signed-off-by: Viktor Garske <[email protected]>
Co-developed-by: Dariusz Sosnowski <[email protected]>
Signed-off-by: Dariusz Sosnowski <[email protected]>
Co-developed-by: Léo Lanteri Thauvin <[email protected]>
Signed-off-by: Léo Lanteri Thauvin <[email protected]>
Co-developed-by: Niklas Mohrin <[email protected]>
Signed-off-by: Niklas Mohrin <[email protected]>
Co-developed-by: Gioh Kim <[email protected]>
Signed-off-by: Gioh Kim <[email protected]>
Co-developed-by: Daniel Xu <[email protected]>
Signed-off-by: Daniel Xu <[email protected]>
Co-developed-by: Milan Landaverde <[email protected]>
Signed-off-by: Milan Landaverde <[email protected]>
Co-developed-by: Morgan Bartlett <[email protected]>
Signed-off-by: Morgan Bartlett <[email protected]>
Co-developed-by: Maciej Falkowski <[email protected]>
Signed-off-by: Maciej Falkowski <[email protected]>
Co-developed-by: Jiapeng Chong <[email protected]>
Signed-off-by: Jiapeng Chong <[email protected]>
Co-developed-by: Nándor István Krácser <[email protected]>
Signed-off-by: Nándor István Krácser <[email protected]>
Co-developed-by: David Gow <[email protected]>
Signed-off-by: David Gow <[email protected]>
Co-developed-by: John Baublitz <[email protected]>
Signed-off-by: John Baublitz <[email protected]>
Co-developed-by: Björn Roy Baron <[email protected]>
Signed-off-by: Björn Roy Baron <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Co-developed-by: Miguel Ojeda <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
rust/kernel/allocator.rs | 64 ++
rust/kernel/amba.rs | 261 +++++++
rust/kernel/build_assert.rs | 83 +++
rust/kernel/chrdev.rs | 206 ++++++
rust/kernel/clk.rs | 79 ++
rust/kernel/cred.rs | 46 ++
rust/kernel/delay.rs | 104 +++
rust/kernel/device.rs | 527 ++++++++++++++
rust/kernel/driver.rs | 442 +++++++++++
rust/kernel/error.rs | 564 ++++++++++++++
rust/kernel/file.rs | 887 +++++++++++++++++++++++
rust/kernel/fs.rs | 846 +++++++++++++++++++++
rust/kernel/fs/param.rs | 553 ++++++++++++++
rust/kernel/gpio.rs | 505 +++++++++++++
rust/kernel/hwrng.rs | 210 ++++++
rust/kernel/io_buffer.rs | 153 ++++
rust/kernel/io_mem.rs | 278 +++++++
rust/kernel/iov_iter.rs | 81 +++
rust/kernel/irq.rs | 681 +++++++++++++++++
rust/kernel/kasync.rs | 50 ++
rust/kernel/kasync/executor.rs | 154 ++++
rust/kernel/kasync/executor/workqueue.rs | 291 ++++++++
rust/kernel/kasync/net.rs | 322 ++++++++
rust/kernel/kunit.rs | 91 +++
rust/kernel/lib.rs | 267 +++++++
rust/kernel/linked_list.rs | 247 +++++++
rust/kernel/miscdev.rs | 290 ++++++++
rust/kernel/mm.rs | 149 ++++
rust/kernel/module_param.rs | 499 +++++++++++++
rust/kernel/net.rs | 392 ++++++++++
rust/kernel/net/filter.rs | 447 ++++++++++++
rust/kernel/of.rs | 63 ++
rust/kernel/pages.rs | 144 ++++
rust/kernel/platform.rs | 223 ++++++
rust/kernel/power.rs | 118 +++
rust/kernel/prelude.rs | 36 +
rust/kernel/print.rs | 406 +++++++++++
rust/kernel/random.rs | 42 ++
rust/kernel/raw_list.rs | 361 +++++++++
rust/kernel/rbtree.rs | 563 ++++++++++++++
rust/kernel/revocable.rs | 425 +++++++++++
rust/kernel/security.rs | 38 +
rust/kernel/static_assert.rs | 34 +
rust/kernel/std_vendor.rs | 161 ++++
rust/kernel/str.rs | 597 +++++++++++++++
rust/kernel/sync.rs | 48 +-
rust/kernel/sysctl.rs | 199 +++++
rust/kernel/task.rs | 239 ++++++
rust/kernel/types.rs | 705 ++++++++++++++++++
rust/kernel/unsafe_list.rs | 680 +++++++++++++++++
rust/kernel/user_ptr.rs | 175 +++++
rust/kernel/workqueue.rs | 512 +++++++++++++
52 files changed, 15518 insertions(+), 20 deletions(-)
create mode 100644 rust/kernel/allocator.rs
create mode 100644 rust/kernel/amba.rs
create mode 100644 rust/kernel/build_assert.rs
create mode 100644 rust/kernel/chrdev.rs
create mode 100644 rust/kernel/clk.rs
create mode 100644 rust/kernel/cred.rs
create mode 100644 rust/kernel/delay.rs
create mode 100644 rust/kernel/device.rs
create mode 100644 rust/kernel/driver.rs
create mode 100644 rust/kernel/error.rs
create mode 100644 rust/kernel/file.rs
create mode 100644 rust/kernel/fs.rs
create mode 100644 rust/kernel/fs/param.rs
create mode 100644 rust/kernel/gpio.rs
create mode 100644 rust/kernel/hwrng.rs
create mode 100644 rust/kernel/io_buffer.rs
create mode 100644 rust/kernel/io_mem.rs
create mode 100644 rust/kernel/iov_iter.rs
create mode 100644 rust/kernel/irq.rs
create mode 100644 rust/kernel/kasync.rs
create mode 100644 rust/kernel/kasync/executor.rs
create mode 100644 rust/kernel/kasync/executor/workqueue.rs
create mode 100644 rust/kernel/kasync/net.rs
create mode 100644 rust/kernel/kunit.rs
create mode 100644 rust/kernel/lib.rs
create mode 100644 rust/kernel/linked_list.rs
create mode 100644 rust/kernel/miscdev.rs
create mode 100644 rust/kernel/mm.rs
create mode 100644 rust/kernel/module_param.rs
create mode 100644 rust/kernel/net.rs
create mode 100644 rust/kernel/net/filter.rs
create mode 100644 rust/kernel/of.rs
create mode 100644 rust/kernel/pages.rs
create mode 100644 rust/kernel/platform.rs
create mode 100644 rust/kernel/power.rs
create mode 100644 rust/kernel/prelude.rs
create mode 100644 rust/kernel/print.rs
create mode 100644 rust/kernel/random.rs
create mode 100644 rust/kernel/raw_list.rs
create mode 100644 rust/kernel/rbtree.rs
create mode 100644 rust/kernel/revocable.rs
create mode 100644 rust/kernel/security.rs
create mode 100644 rust/kernel/static_assert.rs
create mode 100644 rust/kernel/std_vendor.rs
create mode 100644 rust/kernel/str.rs
create mode 100644 rust/kernel/sysctl.rs
create mode 100644 rust/kernel/task.rs
create mode 100644 rust/kernel/types.rs
create mode 100644 rust/kernel/unsafe_list.rs
create mode 100644 rust/kernel/user_ptr.rs
create mode 100644 rust/kernel/workqueue.rs
diff --git a/rust/kernel/allocator.rs b/rust/kernel/allocator.rs
new file mode 100644
index 000000000000..397a3dd57a9b
--- /dev/null
+++ b/rust/kernel/allocator.rs
@@ -0,0 +1,64 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Allocator support.
+
+use core::alloc::{GlobalAlloc, Layout};
+use core::ptr;
+
+use crate::bindings;
+
+struct KernelAllocator;
+
+unsafe impl GlobalAlloc for KernelAllocator {
+ unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
+ // `krealloc()` is used instead of `kmalloc()` because the latter is
+ // an inline function and cannot be bound to as a result.
+ unsafe { bindings::krealloc(ptr::null(), layout.size(), bindings::GFP_KERNEL) as *mut u8 }
+ }
+
+ unsafe fn dealloc(&self, ptr: *mut u8, _layout: Layout) {
+ unsafe {
+ bindings::kfree(ptr as *const core::ffi::c_void);
+ }
+ }
+}
+
+#[global_allocator]
+static ALLOCATOR: KernelAllocator = KernelAllocator;
+
+// `rustc` only generates these for some crate types. Even then, we would need
+// to extract the object file that has them from the archive. For the moment,
+// let's generate them ourselves instead.
+//
+// Note that `#[no_mangle]` implies exported too, nowadays.
+#[no_mangle]
+fn __rust_alloc(size: usize, _align: usize) -> *mut u8 {
+ unsafe { bindings::krealloc(core::ptr::null(), size, bindings::GFP_KERNEL) as *mut u8 }
+}
+
+#[no_mangle]
+fn __rust_dealloc(ptr: *mut u8, _size: usize, _align: usize) {
+ unsafe { bindings::kfree(ptr as *const core::ffi::c_void) };
+}
+
+#[no_mangle]
+fn __rust_realloc(ptr: *mut u8, _old_size: usize, _align: usize, new_size: usize) -> *mut u8 {
+ unsafe {
+ bindings::krealloc(
+ ptr as *const core::ffi::c_void,
+ new_size,
+ bindings::GFP_KERNEL,
+ ) as *mut u8
+ }
+}
+
+#[no_mangle]
+fn __rust_alloc_zeroed(size: usize, _align: usize) -> *mut u8 {
+ unsafe {
+ bindings::krealloc(
+ core::ptr::null(),
+ size,
+ bindings::GFP_KERNEL | bindings::__GFP_ZERO,
+ ) as *mut u8
+ }
+}
diff --git a/rust/kernel/amba.rs b/rust/kernel/amba.rs
new file mode 100644
index 000000000000..ec8808124a29
--- /dev/null
+++ b/rust/kernel/amba.rs
@@ -0,0 +1,261 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Amba devices and drivers.
+//!
+//! C header: [`include/linux/amba/bus.h`](../../../../include/linux/amba/bus.h)
+
+use crate::{
+ bindings, device, driver, error::from_kernel_result, io_mem::Resource, power, str::CStr,
+ to_result, types::PointerWrapper, Result, ThisModule,
+};
+
+/// A registration of an amba driver.
+pub type Registration<T> = driver::Registration<Adapter<T>>;
+
+/// Id of an Amba device.
+#[derive(Clone, Copy)]
+pub struct DeviceId {
+ /// Device id.
+ pub id: u32,
+
+ /// Mask that identifies which bits are valid in the device id.
+ pub mask: u32,
+}
+
+// SAFETY: `ZERO` is all zeroed-out and `to_rawid` stores `offset` in `amba_id::data`.
+unsafe impl const driver::RawDeviceId for DeviceId {
+ type RawType = bindings::amba_id;
+ const ZERO: Self::RawType = bindings::amba_id {
+ id: 0,
+ mask: 0,
+ data: core::ptr::null_mut(),
+ };
+
+ fn to_rawid(&self, offset: isize) -> Self::RawType {
+ bindings::amba_id {
+ id: self.id,
+ mask: self.mask,
+ data: offset as _,
+ }
+ }
+}
+
+/// An amba driver.
+pub trait Driver {
+ /// Data stored on device by driver.
+ type Data: PointerWrapper + Send + Sync + driver::DeviceRemoval = ();
+
+ /// The type that implements the power-management operations.
+ ///
+ /// The default is a type that implements no power-management operations. Drivers that do
+ /// implement them need to specify the type (commonly [`Self`]).
+ type PowerOps: power::Operations<Data = Self::Data> = power::NoOperations<Self::Data>;
+
+ /// The type holding information about each device id supported by the driver.
+ type IdInfo: 'static = ();
+
+ /// The table of device ids supported by the driver.
+ const ID_TABLE: Option<driver::IdTable<'static, DeviceId, Self::IdInfo>> = None;
+
+ /// Probes for the device with the given id.
+ fn probe(dev: &mut Device, id_info: Option<&Self::IdInfo>) -> Result<Self::Data>;
+
+ /// Cleans any resources up that are associated with the device.
+ ///
+ /// This is called when the driver is detached from the device.
+ fn remove(_data: &Self::Data) {}
+}
+
+/// An adapter for the registration of Amba drivers.
+pub struct Adapter<T: Driver>(T);
+
+impl<T: Driver> driver::DriverOps for Adapter<T> {
+ type RegType = bindings::amba_driver;
+
+ unsafe fn register(
+ reg: *mut bindings::amba_driver,
+ name: &'static CStr,
+ module: &'static ThisModule,
+ ) -> Result {
+ // SAFETY: By the safety requirements of this function (defined in the trait definition),
+ // `reg` is non-null and valid.
+ let amba = unsafe { &mut *reg };
+ amba.drv.name = name.as_char_ptr();
+ amba.drv.owner = module.0;
+ amba.probe = Some(probe_callback::<T>);
+ amba.remove = Some(remove_callback::<T>);
+ if let Some(t) = T::ID_TABLE {
+ amba.id_table = t.as_ref();
+ }
+ if cfg!(CONFIG_PM) {
+ // SAFETY: `probe_callback` sets the driver data after calling `T::Data::into_pointer`,
+ // and we guarantee that `T::Data` is the same as `T::PowerOps::Data` by a constraint
+ // in the type declaration.
+ amba.drv.pm = unsafe { power::OpsTable::<T::PowerOps>::build() };
+ }
+ // SAFETY: By the safety requirements of this function, `reg` is valid and fully
+ // initialised.
+ to_result(unsafe { bindings::amba_driver_register(reg) })
+ }
+
+ unsafe fn unregister(reg: *mut bindings::amba_driver) {
+ // SAFETY: By the safety requirements of this function (defined in the trait definition),
+ // `reg` was passed (and updated) by a previous successful call to `amba_driver_register`.
+ unsafe { bindings::amba_driver_unregister(reg) };
+ }
+}
+
+unsafe extern "C" fn probe_callback<T: Driver>(
+ adev: *mut bindings::amba_device,
+ aid: *const bindings::amba_id,
+) -> core::ffi::c_int {
+ from_kernel_result! {
+ // SAFETY: `adev` is valid by the contract with the C code. `dev` is alive only for the
+ // duration of this call, so it is guaranteed to remain alive for the lifetime of `dev`.
+ let mut dev = unsafe { Device::from_ptr(adev) };
+ // SAFETY: `aid` is valid by the requirements the contract with the C code.
+ let offset = unsafe { (*aid).data };
+ let info = if offset.is_null() {
+ None
+ } else {
+ // SAFETY: The offset comes from a previous call to `offset_from` in `IdArray::new`,
+ // which guarantees that the resulting pointer is within the table.
+ let ptr = unsafe {
+ aid.cast::<u8>()
+ .offset(offset as _)
+ .cast::<Option<T::IdInfo>>()
+ };
+ // SAFETY: The id table has a static lifetime, so `ptr` is guaranteed to be valid for
+ // read.
+ unsafe { (&*ptr).as_ref() }
+ };
+ let data = T::probe(&mut dev, info)?;
+ let ptr = T::Data::into_pointer(data);
+ // SAFETY: `adev` is valid for write by the contract with the C code.
+ unsafe { bindings::amba_set_drvdata(adev, ptr as _) };
+ Ok(0)
+ }
+}
+
+unsafe extern "C" fn remove_callback<T: Driver>(adev: *mut bindings::amba_device) {
+ // SAFETY: `adev` is valid by the contract with the C code.
+ let ptr = unsafe { bindings::amba_get_drvdata(adev) };
+ // SAFETY: The value returned by `amba_get_drvdata` was stored by a previous call to
+ // `amba_set_drvdata` in `probe_callback` above; the value comes from a call to
+ // `T::Data::into_pointer`.
+ let data = unsafe { T::Data::from_pointer(ptr) };
+ T::remove(&data);
+ <T::Data as driver::DeviceRemoval>::device_remove(&data);
+}
+
+/// An Amba device.
+///
+/// # Invariants
+///
+/// The field `ptr` is non-null and valid for the lifetime of the object.
+pub struct Device {
+ ptr: *mut bindings::amba_device,
+ res: Option<Resource>,
+}
+
+impl Device {
+ /// Creates a new device from the given pointer.
+ ///
+ /// # Safety
+ ///
+ /// `ptr` must be non-null and valid. It must remain valid for the lifetime of the returned
+ /// instance.
+ unsafe fn from_ptr(ptr: *mut bindings::amba_device) -> Self {
+ // SAFETY: The safety requirements of the function ensure that `ptr` is valid.
+ let dev = unsafe { &mut *ptr };
+ // INVARIANT: The safety requirements of the function ensure the lifetime invariant.
+ Self {
+ ptr,
+ res: Resource::new(dev.res.start, dev.res.end),
+ }
+ }
+
+ /// Returns the io mem resource associated with the device, if there is one.
+ ///
+ /// Ownership of the resource is transferred to the caller, so subsequent calls to this
+ /// function will return [`None`].
+ pub fn take_resource(&mut self) -> Option<Resource> {
+ self.res.take()
+ }
+
+ /// Returns the index-th irq associated with the device, if one exists.
+ pub fn irq(&self, index: usize) -> Option<u32> {
+ // SAFETY: By the type invariants, `self.ptr` is valid for read.
+ let dev = unsafe { &*self.ptr };
+ if index >= dev.irq.len() || dev.irq[index] == 0 {
+ None
+ } else {
+ Some(dev.irq[index])
+ }
+ }
+}
+
+// SAFETY: The device returned by `raw_device` is the raw Amba device.
+unsafe impl device::RawDevice for Device {
+ fn raw_device(&self) -> *mut bindings::device {
+ // SAFETY: By the type invariants, we know that `self.ptr` is non-null and valid.
+ unsafe { &mut (*self.ptr).dev }
+ }
+}
+
+/// Declares a kernel module that exposes a single amba driver.
+///
+/// # Examples
+///
+/// ```ignore
+/// # use kernel::{amba, define_amba_id_table, module_amba_driver};
+/// #
+/// struct MyDriver;
+/// impl amba::Driver for MyDriver {
+/// // [...]
+/// # fn probe(_dev: &mut amba::Device, _id: Option<&Self::IdInfo>) -> Result {
+/// # Ok(())
+/// # }
+/// # define_amba_id_table! {(), [
+/// # ({ id: 0x00041061, mask: 0x000fffff }, None),
+/// # ]}
+/// }
+///
+/// module_amba_driver! {
+/// type: MyDriver,
+/// name: b"module_name",
+/// author: b"Author name",
+/// license: b"GPL",
+/// }
+/// ```
+#[macro_export]
+macro_rules! module_amba_driver {
+ ($($f:tt)*) => {
+ $crate::module_driver!(<T>, $crate::amba::Adapter<T>, { $($f)* });
+ };
+}
+
+/// Defines the id table for amba devices.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::{amba, define_amba_id_table};
+/// #
+/// # struct Sample;
+/// # impl kernel::amba::Driver for Sample {
+/// # fn probe(_dev: &mut amba::Device, _id: Option<&Self::IdInfo>) -> Result {
+/// # Ok(())
+/// # }
+/// define_amba_id_table! {(), [
+/// ({ id: 0x00041061, mask: 0x000fffff }, None),
+/// ]}
+/// # }
+/// ```
+#[macro_export]
+macro_rules! define_amba_id_table {
+ ($data_type:ty, $($t:tt)*) => {
+ type IdInfo = $data_type;
+ $crate::define_id_table!(ID_TABLE, $crate::amba::DeviceId, $data_type, $($t)*);
+ };
+}
diff --git a/rust/kernel/build_assert.rs b/rust/kernel/build_assert.rs
new file mode 100644
index 000000000000..72c533d8058d
--- /dev/null
+++ b/rust/kernel/build_assert.rs
@@ -0,0 +1,83 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Build-time assert.
+
+/// Fails the build if the code path calling `build_error!` can possibly be executed.
+///
+/// If the macro is executed in const context, `build_error!` will panic.
+/// If the compiler or optimizer cannot guarantee that `build_error!` can never
+/// be called, a build error will be triggered.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::build_error;
+/// #[inline]
+/// fn foo(a: usize) -> usize {
+/// a.checked_add(1).unwrap_or_else(|| build_error!("overflow"))
+/// }
+///
+/// assert_eq!(foo(usize::MAX - 1), usize::MAX); // OK.
+/// // foo(usize::MAX); // Fails to compile.
+/// ```
+#[macro_export]
+macro_rules! build_error {
+ () => {{
+ $crate::build_error("")
+ }};
+ ($msg:expr) => {{
+ $crate::build_error($msg)
+ }};
+}
+
+/// Asserts that a boolean expression is `true` at compile time.
+///
+/// If the condition is evaluated to `false` in const context, `build_assert!`
+/// will panic. If the compiler or optimizer cannot guarantee the condition will
+/// be evaluated to `true`, a build error will be triggered.
+///
+/// [`static_assert!`] should be preferred to `build_assert!` whenever possible.
+///
+/// # Examples
+///
+/// These examples show that different types of [`assert!`] will trigger errors
+/// at different stage of compilation. It is preferred to err as early as
+/// possible, so [`static_assert!`] should be used whenever possible.
+// TODO: Could be `compile_fail` when supported.
+/// ```ignore
+/// fn foo() {
+/// static_assert!(1 > 1); // Compile-time error
+/// build_assert!(1 > 1); // Build-time error
+/// assert!(1 > 1); // Run-time error
+/// }
+/// ```
+///
+/// When the condition refers to generic parameters or parameters of an inline function,
+/// [`static_assert!`] cannot be used. Use `build_assert!` in this scenario.
+/// ```
+/// fn foo<const N: usize>() {
+/// // `static_assert!(N > 1);` is not allowed
+/// build_assert!(N > 1); // Build-time check
+/// assert!(N > 1); // Run-time check
+/// }
+///
+/// #[inline]
+/// fn bar(n: usize) {
+/// // `static_assert!(n > 1);` is not allowed
+/// build_assert!(n > 1); // Build-time check
+/// assert!(n > 1); // Run-time check
+/// }
+/// ```
+#[macro_export]
+macro_rules! build_assert {
+ ($cond:expr $(,)?) => {{
+ if !$cond {
+ $crate::build_error(concat!("assertion failed: ", stringify!($cond)));
+ }
+ }};
+ ($cond:expr, $msg:expr) => {{
+ if !$cond {
+ $crate::build_error($msg);
+ }
+ }};
+}
diff --git a/rust/kernel/chrdev.rs b/rust/kernel/chrdev.rs
new file mode 100644
index 000000000000..5b1e083c23b9
--- /dev/null
+++ b/rust/kernel/chrdev.rs
@@ -0,0 +1,206 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Character devices.
+//!
+//! Also called "char devices", `chrdev`, `cdev`.
+//!
+//! C header: [`include/linux/cdev.h`](../../../../include/linux/cdev.h)
+//!
+//! Reference: <https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#char-devices>
+
+use alloc::boxed::Box;
+use core::convert::TryInto;
+use core::marker::PhantomPinned;
+use core::pin::Pin;
+
+use crate::bindings;
+use crate::error::{code::*, Error, Result};
+use crate::file;
+use crate::str::CStr;
+
+/// Character device.
+///
+/// # Invariants
+///
+/// - [`self.0`] is valid and non-null.
+/// - [`(*self.0).ops`] is valid, non-null and has static lifetime.
+/// - [`(*self.0).owner`] is valid and, if non-null, has module lifetime.
+struct Cdev(*mut bindings::cdev);
+
+impl Cdev {
+ fn alloc(
+ fops: &'static bindings::file_operations,
+ module: &'static crate::ThisModule,
+ ) -> Result<Self> {
+ // SAFETY: FFI call.
+ let cdev = unsafe { bindings::cdev_alloc() };
+ if cdev.is_null() {
+ return Err(ENOMEM);
+ }
+ // SAFETY: `cdev` is valid and non-null since `cdev_alloc()`
+ // returned a valid pointer which was null-checked.
+ unsafe {
+ (*cdev).ops = fops;
+ (*cdev).owner = module.0;
+ }
+ // INVARIANTS:
+ // - [`self.0`] is valid and non-null.
+ // - [`(*self.0).ops`] is valid, non-null and has static lifetime,
+ // because it was coerced from a reference with static lifetime.
+ // - [`(*self.0).owner`] is valid and, if non-null, has module lifetime,
+ // guaranteed by the [`ThisModule`] invariant.
+ Ok(Self(cdev))
+ }
+
+ fn add(&mut self, dev: bindings::dev_t, count: core::ffi::c_uint) -> Result {
+ // SAFETY: According to the type invariants:
+ // - [`self.0`] can be safely passed to [`bindings::cdev_add`].
+ // - [`(*self.0).ops`] will live at least as long as [`self.0`].
+ // - [`(*self.0).owner`] will live at least as long as the
+ // module, which is an implicit requirement.
+ let rc = unsafe { bindings::cdev_add(self.0, dev, count) };
+ if rc != 0 {
+ return Err(Error::from_kernel_errno(rc));
+ }
+ Ok(())
+ }
+}
+
+impl Drop for Cdev {
+ fn drop(&mut self) {
+ // SAFETY: [`self.0`] is valid and non-null by the type invariants.
+ unsafe {
+ bindings::cdev_del(self.0);
+ }
+ }
+}
+
+struct RegistrationInner<const N: usize> {
+ dev: bindings::dev_t,
+ used: usize,
+ cdevs: [Option<Cdev>; N],
+ _pin: PhantomPinned,
+}
+
+/// Character device registration.
+///
+/// May contain up to a fixed number (`N`) of devices. Must be pinned.
+pub struct Registration<const N: usize> {
+ name: &'static CStr,
+ minors_start: u16,
+ this_module: &'static crate::ThisModule,
+ inner: Option<RegistrationInner<N>>,
+}
+
+impl<const N: usize> Registration<{ N }> {
+ /// Creates a [`Registration`] object for a character device.
+ ///
+ /// This does *not* register the device: see [`Self::register()`].
+ ///
+ /// This associated function is intended to be used when you need to avoid
+ /// a memory allocation, e.g. when the [`Registration`] is a member of
+ /// a bigger structure inside your [`crate::Module`] instance. If you
+ /// are going to pin the registration right away, call
+ /// [`Self::new_pinned()`] instead.
+ pub fn new(
+ name: &'static CStr,
+ minors_start: u16,
+ this_module: &'static crate::ThisModule,
+ ) -> Self {
+ Registration {
+ name,
+ minors_start,
+ this_module,
+ inner: None,
+ }
+ }
+
+ /// Creates a pinned [`Registration`] object for a character device.
+ ///
+ /// This does *not* register the device: see [`Self::register()`].
+ pub fn new_pinned(
+ name: &'static CStr,
+ minors_start: u16,
+ this_module: &'static crate::ThisModule,
+ ) -> Result<Pin<Box<Self>>> {
+ Ok(Pin::from(Box::try_new(Self::new(
+ name,
+ minors_start,
+ this_module,
+ ))?))
+ }
+
+ /// Registers a character device.
+ ///
+ /// You may call this once per device type, up to `N` times.
+ pub fn register<T: file::Operations<OpenData = ()>>(self: Pin<&mut Self>) -> Result {
+ // SAFETY: We must ensure that we never move out of `this`.
+ let this = unsafe { self.get_unchecked_mut() };
+ if this.inner.is_none() {
+ let mut dev: bindings::dev_t = 0;
+ // SAFETY: Calling unsafe function. `this.name` has `'static`
+ // lifetime.
+ let res = unsafe {
+ bindings::alloc_chrdev_region(
+ &mut dev,
+ this.minors_start.into(),
+ N.try_into()?,
+ this.name.as_char_ptr(),
+ )
+ };
+ if res != 0 {
+ return Err(Error::from_kernel_errno(res));
+ }
+ const NONE: Option<Cdev> = None;
+ this.inner = Some(RegistrationInner {
+ dev,
+ used: 0,
+ cdevs: [NONE; N],
+ _pin: PhantomPinned,
+ });
+ }
+
+ let mut inner = this.inner.as_mut().unwrap();
+ if inner.used == N {
+ return Err(EINVAL);
+ }
+
+ // SAFETY: The adapter doesn't retrieve any state yet, so it's compatible with any
+ // registration.
+ let fops = unsafe { file::OperationsVtable::<Self, T>::build() };
+ let mut cdev = Cdev::alloc(fops, this.this_module)?;
+ cdev.add(inner.dev + inner.used as bindings::dev_t, 1)?;
+ inner.cdevs[inner.used].replace(cdev);
+ inner.used += 1;
+ Ok(())
+ }
+}
+
+impl<const N: usize> file::OpenAdapter<()> for Registration<{ N }> {
+ unsafe fn convert(_inode: *mut bindings::inode, _file: *mut bindings::file) -> *const () {
+ // TODO: Update the SAFETY comment on the call to `FileOperationsVTable::build` above once
+ // this is updated to retrieve state.
+ &()
+ }
+}
+
+// SAFETY: `Registration` does not expose any of its state across threads
+// (it is fine for multiple threads to have a shared reference to it).
+unsafe impl<const N: usize> Sync for Registration<{ N }> {}
+
+impl<const N: usize> Drop for Registration<{ N }> {
+ fn drop(&mut self) {
+ if let Some(inner) = self.inner.as_mut() {
+ // Replicate kernel C behaviour: drop [`Cdev`]s before calling
+ // [`bindings::unregister_chrdev_region`].
+ for i in 0..inner.used {
+ inner.cdevs[i].take();
+ }
+ // SAFETY: [`self.inner`] is Some, so [`inner.dev`] was previously
+ // created using [`bindings::alloc_chrdev_region`].
+ unsafe {
+ bindings::unregister_chrdev_region(inner.dev, N.try_into().unwrap());
+ }
+ }
+ }
+}
diff --git a/rust/kernel/clk.rs b/rust/kernel/clk.rs
new file mode 100644
index 000000000000..1ec478d96abc
--- /dev/null
+++ b/rust/kernel/clk.rs
@@ -0,0 +1,79 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Common clock framework.
+//!
+//! C header: [`include/linux/clk.h`](../../../../include/linux/clk.h)
+
+use crate::{bindings, error::Result, to_result};
+use core::mem::ManuallyDrop;
+
+/// Represents `struct clk *`.
+///
+/// # Invariants
+///
+/// The pointer is valid.
+pub struct Clk(*mut bindings::clk);
+
+impl Clk {
+ /// Creates new clock structure from a raw pointer.
+ ///
+ /// # Safety
+ ///
+ /// The pointer must be valid.
+ pub unsafe fn new(clk: *mut bindings::clk) -> Self {
+ Self(clk)
+ }
+
+ /// Returns value of the rate field of `struct clk`.
+ pub fn get_rate(&self) -> usize {
+ // SAFETY: The pointer is valid by the type invariant.
+ unsafe { bindings::clk_get_rate(self.0) as usize }
+ }
+
+ /// Prepares and enables the underlying hardware clock.
+ ///
+ /// This function should not be called in atomic context.
+ pub fn prepare_enable(self) -> Result<EnabledClk> {
+ // SAFETY: The pointer is valid by the type invariant.
+ to_result(unsafe { bindings::clk_prepare_enable(self.0) })?;
+ Ok(EnabledClk(self))
+ }
+}
+
+impl Drop for Clk {
+ fn drop(&mut self) {
+ // SAFETY: The pointer is valid by the type invariant.
+ unsafe { bindings::clk_put(self.0) };
+ }
+}
+
+// SAFETY: `Clk` is not restricted to a single thread so it is safe
+// to move it between threads.
+unsafe impl Send for Clk {}
+
+/// A clock variant that is prepared and enabled.
+pub struct EnabledClk(Clk);
+
+impl EnabledClk {
+ /// Returns value of the rate field of `struct clk`.
+ pub fn get_rate(&self) -> usize {
+ self.0.get_rate()
+ }
+
+ /// Disables and later unprepares the underlying hardware clock prematurely.
+ ///
+ /// This function should not be called in atomic context.
+ pub fn disable_unprepare(self) -> Clk {
+ let mut clk = ManuallyDrop::new(self);
+ // SAFETY: The pointer is valid by the type invariant.
+ unsafe { bindings::clk_disable_unprepare(clk.0 .0) };
+ core::mem::replace(&mut clk.0, Clk(core::ptr::null_mut()))
+ }
+}
+
+impl Drop for EnabledClk {
+ fn drop(&mut self) {
+ // SAFETY: The pointer is valid by the type invariant.
+ unsafe { bindings::clk_disable_unprepare(self.0 .0) };
+ }
+}
diff --git a/rust/kernel/cred.rs b/rust/kernel/cred.rs
new file mode 100644
index 000000000000..beacc71d92ac
--- /dev/null
+++ b/rust/kernel/cred.rs
@@ -0,0 +1,46 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Credentials management.
+//!
+//! C header: [`include/linux/cred.h`](../../../../include/linux/cred.h)
+//!
+//! Reference: <https://www.kernel.org/doc/html/latest/security/credentials.html>
+
+use crate::{bindings, AlwaysRefCounted};
+use core::cell::UnsafeCell;
+
+/// Wraps the kernel's `struct cred`.
+///
+/// # Invariants
+///
+/// Instances of this type are always ref-counted, that is, a call to `get_cred` ensures that the
+/// allocation remains valid at least until the matching call to `put_cred`.
+#[repr(transparent)]
+pub struct Credential(pub(crate) UnsafeCell<bindings::cred>);
+
+impl Credential {
+ /// Creates a reference to a [`Credential`] from a valid pointer.
+ ///
+ /// # Safety
+ ///
+ /// The caller must ensure that `ptr` is valid and remains valid for the lifetime of the
+ /// returned [`Credential`] reference.
+ pub(crate) unsafe fn from_ptr<'a>(ptr: *const bindings::cred) -> &'a Self {
+ // SAFETY: The safety requirements guarantee the validity of the dereference, while the
+ // `Credential` type being transparent makes the cast ok.
+ unsafe { &*ptr.cast() }
+ }
+}
+
+// SAFETY: The type invariants guarantee that `Credential` is always ref-counted.
+unsafe impl AlwaysRefCounted for Credential {
+ fn inc_ref(&self) {
+ // SAFETY: The existence of a shared reference means that the refcount is nonzero.
+ unsafe { bindings::get_cred(self.0.get()) };
+ }
+
+ unsafe fn dec_ref(obj: core::ptr::NonNull<Self>) {
+ // SAFETY: The safety requirements guarantee that the refcount is nonzero.
+ unsafe { bindings::put_cred(obj.cast().as_ptr()) };
+ }
+}
diff --git a/rust/kernel/delay.rs b/rust/kernel/delay.rs
new file mode 100644
index 000000000000..1e987fa65941
--- /dev/null
+++ b/rust/kernel/delay.rs
@@ -0,0 +1,104 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Delay functions for operations like sleeping.
+//!
+//! C header: [`include/linux/delay.h`](../../../../include/linux/delay.h)
+
+use crate::bindings;
+use core::{cmp::min, time::Duration};
+
+const MILLIS_PER_SEC: u64 = 1_000;
+
+fn coarse_sleep_conversion(duration: Duration) -> core::ffi::c_uint {
+ let milli_as_nanos = Duration::MILLISECOND.subsec_nanos();
+
+ // Rounds the nanosecond component of `duration` up to the nearest millisecond.
+ let nanos_as_millis = duration.subsec_nanos().wrapping_add(milli_as_nanos - 1) / milli_as_nanos;
+
+ // Saturates the second component of `duration` to `c_uint::MAX`.
+ let seconds_as_millis = min(
+ duration.as_secs().saturating_mul(MILLIS_PER_SEC),
+ u64::from(core::ffi::c_uint::MAX),
+ ) as core::ffi::c_uint;
+
+ seconds_as_millis.saturating_add(nanos_as_millis)
+}
+
+/// Sleeps safely even with waitqueue interruptions.
+///
+/// This function forwards the call to the C side `msleep` function. As a result,
+/// `duration` will be rounded up to the nearest millisecond if granularity less
+/// than a millisecond is provided. Any [`Duration`] that exceeds
+/// [`c_uint::MAX`][core::ffi::c_uint::MAX] in milliseconds is saturated.
+///
+/// # Examples
+///
+// Keep these in sync with `test_coarse_sleep_examples`.
+/// ```
+/// # use core::time::Duration;
+/// # use kernel::delay::coarse_sleep;
+/// coarse_sleep(Duration::ZERO); // Equivalent to `msleep(0)`.
+/// coarse_sleep(Duration::from_nanos(1)); // Equivalent to `msleep(1)`.
+///
+/// coarse_sleep(Duration::from_nanos(1_000_000)); // Equivalent to `msleep(1)`.
+/// coarse_sleep(Duration::from_nanos(1_000_001)); // Equivalent to `msleep(2)`.
+/// coarse_sleep(Duration::from_nanos(1_999_999)); // Equivalent to `msleep(2)`.
+///
+/// coarse_sleep(Duration::from_millis(1)); // Equivalent to `msleep(1)`.
+/// coarse_sleep(Duration::from_millis(2)); // Equivalent to `msleep(2)`.
+///
+/// coarse_sleep(Duration::from_secs(1)); // Equivalent to `msleep(1000)`.
+/// coarse_sleep(Duration::new(1, 1)); // Equivalent to `msleep(1001)`.
+/// coarse_sleep(Duration::new(1, 2)); // Equivalent to `msleep(1001)`.
+/// ```
+pub fn coarse_sleep(duration: Duration) {
+ // SAFETY: `msleep` is safe for all values of its argument.
+ unsafe { bindings::msleep(coarse_sleep_conversion(duration)) }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::{coarse_sleep_conversion, MILLIS_PER_SEC};
+ use core::time::Duration;
+
+ #[test]
+ fn test_coarse_sleep_examples() {
+ // Keep these in sync with `coarse_sleep`'s `# Examples` section.
+
+ assert_eq!(coarse_sleep_conversion(Duration::ZERO), 0);
+ assert_eq!(coarse_sleep_conversion(Duration::from_nanos(1)), 1);
+
+ assert_eq!(coarse_sleep_conversion(Duration::from_nanos(1_000_000)), 1);
+ assert_eq!(coarse_sleep_conversion(Duration::from_nanos(1_000_001)), 2);
+ assert_eq!(coarse_sleep_conversion(Duration::from_nanos(1_999_999)), 2);
+
+ assert_eq!(coarse_sleep_conversion(Duration::from_millis(1)), 1);
+ assert_eq!(coarse_sleep_conversion(Duration::from_millis(2)), 2);
+
+ assert_eq!(coarse_sleep_conversion(Duration::from_secs(1)), 1000);
+ assert_eq!(coarse_sleep_conversion(Duration::new(1, 1)), 1001);
+ assert_eq!(coarse_sleep_conversion(Duration::new(1, 2)), 1001);
+ }
+
+ #[test]
+ fn test_coarse_sleep_saturation() {
+ assert!(
+ coarse_sleep_conversion(Duration::new(
+ core::ffi::c_uint::MAX as u64 / MILLIS_PER_SEC,
+ 0
+ )) < core::ffi::c_uint::MAX
+ );
+ assert_eq!(
+ coarse_sleep_conversion(Duration::new(
+ core::ffi::c_uint::MAX as u64 / MILLIS_PER_SEC,
+ 999_999_999
+ )),
+ core::ffi::c_uint::MAX
+ );
+
+ assert_eq!(
+ coarse_sleep_conversion(Duration::MAX),
+ core::ffi::c_uint::MAX
+ );
+ }
+}
diff --git a/rust/kernel/device.rs b/rust/kernel/device.rs
new file mode 100644
index 000000000000..c37f555c534d
--- /dev/null
+++ b/rust/kernel/device.rs
@@ -0,0 +1,527 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Generic devices that are part of the kernel's driver model.
+//!
+//! C header: [`include/linux/device.h`](../../../../include/linux/device.h)
+
+#[cfg(CONFIG_COMMON_CLK)]
+use crate::{clk::Clk, error::from_kernel_err_ptr};
+
+use crate::{
+ bindings,
+ revocable::{Revocable, RevocableGuard},
+ str::CStr,
+ sync::{LockClassKey, NeedsLockClass, RevocableMutex, RevocableMutexGuard, UniqueRef},
+ Result,
+};
+use core::{
+ fmt,
+ ops::{Deref, DerefMut},
+ pin::Pin,
+};
+
+#[cfg(CONFIG_PRINTK)]
+use crate::c_str;
+
+/// A raw device.
+///
+/// # Safety
+///
+/// Implementers must ensure that the `*mut device` returned by [`RawDevice::raw_device`] is
+/// related to `self`, that is, actions on it will affect `self`. For example, if one calls
+/// `get_device`, then the refcount on the device represented by `self` will be incremented.
+///
+/// Additionally, implementers must ensure that the device is never renamed. Commit a5462516aa99
+/// ("driver-core: document restrictions on device_rename()") has details on why `device_rename`
+/// should not be used.
+pub unsafe trait RawDevice {
+ /// Returns the raw `struct device` related to `self`.
+ fn raw_device(&self) -> *mut bindings::device;
+
+ /// Returns the name of the device.
+ fn name(&self) -> &CStr {
+ let ptr = self.raw_device();
+
+ // SAFETY: `ptr` is valid because `self` keeps it alive.
+ let name = unsafe { bindings::dev_name(ptr) };
+
+ // SAFETY: The name of the device remains valid while it is alive (because the device is
+ // never renamed, per the safety requirement of this trait). This is guaranteed to be the
+ // case because the reference to `self` outlives the one of the returned `CStr` (enforced
+ // by the compiler because of their lifetimes).
+ unsafe { CStr::from_char_ptr(name) }
+ }
+
+ /// Lookups a clock producer consumed by this device.
+ ///
+ /// Returns a managed reference to the clock producer.
+ #[cfg(CONFIG_COMMON_CLK)]
+ fn clk_get(&self, id: Option<&CStr>) -> Result<Clk> {
+ let id_ptr = match id {
+ Some(cstr) => cstr.as_char_ptr(),
+ None => core::ptr::null(),
+ };
+
+ // SAFETY: `id_ptr` is optional and may be either a valid pointer
+ // from the type invariant or NULL otherwise.
+ let clk_ptr = unsafe { from_kernel_err_ptr(bindings::clk_get(self.raw_device(), id_ptr)) }?;
+
+ // SAFETY: Clock is initialized with valid pointer returned from `bindings::clk_get` call.
+ unsafe { Ok(Clk::new(clk_ptr)) }
+ }
+
+ /// Prints an emergency-level message (level 0) prefixed with device information.
+ ///
+ /// More details are available from [`dev_emerg`].
+ fn pr_emerg(&self, args: fmt::Arguments<'_>) {
+ // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
+ unsafe { self.printk(bindings::KERN_EMERG, args) };
+ }
+
+ /// Prints an alert-level message (level 1) prefixed with device information.
+ ///
+ /// More details are available from [`dev_alert`].
+ fn pr_alert(&self, args: fmt::Arguments<'_>) {
+ // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
+ unsafe { self.printk(bindings::KERN_ALERT, args) };
+ }
+
+ /// Prints a critical-level message (level 2) prefixed with device information.
+ ///
+ /// More details are available from [`dev_crit`].
+ fn pr_crit(&self, args: fmt::Arguments<'_>) {
+ // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
+ unsafe { self.printk(bindings::KERN_CRIT, args) };
+ }
+
+ /// Prints an error-level message (level 3) prefixed with device information.
+ ///
+ /// More details are available from [`dev_err`].
+ fn pr_err(&self, args: fmt::Arguments<'_>) {
+ // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
+ unsafe { self.printk(bindings::KERN_ERR, args) };
+ }
+
+ /// Prints a warning-level message (level 4) prefixed with device information.
+ ///
+ /// More details are available from [`dev_warn`].
+ fn pr_warn(&self, args: fmt::Arguments<'_>) {
+ // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
+ unsafe { self.printk(bindings::KERN_WARNING, args) };
+ }
+
+ /// Prints a notice-level message (level 5) prefixed with device information.
+ ///
+ /// More details are available from [`dev_notice`].
+ fn pr_notice(&self, args: fmt::Arguments<'_>) {
+ // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
+ unsafe { self.printk(bindings::KERN_NOTICE, args) };
+ }
+
+ /// Prints an info-level message (level 6) prefixed with device information.
+ ///
+ /// More details are available from [`dev_info`].
+ fn pr_info(&self, args: fmt::Arguments<'_>) {
+ // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
+ unsafe { self.printk(bindings::KERN_INFO, args) };
+ }
+
+ /// Prints a debug-level message (level 7) prefixed with device information.
+ ///
+ /// More details are available from [`dev_dbg`].
+ fn pr_dbg(&self, args: fmt::Arguments<'_>) {
+ if cfg!(debug_assertions) {
+ // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
+ unsafe { self.printk(bindings::KERN_DEBUG, args) };
+ }
+ }
+
+ /// Prints the provided message to the console.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that `klevel` is null-terminated; in particular, one of the
+ /// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc.
+ #[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))]
+ unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) {
+ // SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.raw_device`
+ // is valid because `self` is valid. The "%pA" format string expects a pointer to
+ // `fmt::Arguments`, which is what we're passing as the last argument.
+ #[cfg(CONFIG_PRINTK)]
+ unsafe {
+ bindings::_dev_printk(
+ klevel as *const _ as *const core::ffi::c_char,
+ self.raw_device(),
+ c_str!("%pA").as_char_ptr(),
+ &msg as *const _ as *const core::ffi::c_void,
+ )
+ };
+ }
+}
+
+/// A ref-counted device.
+///
+/// # Invariants
+///
+/// `ptr` is valid, non-null, and has a non-zero reference count. One of the references is owned by
+/// `self`, and will be decremented when `self` is dropped.
+pub struct Device {
+ pub(crate) ptr: *mut bindings::device,
+}
+
+// SAFETY: `Device` only holds a pointer to a C device, which is safe to be used from any thread.
+unsafe impl Send for Device {}
+
+// SAFETY: `Device` only holds a pointer to a C device, references to which are safe to be used
+// from any thread.
+unsafe impl Sync for Device {}
+
+impl Device {
+ /// Creates a new device instance.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count.
+ pub unsafe fn new(ptr: *mut bindings::device) -> Self {
+ // SAFETY: By the safety requirements, ptr is valid and its refcounted will be incremented.
+ unsafe { bindings::get_device(ptr) };
+ // INVARIANT: The safety requirements satisfy all but one invariant, which is that `self`
+ // owns a reference. This is satisfied by the call to `get_device` above.
+ Self { ptr }
+ }
+
+ /// Creates a new device instance from an existing [`RawDevice`] instance.
+ pub fn from_dev(dev: &dyn RawDevice) -> Self {
+ // SAFETY: The requirements are satisfied by the existence of `RawDevice` and its safety
+ // requirements.
+ unsafe { Self::new(dev.raw_device()) }
+ }
+}
+
+// SAFETY: The device returned by `raw_device` is the one for which we hold a reference.
+unsafe impl RawDevice for Device {
+ fn raw_device(&self) -> *mut bindings::device {
+ self.ptr
+ }
+}
+
+impl Drop for Device {
+ fn drop(&mut self) {
+ // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
+ // relinquish it now.
+ unsafe { bindings::put_device(self.ptr) };
+ }
+}
+
+/// Device data.
+///
+/// When a device is removed (for whatever reason, for example, because the device was unplugged or
+/// because the user decided to unbind the driver), the driver is given a chance to clean its state
+/// up, and all io resources should ideally not be used anymore.
+///
+/// However, the device data is reference-counted because other subsystems hold pointers to it. So
+/// some device state must be freed and not used anymore, while others must remain accessible.
+///
+/// This struct separates the device data into three categories:
+/// 1. Registrations: are destroyed when the device is removed, but before the io resources
+/// become inaccessible.
+/// 2. Io resources: are available until the device is removed.
+/// 3. General data: remain available as long as the ref count is nonzero.
+///
+/// This struct implements the `DeviceRemoval` trait so that it can clean resources up even if not
+/// explicitly called by the device drivers.
+pub struct Data<T, U, V> {
+ registrations: RevocableMutex<T>,
+ resources: Revocable<U>,
+ general: V,
+}
+
+/// Safely creates an new reference-counted instance of [`Data`].
+#[doc(hidden)]
+#[macro_export]
+macro_rules! new_device_data {
+ ($reg:expr, $res:expr, $gen:expr, $name:literal) => {{
+ static CLASS1: $crate::sync::LockClassKey = $crate::sync::LockClassKey::new();
+ static CLASS2: $crate::sync::LockClassKey = $crate::sync::LockClassKey::new();
+ let regs = $reg;
+ let res = $res;
+ let gen = $gen;
+ let name = $crate::c_str!($name);
+ $crate::device::Data::try_new(regs, res, gen, name, &CLASS1, &CLASS2)
+ }};
+}
+
+impl<T, U, V> Data<T, U, V> {
+ /// Creates a new instance of `Data`.
+ ///
+ /// It is recommended that the [`new_device_data`] macro be used as it automatically creates
+ /// the lock classes.
+ pub fn try_new(
+ registrations: T,
+ resources: U,
+ general: V,
+ name: &'static CStr,
+ key1: &'static LockClassKey,
+ key2: &'static LockClassKey,
+ ) -> Result<Pin<UniqueRef<Self>>> {
+ let mut ret = Pin::from(UniqueRef::try_new(Self {
+ // SAFETY: We call `RevocableMutex::init` below.
+ registrations: unsafe { RevocableMutex::new(registrations) },
+ resources: Revocable::new(resources),
+ general,
+ })?);
+
+ // SAFETY: `Data::registrations` is pinned when `Data` is.
+ let pinned = unsafe { ret.as_mut().map_unchecked_mut(|d| &mut d.registrations) };
+ pinned.init(name, key1, key2);
+ Ok(ret)
+ }
+
+ /// Returns the resources if they're still available.
+ pub fn resources(&self) -> Option<RevocableGuard<'_, U>> {
+ self.resources.try_access()
+ }
+
+ /// Returns the locked registrations if they're still available.
+ pub fn registrations(&self) -> Option<RevocableMutexGuard<'_, T>> {
+ self.registrations.try_write()
+ }
+}
+
+impl<T, U, V> crate::driver::DeviceRemoval for Data<T, U, V> {
+ fn device_remove(&self) {
+ // We revoke the registrations first so that resources are still available to them during
+ // unregistration.
+ self.registrations.revoke();
+
+ // Release resources now. General data remains available.
+ self.resources.revoke();
+ }
+}
+
+impl<T, U, V> Deref for Data<T, U, V> {
+ type Target = V;
+
+ fn deref(&self) -> &V {
+ &self.general
+ }
+}
+
+impl<T, U, V> DerefMut for Data<T, U, V> {
+ fn deref_mut(&mut self) -> &mut V {
+ &mut self.general
+ }
+}
+
+#[doc(hidden)]
+#[macro_export]
+macro_rules! dev_printk {
+ ($method:ident, $dev:expr, $($f:tt)*) => {
+ {
+ // We have an explicity `use` statement here so that callers of this macro are not
+ // required to explicitly use the `RawDevice` trait to use its functions.
+ use $crate::device::RawDevice;
+ ($dev).$method(core::format_args!($($f)*));
+ }
+ }
+}
+
+/// Prints an emergency-level message (level 0) prefixed with device information.
+///
+/// This level should be used if the system is unusable.
+///
+/// Equivalent to the kernel's `dev_emerg` macro.
+///
+/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
+/// [`core::fmt`] and [`alloc::format!`].
+///
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::device::Device;
+///
+/// fn example(dev: &Device) {
+/// dev_emerg!(dev, "hello {}\n", "there");
+/// }
+/// ```
+#[macro_export]
+macro_rules! dev_emerg {
+ ($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); }
+}
+
+/// Prints an alert-level message (level 1) prefixed with device information.
+///
+/// This level should be used if action must be taken immediately.
+///
+/// Equivalent to the kernel's `dev_alert` macro.
+///
+/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
+/// [`core::fmt`] and [`alloc::format!`].
+///
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::device::Device;
+///
+/// fn example(dev: &Device) {
+/// dev_alert!(dev, "hello {}\n", "there");
+/// }
+/// ```
+#[macro_export]
+macro_rules! dev_alert {
+ ($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); }
+}
+
+/// Prints a critical-level message (level 2) prefixed with device information.
+///
+/// This level should be used in critical conditions.
+///
+/// Equivalent to the kernel's `dev_crit` macro.
+///
+/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
+/// [`core::fmt`] and [`alloc::format!`].
+///
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::device::Device;
+///
+/// fn example(dev: &Device) {
+/// dev_crit!(dev, "hello {}\n", "there");
+/// }
+/// ```
+#[macro_export]
+macro_rules! dev_crit {
+ ($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); }
+}
+
+/// Prints an error-level message (level 3) prefixed with device information.
+///
+/// This level should be used in error conditions.
+///
+/// Equivalent to the kernel's `dev_err` macro.
+///
+/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
+/// [`core::fmt`] and [`alloc::format!`].
+///
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::device::Device;
+///
+/// fn example(dev: &Device) {
+/// dev_err!(dev, "hello {}\n", "there");
+/// }
+/// ```
+#[macro_export]
+macro_rules! dev_err {
+ ($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); }
+}
+
+/// Prints a warning-level message (level 4) prefixed with device information.
+///
+/// This level should be used in warning conditions.
+///
+/// Equivalent to the kernel's `dev_warn` macro.
+///
+/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
+/// [`core::fmt`] and [`alloc::format!`].
+///
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::device::Device;
+///
+/// fn example(dev: &Device) {
+/// dev_warn!(dev, "hello {}\n", "there");
+/// }
+/// ```
+#[macro_export]
+macro_rules! dev_warn {
+ ($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); }
+}
+
+/// Prints a notice-level message (level 5) prefixed with device information.
+///
+/// This level should be used in normal but significant conditions.
+///
+/// Equivalent to the kernel's `dev_notice` macro.
+///
+/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
+/// [`core::fmt`] and [`alloc::format!`].
+///
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::device::Device;
+///
+/// fn example(dev: &Device) {
+/// dev_notice!(dev, "hello {}\n", "there");
+/// }
+/// ```
+#[macro_export]
+macro_rules! dev_notice {
+ ($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); }
+}
+
+/// Prints an info-level message (level 6) prefixed with device information.
+///
+/// This level should be used for informational messages.
+///
+/// Equivalent to the kernel's `dev_info` macro.
+///
+/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
+/// [`core::fmt`] and [`alloc::format!`].
+///
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::device::Device;
+///
+/// fn example(dev: &Device) {
+/// dev_info!(dev, "hello {}\n", "there");
+/// }
+/// ```
+#[macro_export]
+macro_rules! dev_info {
+ ($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); }
+}
+
+/// Prints a debug-level message (level 7) prefixed with device information.
+///
+/// This level should be used for debug messages.
+///
+/// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet.
+///
+/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
+/// [`core::fmt`] and [`alloc::format!`].
+///
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::device::Device;
+///
+/// fn example(dev: &Device) {
+/// dev_dbg!(dev, "hello {}\n", "there");
+/// }
+/// ```
+#[macro_export]
+macro_rules! dev_dbg {
+ ($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); }
+}
diff --git a/rust/kernel/driver.rs b/rust/kernel/driver.rs
new file mode 100644
index 000000000000..82b39231e311
--- /dev/null
+++ b/rust/kernel/driver.rs
@@ -0,0 +1,442 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Generic support for drivers of different buses (e.g., PCI, Platform, Amba, etc.).
+//!
+//! Each bus/subsystem is expected to implement [`DriverOps`], which allows drivers to register
+//! using the [`Registration`] class.
+
+use crate::{error::code::*, str::CStr, sync::Ref, Result, ThisModule};
+use alloc::boxed::Box;
+use core::{cell::UnsafeCell, marker::PhantomData, ops::Deref, pin::Pin};
+
+/// A subsystem (e.g., PCI, Platform, Amba, etc.) that allows drivers to be written for it.
+pub trait DriverOps {
+ /// The type that holds information about the registration. This is typically a struct defined
+ /// by the C portion of the kernel.
+ type RegType: Default;
+
+ /// Registers a driver.
+ ///
+ /// # Safety
+ ///
+ /// `reg` must point to valid, initialised, and writable memory. It may be modified by this
+ /// function to hold registration state.
+ ///
+ /// On success, `reg` must remain pinned and valid until the matching call to
+ /// [`DriverOps::unregister`].
+ unsafe fn register(
+ reg: *mut Self::RegType,
+ name: &'static CStr,
+ module: &'static ThisModule,
+ ) -> Result;
+
+ /// Unregisters a driver previously registered with [`DriverOps::register`].
+ ///
+ /// # Safety
+ ///
+ /// `reg` must point to valid writable memory, initialised by a previous successful call to
+ /// [`DriverOps::register`].
+ unsafe fn unregister(reg: *mut Self::RegType);
+}
+
+/// The registration of a driver.
+pub struct Registration<T: DriverOps> {
+ is_registered: bool,
+ concrete_reg: UnsafeCell<T::RegType>,
+}
+
+// SAFETY: `Registration` has no fields or methods accessible via `&Registration`, so it is safe to
+// share references to it with multiple threads as nothing can be done.
+unsafe impl<T: DriverOps> Sync for Registration<T> {}
+
+impl<T: DriverOps> Registration<T> {
+ /// Creates a new instance of the registration object.
+ pub fn new() -> Self {
+ Self {
+ is_registered: false,
+ concrete_reg: UnsafeCell::new(T::RegType::default()),
+ }
+ }
+
+ /// Allocates a pinned registration object and registers it.
+ ///
+ /// Returns a pinned heap-allocated representation of the registration.
+ pub fn new_pinned(name: &'static CStr, module: &'static ThisModule) -> Result<Pin<Box<Self>>> {
+ let mut reg = Pin::from(Box::try_new(Self::new())?);
+ reg.as_mut().register(name, module)?;
+ Ok(reg)
+ }
+
+ /// Registers a driver with its subsystem.
+ ///
+ /// It must be pinned because the memory block that represents the registration is potentially
+ /// self-referential.
+ pub fn register(
+ self: Pin<&mut Self>,
+ name: &'static CStr,
+ module: &'static ThisModule,
+ ) -> Result {
+ // SAFETY: We never move out of `this`.
+ let this = unsafe { self.get_unchecked_mut() };
+ if this.is_registered {
+ // Already registered.
+ return Err(EINVAL);
+ }
+
+ // SAFETY: `concrete_reg` was initialised via its default constructor. It is only freed
+ // after `Self::drop` is called, which first calls `T::unregister`.
+ unsafe { T::register(this.concrete_reg.get(), name, module) }?;
+
+ this.is_registered = true;
+ Ok(())
+ }
+}
+
+impl<T: DriverOps> Default for Registration<T> {
+ fn default() -> Self {
+ Self::new()
+ }
+}
+
+impl<T: DriverOps> Drop for Registration<T> {
+ fn drop(&mut self) {
+ if self.is_registered {
+ // SAFETY: This path only runs if a previous call to `T::register` completed
+ // successfully.
+ unsafe { T::unregister(self.concrete_reg.get()) };
+ }
+ }
+}
+
+/// Conversion from a device id to a raw device id.
+///
+/// This is meant to be implemented by buses/subsystems so that they can use [`IdTable`] to
+/// guarantee (at compile-time) zero-termination of device id tables provided by drivers.
+///
+/// # Safety
+///
+/// Implementers must ensure that:
+/// - [`RawDeviceId::ZERO`] is actually a zeroed-out version of the raw device id.
+/// - [`RawDeviceId::to_rawid`] stores `offset` in the context/data field of the raw device id so
+/// that buses can recover the pointer to the data.
+pub unsafe trait RawDeviceId {
+ /// The raw type that holds the device id.
+ ///
+ /// Id tables created from [`Self`] are going to hold this type in its zero-terminated array.
+ type RawType: Copy;
+
+ /// A zeroed-out representation of the raw device id.
+ ///
+ /// Id tables created from [`Self`] use [`Self::ZERO`] as the sentinel to indicate the end of
+ /// the table.
+ const ZERO: Self::RawType;
+
+ /// Converts an id into a raw id.
+ ///
+ /// `offset` is the offset from the memory location where the raw device id is stored to the
+ /// location where its associated context information is stored. Implementations must store
+ /// this in the appropriate context/data field of the raw type.
+ fn to_rawid(&self, offset: isize) -> Self::RawType;
+}
+
+/// A zero-terminated device id array, followed by context data.
+#[repr(C)]
+pub struct IdArray<T: RawDeviceId, U, const N: usize> {
+ ids: [T::RawType; N],
+ sentinel: T::RawType,
+ id_infos: [Option<U>; N],
+}
+
+impl<T: RawDeviceId, U, const N: usize> IdArray<T, U, N> {
+ /// Creates a new instance of the array.
+ ///
+ /// The contents are derived from the given identifiers and context information.
+ pub const fn new(ids: [T; N], infos: [Option<U>; N]) -> Self
+ where
+ T: ~const RawDeviceId + Copy,
+ {
+ let mut array = Self {
+ ids: [T::ZERO; N],
+ sentinel: T::ZERO,
+ id_infos: infos,
+ };
+ let mut i = 0usize;
+ while i < N {
+ // SAFETY: Both pointers are within `array` (or one byte beyond), consequently they are
+ // derived from the same allocated object. We are using a `u8` pointer, whose size 1,
+ // so the pointers are necessarily 1-byte aligned.
+ let offset = unsafe {
+ (&array.id_infos[i] as *const _ as *const u8)
+ .offset_from(&array.ids[i] as *const _ as _)
+ };
+ array.ids[i] = ids[i].to_rawid(offset);
+ i += 1;
+ }
+ array
+ }
+
+ /// Returns an `IdTable` backed by `self`.
+ ///
+ /// This is used to essentially erase the array size.
+ pub const fn as_table(&self) -> IdTable<'_, T, U> {
+ IdTable {
+ first: &self.ids[0],
+ _p: PhantomData,
+ }
+ }
+}
+
+/// A device id table.
+///
+/// The table is guaranteed to be zero-terminated and to be followed by an array of context data of
+/// type `Option<U>`.
+pub struct IdTable<'a, T: RawDeviceId, U> {
+ first: &'a T::RawType,
+ _p: PhantomData<&'a U>,
+}
+
+impl<T: RawDeviceId, U> const AsRef<T::RawType> for IdTable<'_, T, U> {
+ fn as_ref(&self) -> &T::RawType {
+ self.first
+ }
+}
+
+/// Counts the number of parenthesis-delimited, comma-separated items.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::count_paren_items;
+///
+/// assert_eq!(0, count_paren_items!());
+/// assert_eq!(1, count_paren_items!((A)));
+/// assert_eq!(1, count_paren_items!((A),));
+/// assert_eq!(2, count_paren_items!((A), (B)));
+/// assert_eq!(2, count_paren_items!((A), (B),));
+/// assert_eq!(3, count_paren_items!((A), (B), (C)));
+/// assert_eq!(3, count_paren_items!((A), (B), (C),));
+/// ```
+#[macro_export]
+macro_rules! count_paren_items {
+ (($($item:tt)*), $($remaining:tt)*) => { 1 + $crate::count_paren_items!($($remaining)*) };
+ (($($item:tt)*)) => { 1 };
+ () => { 0 };
+}
+
+/// Converts a comma-separated list of pairs into an array with the first element. That is, it
+/// discards the second element of the pair.
+///
+/// Additionally, it automatically introduces a type if the first element is warpped in curly
+/// braces, for example, if it's `{v: 10}`, it becomes `X { v: 10 }`; this is to avoid repeating
+/// the type.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::first_item;
+///
+/// #[derive(PartialEq, Debug)]
+/// struct X {
+/// v: u32,
+/// }
+///
+/// assert_eq!([] as [X; 0], first_item!(X, ));
+/// assert_eq!([X { v: 10 }], first_item!(X, ({ v: 10 }, Y)));
+/// assert_eq!([X { v: 10 }], first_item!(X, ({ v: 10 }, Y),));
+/// assert_eq!([X { v: 10 }], first_item!(X, (X { v: 10 }, Y)));
+/// assert_eq!([X { v: 10 }], first_item!(X, (X { v: 10 }, Y),));
+/// assert_eq!([X { v: 10 }, X { v: 20 }], first_item!(X, ({ v: 10 }, Y), ({ v: 20 }, Y)));
+/// assert_eq!([X { v: 10 }, X { v: 20 }], first_item!(X, ({ v: 10 }, Y), ({ v: 20 }, Y),));
+/// assert_eq!([X { v: 10 }, X { v: 20 }], first_item!(X, (X { v: 10 }, Y), (X { v: 20 }, Y)));
+/// assert_eq!([X { v: 10 }, X { v: 20 }], first_item!(X, (X { v: 10 }, Y), (X { v: 20 }, Y),));
+/// assert_eq!([X { v: 10 }, X { v: 20 }, X { v: 30 }],
+/// first_item!(X, ({ v: 10 }, Y), ({ v: 20 }, Y), ({v: 30}, Y)));
+/// assert_eq!([X { v: 10 }, X { v: 20 }, X { v: 30 }],
+/// first_item!(X, ({ v: 10 }, Y), ({ v: 20 }, Y), ({v: 30}, Y),));
+/// assert_eq!([X { v: 10 }, X { v: 20 }, X { v: 30 }],
+/// first_item!(X, (X { v: 10 }, Y), (X { v: 20 }, Y), (X {v: 30}, Y)));
+/// assert_eq!([X { v: 10 }, X { v: 20 }, X { v: 30 }],
+/// first_item!(X, (X { v: 10 }, Y), (X { v: 20 }, Y), (X {v: 30}, Y),));
+/// ```
+#[macro_export]
+macro_rules! first_item {
+ ($id_type:ty, $(({$($first:tt)*}, $second:expr)),* $(,)?) => {
+ {
+ type IdType = $id_type;
+ [$(IdType{$($first)*},)*]
+ }
+ };
+ ($id_type:ty, $(($first:expr, $second:expr)),* $(,)?) => { [$($first,)*] };
+}
+
+/// Converts a comma-separated list of pairs into an array with the second element. That is, it
+/// discards the first element of the pair.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::second_item;
+///
+/// assert_eq!([] as [u32; 0], second_item!());
+/// assert_eq!([10u32], second_item!((X, 10u32)));
+/// assert_eq!([10u32], second_item!((X, 10u32),));
+/// assert_eq!([10u32], second_item!(({ X }, 10u32)));
+/// assert_eq!([10u32], second_item!(({ X }, 10u32),));
+/// assert_eq!([10u32, 20], second_item!((X, 10u32), (X, 20)));
+/// assert_eq!([10u32, 20], second_item!((X, 10u32), (X, 20),));
+/// assert_eq!([10u32, 20], second_item!(({ X }, 10u32), ({ X }, 20)));
+/// assert_eq!([10u32, 20], second_item!(({ X }, 10u32), ({ X }, 20),));
+/// assert_eq!([10u32, 20, 30], second_item!((X, 10u32), (X, 20), (X, 30)));
+/// assert_eq!([10u32, 20, 30], second_item!((X, 10u32), (X, 20), (X, 30),));
+/// assert_eq!([10u32, 20, 30], second_item!(({ X }, 10u32), ({ X }, 20), ({ X }, 30)));
+/// assert_eq!([10u32, 20, 30], second_item!(({ X }, 10u32), ({ X }, 20), ({ X }, 30),));
+/// ```
+#[macro_export]
+macro_rules! second_item {
+ ($(({$($first:tt)*}, $second:expr)),* $(,)?) => { [$($second,)*] };
+ ($(($first:expr, $second:expr)),* $(,)?) => { [$($second,)*] };
+}
+
+/// Defines a new constant [`IdArray`] with a concise syntax.
+///
+/// It is meant to be used by buses and subsystems to create a similar macro with their device id
+/// type already specified, i.e., with fewer parameters to the end user.
+///
+/// # Examples
+///
+// TODO: Exported but not usable by kernel modules (requires `const_trait_impl`).
+/// ```ignore
+/// #![feature(const_trait_impl)]
+/// # use kernel::{define_id_array, driver::RawDeviceId};
+///
+/// #[derive(Copy, Clone)]
+/// struct Id(u32);
+///
+/// // SAFETY: `ZERO` is all zeroes and `to_rawid` stores `offset` as the second element of the raw
+/// // device id pair.
+/// unsafe impl const RawDeviceId for Id {
+/// type RawType = (u64, isize);
+/// const ZERO: Self::RawType = (0, 0);
+/// fn to_rawid(&self, offset: isize) -> Self::RawType {
+/// (self.0 as u64 + 1, offset)
+/// }
+/// }
+///
+/// define_id_array!(A1, Id, (), []);
+/// define_id_array!(A2, Id, &'static [u8], [(Id(10), None)]);
+/// define_id_array!(A3, Id, &'static [u8], [(Id(10), Some(b"id1")), ]);
+/// define_id_array!(A4, Id, &'static [u8], [(Id(10), Some(b"id1")), (Id(20), Some(b"id2"))]);
+/// define_id_array!(A5, Id, &'static [u8], [(Id(10), Some(b"id1")), (Id(20), Some(b"id2")), ]);
+/// define_id_array!(A6, Id, &'static [u8], [(Id(10), None), (Id(20), Some(b"id2")), ]);
+/// define_id_array!(A7, Id, &'static [u8], [(Id(10), Some(b"id1")), (Id(20), None), ]);
+/// define_id_array!(A8, Id, &'static [u8], [(Id(10), None), (Id(20), None), ]);
+/// ```
+#[macro_export]
+macro_rules! define_id_array {
+ ($table_name:ident, $id_type:ty, $data_type:ty, [ $($t:tt)* ]) => {
+ const $table_name:
+ $crate::driver::IdArray<$id_type, $data_type, { $crate::count_paren_items!($($t)*) }> =
+ $crate::driver::IdArray::new(
+ $crate::first_item!($id_type, $($t)*), $crate::second_item!($($t)*));
+ };
+}
+
+/// Defines a new constant [`IdTable`] with a concise syntax.
+///
+/// It is meant to be used by buses and subsystems to create a similar macro with their device id
+/// type already specified, i.e., with fewer parameters to the end user.
+///
+/// # Examples
+///
+// TODO: Exported but not usable by kernel modules (requires `const_trait_impl`).
+/// ```ignore
+/// #![feature(const_trait_impl)]
+/// # use kernel::{define_id_table, driver::RawDeviceId};
+///
+/// #[derive(Copy, Clone)]
+/// struct Id(u32);
+///
+/// // SAFETY: `ZERO` is all zeroes and `to_rawid` stores `offset` as the second element of the raw
+/// // device id pair.
+/// unsafe impl const RawDeviceId for Id {
+/// type RawType = (u64, isize);
+/// const ZERO: Self::RawType = (0, 0);
+/// fn to_rawid(&self, offset: isize) -> Self::RawType {
+/// (self.0 as u64 + 1, offset)
+/// }
+/// }
+///
+/// define_id_table!(T1, Id, &'static [u8], [(Id(10), None)]);
+/// define_id_table!(T2, Id, &'static [u8], [(Id(10), Some(b"id1")), ]);
+/// define_id_table!(T3, Id, &'static [u8], [(Id(10), Some(b"id1")), (Id(20), Some(b"id2"))]);
+/// define_id_table!(T4, Id, &'static [u8], [(Id(10), Some(b"id1")), (Id(20), Some(b"id2")), ]);
+/// define_id_table!(T5, Id, &'static [u8], [(Id(10), None), (Id(20), Some(b"id2")), ]);
+/// define_id_table!(T6, Id, &'static [u8], [(Id(10), Some(b"id1")), (Id(20), None), ]);
+/// define_id_table!(T7, Id, &'static [u8], [(Id(10), None), (Id(20), None), ]);
+/// ```
+#[macro_export]
+macro_rules! define_id_table {
+ ($table_name:ident, $id_type:ty, $data_type:ty, [ $($t:tt)* ]) => {
+ const $table_name: Option<$crate::driver::IdTable<'static, $id_type, $data_type>> = {
+ $crate::define_id_array!(ARRAY, $id_type, $data_type, [ $($t)* ]);
+ Some(ARRAY.as_table())
+ };
+ };
+}
+
+/// Custom code within device removal.
+pub trait DeviceRemoval {
+ /// Cleans resources up when the device is removed.
+ ///
+ /// This is called when a device is removed and offers implementers the chance to run some code
+ /// that cleans state up.
+ fn device_remove(&self);
+}
+
+impl DeviceRemoval for () {
+ fn device_remove(&self) {}
+}
+
+impl<T: DeviceRemoval> DeviceRemoval for Ref<T> {
+ fn device_remove(&self) {
+ self.deref().device_remove();
+ }
+}
+
+impl<T: DeviceRemoval> DeviceRemoval for Box<T> {
+ fn device_remove(&self) {
+ self.deref().device_remove();
+ }
+}
+
+/// A kernel module that only registers the given driver on init.
+///
+/// This is a helper struct to make it easier to define single-functionality modules, in this case,
+/// modules that offer a single driver.
+pub struct Module<T: DriverOps> {
+ _driver: Pin<Box<Registration<T>>>,
+}
+
+impl<T: DriverOps> crate::Module for Module<T> {
+ fn init(name: &'static CStr, module: &'static ThisModule) -> Result<Self> {
+ Ok(Self {
+ _driver: Registration::new_pinned(name, module)?,
+ })
+ }
+}
+
+/// Declares a kernel module that exposes a single driver.
+///
+/// It is meant to be used as a helper by other subsystems so they can more easily expose their own
+/// macros.
+#[macro_export]
+macro_rules! module_driver {
+ (<$gen_type:ident>, $driver_ops:ty, { type: $type:ty, $($f:tt)* }) => {
+ type Ops<$gen_type> = $driver_ops;
+ type ModuleType = $crate::driver::Module<Ops<$type>>;
+ $crate::prelude::module! {
+ type: ModuleType,
+ $($f)*
+ }
+ }
+}
diff --git a/rust/kernel/error.rs b/rust/kernel/error.rs
new file mode 100644
index 000000000000..f968aa91ddf2
--- /dev/null
+++ b/rust/kernel/error.rs
@@ -0,0 +1,564 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Kernel errors.
+//!
+//! C header: [`include/uapi/asm-generic/errno-base.h`](../../../include/uapi/asm-generic/errno-base.h)
+
+use crate::bindings;
+use crate::str::CStr;
+use alloc::{
+ alloc::{AllocError, LayoutError},
+ collections::TryReserveError,
+};
+use core::convert::From;
+use core::fmt;
+use core::num::TryFromIntError;
+use core::str::{self, Utf8Error};
+
+/// Contains the C-compatible error codes.
+pub mod code {
+ macro_rules! declare_err {
+ ($err:tt $(,)? $($doc:expr),+) => {
+ $(
+ #[doc = $doc]
+ )*
+ pub const $err: super::Error = super::Error(-(crate::bindings::$err as i32));
+ };
+ }
+
+ declare_err!(EPERM, "Operation not permitted.");
+
+ declare_err!(ENOENT, "No such file or directory.");
+
+ declare_err!(ESRCH, "No such process.");
+
+ declare_err!(EINTR, "Interrupted system call.");
+
+ declare_err!(EIO, "I/O error.");
+
+ declare_err!(ENXIO, "No such device or address.");
+
+ declare_err!(E2BIG, "Argument list too long.");
+
+ declare_err!(ENOEXEC, "Exec format error.");
+
+ declare_err!(EBADF, "Bad file number.");
+
+ declare_err!(ECHILD, "Exec format error.");
+
+ declare_err!(EAGAIN, "Try again.");
+
+ declare_err!(ENOMEM, "Out of memory.");
+
+ declare_err!(EACCES, "Permission denied.");
+
+ declare_err!(EFAULT, "Bad address.");
+
+ declare_err!(ENOTBLK, "Block device required.");
+
+ declare_err!(EBUSY, "Device or resource busy.");
+
+ declare_err!(EEXIST, "File exists.");
+
+ declare_err!(EXDEV, "Cross-device link.");
+
+ declare_err!(ENODEV, "No such device.");
+
+ declare_err!(ENOTDIR, "Not a directory.");
+
+ declare_err!(EISDIR, "Is a directory.");
+
+ declare_err!(EINVAL, "Invalid argument.");
+
+ declare_err!(ENFILE, "File table overflow.");
+
+ declare_err!(EMFILE, "Too many open files.");
+
+ declare_err!(ENOTTY, "Not a typewriter.");
+
+ declare_err!(ETXTBSY, "Text file busy.");
+
+ declare_err!(EFBIG, "File too large.");
+
+ declare_err!(ENOSPC, "No space left on device.");
+
+ declare_err!(ESPIPE, "Illegal seek.");
+
+ declare_err!(EROFS, "Read-only file system.");
+
+ declare_err!(EMLINK, "Too many links.");
+
+ declare_err!(EPIPE, "Broken pipe.");
+
+ declare_err!(EDOM, "Math argument out of domain of func.");
+
+ declare_err!(ERANGE, "Math result not representable.");
+
+ declare_err!(EDEADLK, "Resource deadlock would occur");
+
+ declare_err!(ENAMETOOLONG, "File name too long");
+
+ declare_err!(ENOLCK, "No record locks available");
+
+ declare_err!(
+ ENOSYS,
+ "Invalid system call number.",
+ "",
+ "This error code is special: arch syscall entry code will return",
+ "[`ENOSYS`] if users try to call a syscall that doesn't exist.",
+ "To keep failures of syscalls that really do exist distinguishable from",
+ "failures due to attempts to use a nonexistent syscall, syscall",
+ "implementations should refrain from returning [`ENOSYS`]."
+ );
+
+ declare_err!(ENOTEMPTY, "Directory not empty.");
+
+ declare_err!(ELOOP, "Too many symbolic links encountered.");
+
+ declare_err!(EWOULDBLOCK, "Operation would block.");
+
+ declare_err!(ENOMSG, "No message of desired type.");
+
+ declare_err!(EIDRM, "Identifier removed.");
+
+ declare_err!(ECHRNG, "Channel number out of range.");
+
+ declare_err!(EL2NSYNC, "Level 2 not synchronized.");
+
+ declare_err!(EL3HLT, "Level 3 halted.");
+
+ declare_err!(EL3RST, "Level 3 reset.");
+
+ declare_err!(ELNRNG, "Link number out of range.");
+
+ declare_err!(EUNATCH, "Protocol driver not attached.");
+
+ declare_err!(ENOCSI, "No CSI structure available.");
+
+ declare_err!(EL2HLT, "Level 2 halted.");
+
+ declare_err!(EBADE, "Invalid exchange.");
+
+ declare_err!(EBADR, "Invalid request descriptor.");
+
+ declare_err!(EXFULL, "Exchange full.");
+
+ declare_err!(ENOANO, "No anode.");
+
+ declare_err!(EBADRQC, "Invalid request code.");
+
+ declare_err!(EBADSLT, "Invalid slot.");
+
+ declare_err!(EDEADLOCK, "Resource deadlock would occur.");
+
+ declare_err!(EBFONT, "Bad font file format.");
+
+ declare_err!(ENOSTR, "Device not a stream.");
+
+ declare_err!(ENODATA, "No data available.");
+
+ declare_err!(ETIME, "Timer expired.");
+
+ declare_err!(ENOSR, "Out of streams resources.");
+
+ declare_err!(ENONET, "Machine is not on the network.");
+
+ declare_err!(ENOPKG, "Package not installed.");
+
+ declare_err!(EREMOTE, "Object is remote.");
+
+ declare_err!(ENOLINK, "Link has been severed.");
+
+ declare_err!(EADV, "Advertise error.");
+
+ declare_err!(ESRMNT, "Srmount error.");
+
+ declare_err!(ECOMM, "Communication error on send.");
+
+ declare_err!(EPROTO, "Protocol error.");
+
+ declare_err!(EMULTIHOP, "Multihop attempted.");
+
+ declare_err!(EDOTDOT, "RFS specific error.");
+
+ declare_err!(EBADMSG, "Not a data message.");
+
+ declare_err!(EOVERFLOW, "Value too large for defined data type.");
+
+ declare_err!(ENOTUNIQ, "Name not unique on network.");
+
+ declare_err!(EBADFD, "File descriptor in bad state.");
+
+ declare_err!(EREMCHG, "Remote address changed.");
+
+ declare_err!(ELIBACC, "Can not access a needed shared library.");
+
+ declare_err!(ELIBBAD, "Accessing a corrupted shared library.");
+
+ declare_err!(ELIBSCN, ".lib section in a.out corrupted.");
+
+ declare_err!(ELIBMAX, "Attempting to link in too many shared libraries.");
+
+ declare_err!(ELIBEXEC, "Cannot exec a shared library directly.");
+
+ declare_err!(EILSEQ, "Illegal byte sequence.");
+
+ declare_err!(ERESTART, "Interrupted system call should be restarted.");
+
+ declare_err!(ESTRPIPE, "Streams pipe error.");
+
+ declare_err!(EUSERS, "Too many users.");
+
+ declare_err!(ENOTSOCK, "Socket operation on non-socket.");
+
+ declare_err!(EDESTADDRREQ, "Destination address required.");
+
+ declare_err!(EMSGSIZE, "Message too long.");
+
+ declare_err!(EPROTOTYPE, "Protocol wrong type for socket.");
+
+ declare_err!(ENOPROTOOPT, "Protocol not available.");
+
+ declare_err!(EPROTONOSUPPORT, "Protocol not supported.");
+
+ declare_err!(ESOCKTNOSUPPORT, "Socket type not supported.");
+
+ declare_err!(EOPNOTSUPP, "Operation not supported on transport endpoint.");
+
+ declare_err!(EPFNOSUPPORT, "Protocol family not supported.");
+
+ declare_err!(EAFNOSUPPORT, "Address family not supported by protocol.");
+
+ declare_err!(EADDRINUSE, "Address already in use.");
+
+ declare_err!(EADDRNOTAVAIL, "Cannot assign requested address.");
+
+ declare_err!(ENETDOWN, "Network is down.");
+
+ declare_err!(ENETUNREACH, "Network is unreachable.");
+
+ declare_err!(ENETRESET, "Network dropped connection because of reset.");
+
+ declare_err!(ECONNABORTED, "Software caused connection abort.");
+
+ declare_err!(ECONNRESET, "Connection reset by peer.");
+
+ declare_err!(ENOBUFS, "No buffer space available.");
+
+ declare_err!(EISCONN, "Transport endpoint is already connected.");
+
+ declare_err!(ENOTCONN, "Transport endpoint is not connected.");
+
+ declare_err!(ESHUTDOWN, "Cannot send after transport endpoint shutdown.");
+
+ declare_err!(ETOOMANYREFS, "Too many references: cannot splice.");
+
+ declare_err!(ETIMEDOUT, "Connection timed out.");
+
+ declare_err!(ECONNREFUSED, "Connection refused.");
+
+ declare_err!(EHOSTDOWN, "Host is down.");
+
+ declare_err!(EHOSTUNREACH, "No route to host.");
+
+ declare_err!(EALREADY, "Operation already in progress.");
+
+ declare_err!(EINPROGRESS, "Operation now in progress.");
+
+ declare_err!(ESTALE, "Stale file handle.");
+
+ declare_err!(EUCLEAN, "Structure needs cleaning.");
+
+ declare_err!(ENOTNAM, "Not a XENIX named type file.");
+
+ declare_err!(ENAVAIL, "No XENIX semaphores available.");
+
+ declare_err!(EISNAM, "Is a named type file.");
+
+ declare_err!(EREMOTEIO, "Remote I/O error.");
+
+ declare_err!(EDQUOT, "Quota exceeded.");
+
+ declare_err!(ENOMEDIUM, "No medium found.");
+
+ declare_err!(EMEDIUMTYPE, "Wrong medium type.");
+
+ declare_err!(ECANCELED, "Operation Canceled.");
+
+ declare_err!(ENOKEY, "Required key not available.");
+
+ declare_err!(EKEYEXPIRED, "Key has expired.");
+
+ declare_err!(EKEYREVOKED, "Key has been revoked.");
+
+ declare_err!(EKEYREJECTED, "Key was rejected by service.");
+
+ declare_err!(EOWNERDEAD, "Owner died.", "", "For robust mutexes.");
+
+ declare_err!(ENOTRECOVERABLE, "State not recoverable.");
+
+ declare_err!(ERFKILL, "Operation not possible due to RF-kill.");
+
+ declare_err!(EHWPOISON, "Memory page has hardware error.");
+
+ declare_err!(ERESTARTSYS, "Restart the system call.");
+
+ declare_err!(ENOTSUPP, "Operation is not supported.");
+
+ declare_err!(ENOPARAM, "Parameter not supported.");
+}
+
+/// Generic integer kernel error.
+///
+/// The kernel defines a set of integer generic error codes based on C and
+/// POSIX ones. These codes may have a more specific meaning in some contexts.
+///
+/// # Invariants
+///
+/// The value is a valid `errno` (i.e. `>= -MAX_ERRNO && < 0`).
+#[derive(Clone, Copy, PartialEq, Eq)]
+pub struct Error(core::ffi::c_int);
+
+impl Error {
+ /// Creates an [`Error`] from a kernel error code.
+ ///
+ /// It is a bug to pass an out-of-range `errno`. `EINVAL` would
+ /// be returned in such a case.
+ pub(crate) fn from_kernel_errno(errno: core::ffi::c_int) -> Error {
+ if errno < -(bindings::MAX_ERRNO as i32) || errno >= 0 {
+ // TODO: Make it a `WARN_ONCE` once available.
+ crate::pr_warn!(
+ "attempted to create `Error` with out of range `errno`: {}",
+ errno
+ );
+ return code::EINVAL;
+ }
+
+ // INVARIANT: The check above ensures the type invariant
+ // will hold.
+ Error(errno)
+ }
+
+ /// Creates an [`Error`] from a kernel error code.
+ ///
+ /// # Safety
+ ///
+ /// `errno` must be within error code range (i.e. `>= -MAX_ERRNO && < 0`).
+ pub(crate) unsafe fn from_kernel_errno_unchecked(errno: core::ffi::c_int) -> Error {
+ // INVARIANT: The contract ensures the type invariant
+ // will hold.
+ Error(errno)
+ }
+
+ /// Returns the kernel error code.
+ pub fn to_kernel_errno(self) -> core::ffi::c_int {
+ self.0
+ }
+
+ /// Returns a string representing the error, if one exists.
+ #[cfg(not(testlib))]
+ pub fn name(&self) -> Option<&'static CStr> {
+ // SAFETY: Just an FFI call, there are no extra safety requirements.
+ let ptr = unsafe { bindings::errname(-self.0) };
+ if ptr.is_null() {
+ None
+ } else {
+ // SAFETY: The string returned by `errname` is static and `NUL`-terminated.
+ Some(unsafe { CStr::from_char_ptr(ptr) })
+ }
+ }
+
+ /// Returns a string representing the error, if one exists.
+ ///
+ /// When `testlib` is configured, this always returns `None` to avoid the dependency on a
+ /// kernel function so that tests that use this (e.g., by calling [`Result::unwrap`]) can still
+ /// run in userspace.
+ #[cfg(testlib)]
+ pub fn name(&self) -> Option<&'static CStr> {
+ None
+ }
+}
+
+impl fmt::Debug for Error {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ match self.name() {
+ // Print out number if no name can be found.
+ None => f.debug_tuple("Error").field(&-self.0).finish(),
+ // SAFETY: These strings are ASCII-only.
+ Some(name) => f
+ .debug_tuple(unsafe { str::from_utf8_unchecked(name) })
+ .finish(),
+ }
+ }
+}
+
+impl From<TryFromIntError> for Error {
+ fn from(_: TryFromIntError) -> Error {
+ code::EINVAL
+ }
+}
+
+impl From<Utf8Error> for Error {
+ fn from(_: Utf8Error) -> Error {
+ code::EINVAL
+ }
+}
+
+impl From<TryReserveError> for Error {
+ fn from(_: TryReserveError) -> Error {
+ code::ENOMEM
+ }
+}
+
+impl From<LayoutError> for Error {
+ fn from(_: LayoutError) -> Error {
+ code::ENOMEM
+ }
+}
+
+impl From<core::fmt::Error> for Error {
+ fn from(_: core::fmt::Error) -> Error {
+ code::EINVAL
+ }
+}
+
+impl From<core::convert::Infallible> for Error {
+ fn from(e: core::convert::Infallible) -> Error {
+ match e {}
+ }
+}
+
+/// A [`Result`] with an [`Error`] error type.
+///
+/// To be used as the return type for functions that may fail.
+///
+/// # Error codes in C and Rust
+///
+/// In C, it is common that functions indicate success or failure through
+/// their return value; modifying or returning extra data through non-`const`
+/// pointer parameters. In particular, in the kernel, functions that may fail
+/// typically return an `int` that represents a generic error code. We model
+/// those as [`Error`].
+///
+/// In Rust, it is idiomatic to model functions that may fail as returning
+/// a [`Result`]. Since in the kernel many functions return an error code,
+/// [`Result`] is a type alias for a [`core::result::Result`] that uses
+/// [`Error`] as its error type.
+///
+/// Note that even if a function does not return anything when it succeeds,
+/// it should still be modeled as returning a `Result` rather than
+/// just an [`Error`].
+pub type Result<T = ()> = core::result::Result<T, Error>;
+
+impl From<AllocError> for Error {
+ fn from(_: AllocError) -> Error {
+ code::ENOMEM
+ }
+}
+
+// # Invariant: `-bindings::MAX_ERRNO` fits in an `i16`.
+crate::static_assert!(bindings::MAX_ERRNO <= -(i16::MIN as i32) as u32);
+
+pub(crate) fn from_kernel_result_helper<T>(r: Result<T>) -> T
+where
+ T: From<i16>,
+{
+ match r {
+ Ok(v) => v,
+ // NO-OVERFLOW: negative `errno`s are no smaller than `-bindings::MAX_ERRNO`,
+ // `-bindings::MAX_ERRNO` fits in an `i16` as per invariant above,
+ // therefore a negative `errno` always fits in an `i16` and will not overflow.
+ Err(e) => T::from(e.to_kernel_errno() as i16),
+ }
+}
+
+/// Transforms a [`crate::error::Result<T>`] to a kernel C integer result.
+///
+/// This is useful when calling Rust functions that return [`crate::error::Result<T>`]
+/// from inside `extern "C"` functions that need to return an integer
+/// error result.
+///
+/// `T` should be convertible to an `i16` via `From<i16>`.
+///
+/// # Examples
+///
+/// ```ignore
+/// # use kernel::from_kernel_result;
+/// # use kernel::bindings;
+/// unsafe extern "C" fn probe_callback(
+/// pdev: *mut bindings::platform_device,
+/// ) -> core::ffi::c_int {
+/// from_kernel_result! {
+/// let ptr = devm_alloc(pdev)?;
+/// bindings::platform_set_drvdata(pdev, ptr);
+/// Ok(0)
+/// }
+/// }
+/// ```
+macro_rules! from_kernel_result {
+ ($($tt:tt)*) => {{
+ $crate::error::from_kernel_result_helper((|| {
+ $($tt)*
+ })())
+ }};
+}
+
+pub(crate) use from_kernel_result;
+
+/// Transform a kernel "error pointer" to a normal pointer.
+///
+/// Some kernel C API functions return an "error pointer" which optionally
+/// embeds an `errno`. Callers are supposed to check the returned pointer
+/// for errors. This function performs the check and converts the "error pointer"
+/// to a normal pointer in an idiomatic fashion.
+///
+/// # Examples
+///
+/// ```ignore
+/// # use kernel::from_kernel_err_ptr;
+/// # use kernel::bindings;
+/// fn devm_platform_ioremap_resource(
+/// pdev: &mut PlatformDevice,
+/// index: u32,
+/// ) -> Result<*mut core::ffi::c_void> {
+/// // SAFETY: FFI call.
+/// unsafe {
+/// from_kernel_err_ptr(bindings::devm_platform_ioremap_resource(
+/// pdev.to_ptr(),
+/// index,
+/// ))
+/// }
+/// }
+/// ```
+// TODO: Remove `dead_code` marker once an in-kernel client is available.
+#[allow(dead_code)]
+pub(crate) fn from_kernel_err_ptr<T>(ptr: *mut T) -> Result<*mut T> {
+ // CAST: Casting a pointer to `*const core::ffi::c_void` is always valid.
+ let const_ptr: *const core::ffi::c_void = ptr.cast();
+ // SAFETY: The FFI function does not deref the pointer.
+ if unsafe { bindings::IS_ERR(const_ptr) } {
+ // SAFETY: The FFI function does not deref the pointer.
+ let err = unsafe { bindings::PTR_ERR(const_ptr) };
+ // CAST: If `IS_ERR()` returns `true`,
+ // then `PTR_ERR()` is guaranteed to return a
+ // negative value greater-or-equal to `-bindings::MAX_ERRNO`,
+ // which always fits in an `i16`, as per the invariant above.
+ // And an `i16` always fits in an `i32`. So casting `err` to
+ // an `i32` can never overflow, and is always valid.
+ //
+ // SAFETY: `IS_ERR()` ensures `err` is a
+ // negative value greater-or-equal to `-bindings::MAX_ERRNO`.
+ return Err(unsafe { Error::from_kernel_errno_unchecked(err as i32) });
+ }
+ Ok(ptr)
+}
+
+/// Converts an integer as returned by a C kernel function to an error if it's negative, and
+/// `Ok(())` otherwise.
+pub fn to_result(err: core::ffi::c_int) -> Result {
+ if err < 0 {
+ Err(Error::from_kernel_errno(err))
+ } else {
+ Ok(())
+ }
+}
diff --git a/rust/kernel/file.rs b/rust/kernel/file.rs
new file mode 100644
index 000000000000..62538e6b3eea
--- /dev/null
+++ b/rust/kernel/file.rs
@@ -0,0 +1,887 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Files and file descriptors.
+//!
+//! C headers: [`include/linux/fs.h`](../../../../include/linux/fs.h) and
+//! [`include/linux/file.h`](../../../../include/linux/file.h)
+
+use crate::{
+ bindings,
+ cred::Credential,
+ error::{code::*, from_kernel_result, Error, Result},
+ io_buffer::{IoBufferReader, IoBufferWriter},
+ iov_iter::IovIter,
+ mm,
+ sync::CondVar,
+ types::PointerWrapper,
+ user_ptr::{UserSlicePtr, UserSlicePtrReader, UserSlicePtrWriter},
+ ARef, AlwaysRefCounted,
+};
+use core::convert::{TryFrom, TryInto};
+use core::{cell::UnsafeCell, marker, mem, ptr};
+use macros::vtable;
+
+/// Flags associated with a [`File`].
+pub mod flags {
+ /// File is opened in append mode.
+ pub const O_APPEND: u32 = bindings::O_APPEND;
+
+ /// Signal-driven I/O is enabled.
+ pub const O_ASYNC: u32 = bindings::FASYNC;
+
+ /// Close-on-exec flag is set.
+ pub const O_CLOEXEC: u32 = bindings::O_CLOEXEC;
+
+ /// File was created if it didn't already exist.
+ pub const O_CREAT: u32 = bindings::O_CREAT;
+
+ /// Direct I/O is enabled for this file.
+ pub const O_DIRECT: u32 = bindings::O_DIRECT;
+
+ /// File must be a directory.
+ pub const O_DIRECTORY: u32 = bindings::O_DIRECTORY;
+
+ /// Like [`O_SYNC`] except metadata is not synced.
+ pub const O_DSYNC: u32 = bindings::O_DSYNC;
+
+ /// Ensure that this file is created with the `open(2)` call.
+ pub const O_EXCL: u32 = bindings::O_EXCL;
+
+ /// Large file size enabled (`off64_t` over `off_t`).
+ pub const O_LARGEFILE: u32 = bindings::O_LARGEFILE;
+
+ /// Do not update the file last access time.
+ pub const O_NOATIME: u32 = bindings::O_NOATIME;
+
+ /// File should not be used as process's controlling terminal.
+ pub const O_NOCTTY: u32 = bindings::O_NOCTTY;
+
+ /// If basename of path is a symbolic link, fail open.
+ pub const O_NOFOLLOW: u32 = bindings::O_NOFOLLOW;
+
+ /// File is using nonblocking I/O.
+ pub const O_NONBLOCK: u32 = bindings::O_NONBLOCK;
+
+ /// Also known as `O_NDELAY`.
+ ///
+ /// This is effectively the same flag as [`O_NONBLOCK`] on all architectures
+ /// except SPARC64.
+ pub const O_NDELAY: u32 = bindings::O_NDELAY;
+
+ /// Used to obtain a path file descriptor.
+ pub const O_PATH: u32 = bindings::O_PATH;
+
+ /// Write operations on this file will flush data and metadata.
+ pub const O_SYNC: u32 = bindings::O_SYNC;
+
+ /// This file is an unnamed temporary regular file.
+ pub const O_TMPFILE: u32 = bindings::O_TMPFILE;
+
+ /// File should be truncated to length 0.
+ pub const O_TRUNC: u32 = bindings::O_TRUNC;
+
+ /// Bitmask for access mode flags.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::file;
+ /// # fn do_something() {}
+ /// # let flags = 0;
+ /// if (flags & file::flags::O_ACCMODE) == file::flags::O_RDONLY {
+ /// do_something();
+ /// }
+ /// ```
+ pub const O_ACCMODE: u32 = bindings::O_ACCMODE;
+
+ /// File is read only.
+ pub const O_RDONLY: u32 = bindings::O_RDONLY;
+
+ /// File is write only.
+ pub const O_WRONLY: u32 = bindings::O_WRONLY;
+
+ /// File can be both read and written.
+ pub const O_RDWR: u32 = bindings::O_RDWR;
+}
+
+/// Wraps the kernel's `struct file`.
+///
+/// # Invariants
+///
+/// Instances of this type are always ref-counted, that is, a call to `get_file` ensures that the
+/// allocation remains valid at least until the matching call to `fput`.
+#[repr(transparent)]
+pub struct File(pub(crate) UnsafeCell<bindings::file>);
+
+// TODO: Accessing fields of `struct file` through the pointer is UB because other threads may be
+// writing to them. However, this is how the C code currently operates: naked reads and writes to
+// fields. Even if we used relaxed atomics on the Rust side, we can't force this on the C side.
+impl File {
+ /// Constructs a new [`struct file`] wrapper from a file descriptor.
+ ///
+ /// The file descriptor belongs to the current process.
+ pub fn from_fd(fd: u32) -> Result<ARef<Self>> {
+ // SAFETY: FFI call, there are no requirements on `fd`.
+ let ptr = ptr::NonNull::new(unsafe { bindings::fget(fd) }).ok_or(EBADF)?;
+
+ // SAFETY: `fget` increments the refcount before returning.
+ Ok(unsafe { ARef::from_raw(ptr.cast()) })
+ }
+
+ /// Creates a reference to a [`File`] from a valid pointer.
+ ///
+ /// # Safety
+ ///
+ /// The caller must ensure that `ptr` is valid and remains valid for the lifetime of the
+ /// returned [`File`] instance.
+ pub(crate) unsafe fn from_ptr<'a>(ptr: *const bindings::file) -> &'a File {
+ // SAFETY: The safety requirements guarantee the validity of the dereference, while the
+ // `File` type being transparent makes the cast ok.
+ unsafe { &*ptr.cast() }
+ }
+
+ /// Returns the current seek/cursor/pointer position (`struct file::f_pos`).
+ pub fn pos(&self) -> u64 {
+ // SAFETY: The file is valid because the shared reference guarantees a nonzero refcount.
+ unsafe { core::ptr::addr_of!((*self.0.get()).f_pos).read() as _ }
+ }
+
+ /// Returns the credentials of the task that originally opened the file.
+ pub fn cred(&self) -> &Credential {
+ // SAFETY: The file is valid because the shared reference guarantees a nonzero refcount.
+ let ptr = unsafe { core::ptr::addr_of!((*self.0.get()).f_cred).read() };
+ // SAFETY: The lifetimes of `self` and `Credential` are tied, so it is guaranteed that
+ // the credential pointer remains valid (because the file is still alive, and it doesn't
+ // change over the lifetime of a file).
+ unsafe { Credential::from_ptr(ptr) }
+ }
+
+ /// Returns the flags associated with the file.
+ ///
+ /// The flags are a combination of the constants in [`flags`].
+ pub fn flags(&self) -> u32 {
+ // SAFETY: The file is valid because the shared reference guarantees a nonzero refcount.
+ unsafe { core::ptr::addr_of!((*self.0.get()).f_flags).read() }
+ }
+}
+
+// SAFETY: The type invariants guarantee that `File` is always ref-counted.
+unsafe impl AlwaysRefCounted for File {
+ fn inc_ref(&self) {
+ // SAFETY: The existence of a shared reference means that the refcount is nonzero.
+ unsafe { bindings::get_file(self.0.get()) };
+ }
+
+ unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
+ // SAFETY: The safety requirements guarantee that the refcount is nonzero.
+ unsafe { bindings::fput(obj.cast().as_ptr()) }
+ }
+}
+
+/// A file descriptor reservation.
+///
+/// This allows the creation of a file descriptor in two steps: first, we reserve a slot for it,
+/// then we commit or drop the reservation. The first step may fail (e.g., the current process ran
+/// out of available slots), but commit and drop never fail (and are mutually exclusive).
+pub struct FileDescriptorReservation {
+ fd: u32,
+}
+
+impl FileDescriptorReservation {
+ /// Creates a new file descriptor reservation.
+ pub fn new(flags: u32) -> Result<Self> {
+ // SAFETY: FFI call, there are no safety requirements on `flags`.
+ let fd = unsafe { bindings::get_unused_fd_flags(flags) };
+ if fd < 0 {
+ return Err(Error::from_kernel_errno(fd));
+ }
+ Ok(Self { fd: fd as _ })
+ }
+
+ /// Returns the file descriptor number that was reserved.
+ pub fn reserved_fd(&self) -> u32 {
+ self.fd
+ }
+
+ /// Commits the reservation.
+ ///
+ /// The previously reserved file descriptor is bound to `file`.
+ pub fn commit(self, file: ARef<File>) {
+ // SAFETY: `self.fd` was previously returned by `get_unused_fd_flags`, and `file.ptr` is
+ // guaranteed to have an owned ref count by its type invariants.
+ unsafe { bindings::fd_install(self.fd, file.0.get()) };
+
+ // `fd_install` consumes both the file descriptor and the file reference, so we cannot run
+ // the destructors.
+ core::mem::forget(self);
+ core::mem::forget(file);
+ }
+}
+
+impl Drop for FileDescriptorReservation {
+ fn drop(&mut self) {
+ // SAFETY: `self.fd` was returned by a previous call to `get_unused_fd_flags`.
+ unsafe { bindings::put_unused_fd(self.fd) };
+ }
+}
+
+/// Wraps the kernel's `struct poll_table_struct`.
+///
+/// # Invariants
+///
+/// The pointer `PollTable::ptr` is null or valid.
+pub struct PollTable {
+ ptr: *mut bindings::poll_table_struct,
+}
+
+impl PollTable {
+ /// Constructors a new `struct poll_table_struct` wrapper.
+ ///
+ /// # Safety
+ ///
+ /// The pointer `ptr` must be either null or a valid pointer for the lifetime of the object.
+ unsafe fn from_ptr(ptr: *mut bindings::poll_table_struct) -> Self {
+ Self { ptr }
+ }
+
+ /// Associates the given file and condition variable to this poll table. It means notifying the
+ /// condition variable will notify the poll table as well; additionally, the association
+ /// between the condition variable and the file will automatically be undone by the kernel when
+ /// the file is destructed. To unilaterally remove the association before then, one can call
+ /// [`CondVar::free_waiters`].
+ ///
+ /// # Safety
+ ///
+ /// If the condition variable is destroyed before the file, then [`CondVar::free_waiters`] must
+ /// be called to ensure that all waiters are flushed out.
+ pub unsafe fn register_wait<'a>(&self, file: &'a File, cv: &'a CondVar) {
+ if self.ptr.is_null() {
+ return;
+ }
+
+ // SAFETY: `PollTable::ptr` is guaranteed to be valid by the type invariants and the null
+ // check above.
+ let table = unsafe { &*self.ptr };
+ if let Some(proc) = table._qproc {
+ // SAFETY: All pointers are known to be valid.
+ unsafe { proc(file.0.get() as _, cv.wait_list.get(), self.ptr) }
+ }
+ }
+}
+
+/// Equivalent to [`std::io::SeekFrom`].
+///
+/// [`std::io::SeekFrom`]: https://doc.rust-lang.org/std/io/enum.SeekFrom.html
+pub enum SeekFrom {
+ /// Equivalent to C's `SEEK_SET`.
+ Start(u64),
+
+ /// Equivalent to C's `SEEK_END`.
+ End(i64),
+
+ /// Equivalent to C's `SEEK_CUR`.
+ Current(i64),
+}
+
+pub(crate) struct OperationsVtable<A, T>(marker::PhantomData<A>, marker::PhantomData<T>);
+
+impl<A: OpenAdapter<T::OpenData>, T: Operations> OperationsVtable<A, T> {
+ /// Called by the VFS when an inode should be opened.
+ ///
+ /// Calls `T::open` on the returned value of `A::convert`.
+ ///
+ /// # Safety
+ ///
+ /// The returned value of `A::convert` must be a valid non-null pointer and
+ /// `T:open` must return a valid non-null pointer on an `Ok` result.
+ unsafe extern "C" fn open_callback(
+ inode: *mut bindings::inode,
+ file: *mut bindings::file,
+ ) -> core::ffi::c_int {
+ from_kernel_result! {
+ // SAFETY: `A::convert` must return a valid non-null pointer that
+ // should point to data in the inode or file that lives longer
+ // than the following use of `T::open`.
+ let arg = unsafe { A::convert(inode, file) };
+ // SAFETY: The C contract guarantees that `file` is valid. Additionally,
+ // `fileref` never outlives this function, so it is guaranteed to be
+ // valid.
+ let fileref = unsafe { File::from_ptr(file) };
+ // SAFETY: `arg` was previously returned by `A::convert` and must
+ // be a valid non-null pointer.
+ let ptr = T::open(unsafe { &*arg }, fileref)?.into_pointer();
+ // SAFETY: The C contract guarantees that `private_data` is available
+ // for implementers of the file operations (no other C code accesses
+ // it), so we know that there are no concurrent threads/CPUs accessing
+ // it (it's not visible to any other Rust code).
+ unsafe { (*file).private_data = ptr as *mut core::ffi::c_void };
+ Ok(0)
+ }
+ }
+
+ unsafe extern "C" fn read_callback(
+ file: *mut bindings::file,
+ buf: *mut core::ffi::c_char,
+ len: core::ffi::c_size_t,
+ offset: *mut bindings::loff_t,
+ ) -> core::ffi::c_ssize_t {
+ from_kernel_result! {
+ let mut data =
+ unsafe { UserSlicePtr::new(buf as *mut core::ffi::c_void, len).writer() };
+ // SAFETY: `private_data` was initialised by `open_callback` with a value returned by
+ // `T::Data::into_pointer`. `T::Data::from_pointer` is only called by the
+ // `release` callback, which the C API guarantees that will be called only when all
+ // references to `file` have been released, so we know it can't be called while this
+ // function is running.
+ let f = unsafe { T::Data::borrow((*file).private_data) };
+ // No `FMODE_UNSIGNED_OFFSET` support, so `offset` must be in [0, 2^63).
+ // See <https://github.com/fishinabarrel/linux-kernel-module-rust/pull/113>.
+ let read = T::read(
+ f,
+ unsafe { File::from_ptr(file) },
+ &mut data,
+ unsafe { *offset }.try_into()?,
+ )?;
+ unsafe { (*offset) += bindings::loff_t::try_from(read).unwrap() };
+ Ok(read as _)
+ }
+ }
+
+ unsafe extern "C" fn read_iter_callback(
+ iocb: *mut bindings::kiocb,
+ raw_iter: *mut bindings::iov_iter,
+ ) -> isize {
+ from_kernel_result! {
+ let mut iter = unsafe { IovIter::from_ptr(raw_iter) };
+ let file = unsafe { (*iocb).ki_filp };
+ let offset = unsafe { (*iocb).ki_pos };
+ // SAFETY: `private_data` was initialised by `open_callback` with a value returned by
+ // `T::Data::into_pointer`. `T::Data::from_pointer` is only called by the
+ // `release` callback, which the C API guarantees that will be called only when all
+ // references to `file` have been released, so we know it can't be called while this
+ // function is running.
+ let f = unsafe { T::Data::borrow((*file).private_data) };
+ let read = T::read(
+ f,
+ unsafe { File::from_ptr(file) },
+ &mut iter,
+ offset.try_into()?,
+ )?;
+ unsafe { (*iocb).ki_pos += bindings::loff_t::try_from(read).unwrap() };
+ Ok(read as _)
+ }
+ }
+
+ unsafe extern "C" fn write_callback(
+ file: *mut bindings::file,
+ buf: *const core::ffi::c_char,
+ len: core::ffi::c_size_t,
+ offset: *mut bindings::loff_t,
+ ) -> core::ffi::c_ssize_t {
+ from_kernel_result! {
+ let mut data =
+ unsafe { UserSlicePtr::new(buf as *mut core::ffi::c_void, len).reader() };
+ // SAFETY: `private_data` was initialised by `open_callback` with a value returned by
+ // `T::Data::into_pointer`. `T::Data::from_pointer` is only called by the
+ // `release` callback, which the C API guarantees that will be called only when all
+ // references to `file` have been released, so we know it can't be called while this
+ // function is running.
+ let f = unsafe { T::Data::borrow((*file).private_data) };
+ // No `FMODE_UNSIGNED_OFFSET` support, so `offset` must be in [0, 2^63).
+ // See <https://github.com/fishinabarrel/linux-kernel-module-rust/pull/113>.
+ let written = T::write(
+ f,
+ unsafe { File::from_ptr(file) },
+ &mut data,
+ unsafe { *offset }.try_into()?,
+ )?;
+ unsafe { (*offset) += bindings::loff_t::try_from(written).unwrap() };
+ Ok(written as _)
+ }
+ }
+
+ unsafe extern "C" fn write_iter_callback(
+ iocb: *mut bindings::kiocb,
+ raw_iter: *mut bindings::iov_iter,
+ ) -> isize {
+ from_kernel_result! {
+ let mut iter = unsafe { IovIter::from_ptr(raw_iter) };
+ let file = unsafe { (*iocb).ki_filp };
+ let offset = unsafe { (*iocb).ki_pos };
+ // SAFETY: `private_data` was initialised by `open_callback` with a value returned by
+ // `T::Data::into_pointer`. `T::Data::from_pointer` is only called by the
+ // `release` callback, which the C API guarantees that will be called only when all
+ // references to `file` have been released, so we know it can't be called while this
+ // function is running.
+ let f = unsafe { T::Data::borrow((*file).private_data) };
+ let written = T::write(
+ f,
+ unsafe { File::from_ptr(file) },
+ &mut iter,
+ offset.try_into()?,
+ )?;
+ unsafe { (*iocb).ki_pos += bindings::loff_t::try_from(written).unwrap() };
+ Ok(written as _)
+ }
+ }
+
+ unsafe extern "C" fn release_callback(
+ _inode: *mut bindings::inode,
+ file: *mut bindings::file,
+ ) -> core::ffi::c_int {
+ let ptr = mem::replace(unsafe { &mut (*file).private_data }, ptr::null_mut());
+ T::release(unsafe { T::Data::from_pointer(ptr as _) }, unsafe {
+ File::from_ptr(file)
+ });
+ 0
+ }
+
+ unsafe extern "C" fn llseek_callback(
+ file: *mut bindings::file,
+ offset: bindings::loff_t,
+ whence: core::ffi::c_int,
+ ) -> bindings::loff_t {
+ from_kernel_result! {
+ let off = match whence as u32 {
+ bindings::SEEK_SET => SeekFrom::Start(offset.try_into()?),
+ bindings::SEEK_CUR => SeekFrom::Current(offset),
+ bindings::SEEK_END => SeekFrom::End(offset),
+ _ => return Err(EINVAL),
+ };
+ // SAFETY: `private_data` was initialised by `open_callback` with a value returned by
+ // `T::Data::into_pointer`. `T::Data::from_pointer` is only called by the
+ // `release` callback, which the C API guarantees that will be called only when all
+ // references to `file` have been released, so we know it can't be called while this
+ // function is running.
+ let f = unsafe { T::Data::borrow((*file).private_data) };
+ let off = T::seek(f, unsafe { File::from_ptr(file) }, off)?;
+ Ok(off as bindings::loff_t)
+ }
+ }
+
+ unsafe extern "C" fn unlocked_ioctl_callback(
+ file: *mut bindings::file,
+ cmd: core::ffi::c_uint,
+ arg: core::ffi::c_ulong,
+ ) -> core::ffi::c_long {
+ from_kernel_result! {
+ // SAFETY: `private_data` was initialised by `open_callback` with a value returned by
+ // `T::Data::into_pointer`. `T::Data::from_pointer` is only called by the
+ // `release` callback, which the C API guarantees that will be called only when all
+ // references to `file` have been released, so we know it can't be called while this
+ // function is running.
+ let f = unsafe { T::Data::borrow((*file).private_data) };
+ let mut cmd = IoctlCommand::new(cmd as _, arg as _);
+ let ret = T::ioctl(f, unsafe { File::from_ptr(file) }, &mut cmd)?;
+ Ok(ret as _)
+ }
+ }
+
+ unsafe extern "C" fn compat_ioctl_callback(
+ file: *mut bindings::file,
+ cmd: core::ffi::c_uint,
+ arg: core::ffi::c_ulong,
+ ) -> core::ffi::c_long {
+ from_kernel_result! {
+ // SAFETY: `private_data` was initialised by `open_callback` with a value returned by
+ // `T::Data::into_pointer`. `T::Data::from_pointer` is only called by the
+ // `release` callback, which the C API guarantees that will be called only when all
+ // references to `file` have been released, so we know it can't be called while this
+ // function is running.
+ let f = unsafe { T::Data::borrow((*file).private_data) };
+ let mut cmd = IoctlCommand::new(cmd as _, arg as _);
+ let ret = T::compat_ioctl(f, unsafe { File::from_ptr(file) }, &mut cmd)?;
+ Ok(ret as _)
+ }
+ }
+
+ unsafe extern "C" fn mmap_callback(
+ file: *mut bindings::file,
+ vma: *mut bindings::vm_area_struct,
+ ) -> core::ffi::c_int {
+ from_kernel_result! {
+ // SAFETY: `private_data` was initialised by `open_callback` with a value returned by
+ // `T::Data::into_pointer`. `T::Data::from_pointer` is only called by the
+ // `release` callback, which the C API guarantees that will be called only when all
+ // references to `file` have been released, so we know it can't be called while this
+ // function is running.
+ let f = unsafe { T::Data::borrow((*file).private_data) };
+
+ // SAFETY: The C API guarantees that `vma` is valid for the duration of this call.
+ // `area` only lives within this call, so it is guaranteed to be valid.
+ let mut area = unsafe { mm::virt::Area::from_ptr(vma) };
+
+ // SAFETY: The C API guarantees that `file` is valid for the duration of this call,
+ // which is longer than the lifetime of the file reference.
+ T::mmap(f, unsafe { File::from_ptr(file) }, &mut area)?;
+ Ok(0)
+ }
+ }
+
+ unsafe extern "C" fn fsync_callback(
+ file: *mut bindings::file,
+ start: bindings::loff_t,
+ end: bindings::loff_t,
+ datasync: core::ffi::c_int,
+ ) -> core::ffi::c_int {
+ from_kernel_result! {
+ let start = start.try_into()?;
+ let end = end.try_into()?;
+ let datasync = datasync != 0;
+ // SAFETY: `private_data` was initialised by `open_callback` with a value returned by
+ // `T::Data::into_pointer`. `T::Data::from_pointer` is only called by the
+ // `release` callback, which the C API guarantees that will be called only when all
+ // references to `file` have been released, so we know it can't be called while this
+ // function is running.
+ let f = unsafe { T::Data::borrow((*file).private_data) };
+ let res = T::fsync(f, unsafe { File::from_ptr(file) }, start, end, datasync)?;
+ Ok(res.try_into().unwrap())
+ }
+ }
+
+ unsafe extern "C" fn poll_callback(
+ file: *mut bindings::file,
+ wait: *mut bindings::poll_table_struct,
+ ) -> bindings::__poll_t {
+ // SAFETY: `private_data` was initialised by `open_callback` with a value returned by
+ // `T::Data::into_pointer`. `T::Data::from_pointer` is only called by the `release`
+ // callback, which the C API guarantees that will be called only when all references to
+ // `file` have been released, so we know it can't be called while this function is running.
+ let f = unsafe { T::Data::borrow((*file).private_data) };
+ match T::poll(f, unsafe { File::from_ptr(file) }, unsafe {
+ &PollTable::from_ptr(wait)
+ }) {
+ Ok(v) => v,
+ Err(_) => bindings::POLLERR,
+ }
+ }
+
+ const VTABLE: bindings::file_operations = bindings::file_operations {
+ open: Some(Self::open_callback),
+ release: Some(Self::release_callback),
+ read: if T::HAS_READ {
+ Some(Self::read_callback)
+ } else {
+ None
+ },
+ write: if T::HAS_WRITE {
+ Some(Self::write_callback)
+ } else {
+ None
+ },
+ llseek: if T::HAS_SEEK {
+ Some(Self::llseek_callback)
+ } else {
+ None
+ },
+
+ check_flags: None,
+ compat_ioctl: if T::HAS_COMPAT_IOCTL {
+ Some(Self::compat_ioctl_callback)
+ } else {
+ None
+ },
+ copy_file_range: None,
+ fallocate: None,
+ fadvise: None,
+ fasync: None,
+ flock: None,
+ flush: None,
+ fsync: if T::HAS_FSYNC {
+ Some(Self::fsync_callback)
+ } else {
+ None
+ },
+ get_unmapped_area: None,
+ iterate: None,
+ iterate_shared: None,
+ iopoll: None,
+ lock: None,
+ mmap: if T::HAS_MMAP {
+ Some(Self::mmap_callback)
+ } else {
+ None
+ },
+ mmap_supported_flags: 0,
+ owner: ptr::null_mut(),
+ poll: if T::HAS_POLL {
+ Some(Self::poll_callback)
+ } else {
+ None
+ },
+ read_iter: if T::HAS_READ {
+ Some(Self::read_iter_callback)
+ } else {
+ None
+ },
+ remap_file_range: None,
+ sendpage: None,
+ setlease: None,
+ show_fdinfo: None,
+ splice_read: None,
+ splice_write: None,
+ unlocked_ioctl: if T::HAS_IOCTL {
+ Some(Self::unlocked_ioctl_callback)
+ } else {
+ None
+ },
+ uring_cmd: None,
+ write_iter: if T::HAS_WRITE {
+ Some(Self::write_iter_callback)
+ } else {
+ None
+ },
+ };
+
+ /// Builds an instance of [`struct file_operations`].
+ ///
+ /// # Safety
+ ///
+ /// The caller must ensure that the adapter is compatible with the way the device is registered.
+ pub(crate) const unsafe fn build() -> &'static bindings::file_operations {
+ &Self::VTABLE
+ }
+}
+
+/// Allows the handling of ioctls defined with the `_IO`, `_IOR`, `_IOW`, and `_IOWR` macros.
+///
+/// For each macro, there is a handler function that takes the appropriate types as arguments.
+pub trait IoctlHandler: Sync {
+ /// The type of the first argument to each associated function.
+ type Target<'a>;
+
+ /// Handles ioctls defined with the `_IO` macro, that is, with no buffer as argument.
+ fn pure(_this: Self::Target<'_>, _file: &File, _cmd: u32, _arg: usize) -> Result<i32> {
+ Err(EINVAL)
+ }
+
+ /// Handles ioctls defined with the `_IOR` macro, that is, with an output buffer provided as
+ /// argument.
+ fn read(
+ _this: Self::Target<'_>,
+ _file: &File,
+ _cmd: u32,
+ _writer: &mut UserSlicePtrWriter,
+ ) -> Result<i32> {
+ Err(EINVAL)
+ }
+
+ /// Handles ioctls defined with the `_IOW` macro, that is, with an input buffer provided as
+ /// argument.
+ fn write(
+ _this: Self::Target<'_>,
+ _file: &File,
+ _cmd: u32,
+ _reader: &mut UserSlicePtrReader,
+ ) -> Result<i32> {
+ Err(EINVAL)
+ }
+
+ /// Handles ioctls defined with the `_IOWR` macro, that is, with a buffer for both input and
+ /// output provided as argument.
+ fn read_write(
+ _this: Self::Target<'_>,
+ _file: &File,
+ _cmd: u32,
+ _data: UserSlicePtr,
+ ) -> Result<i32> {
+ Err(EINVAL)
+ }
+}
+
+/// Represents an ioctl command.
+///
+/// It can use the components of an ioctl command to dispatch ioctls using
+/// [`IoctlCommand::dispatch`].
+pub struct IoctlCommand {
+ cmd: u32,
+ arg: usize,
+ user_slice: Option<UserSlicePtr>,
+}
+
+impl IoctlCommand {
+ /// Constructs a new [`IoctlCommand`].
+ fn new(cmd: u32, arg: usize) -> Self {
+ let size = (cmd >> bindings::_IOC_SIZESHIFT) & bindings::_IOC_SIZEMASK;
+
+ // SAFETY: We only create one instance of the user slice per ioctl call, so TOCTOU issues
+ // are not possible.
+ let user_slice = Some(unsafe { UserSlicePtr::new(arg as _, size as _) });
+ Self {
+ cmd,
+ arg,
+ user_slice,
+ }
+ }
+
+ /// Dispatches the given ioctl to the appropriate handler based on the value of the command. It
+ /// also creates a [`UserSlicePtr`], [`UserSlicePtrReader`], or [`UserSlicePtrWriter`]
+ /// depending on the direction of the buffer of the command.
+ ///
+ /// It is meant to be used in implementations of [`Operations::ioctl`] and
+ /// [`Operations::compat_ioctl`].
+ pub fn dispatch<T: IoctlHandler>(
+ &mut self,
+ handler: T::Target<'_>,
+ file: &File,
+ ) -> Result<i32> {
+ let dir = (self.cmd >> bindings::_IOC_DIRSHIFT) & bindings::_IOC_DIRMASK;
+ if dir == bindings::_IOC_NONE {
+ return T::pure(handler, file, self.cmd, self.arg);
+ }
+
+ let data = self.user_slice.take().ok_or(EINVAL)?;
+ const READ_WRITE: u32 = bindings::_IOC_READ | bindings::_IOC_WRITE;
+ match dir {
+ bindings::_IOC_WRITE => T::write(handler, file, self.cmd, &mut data.reader()),
+ bindings::_IOC_READ => T::read(handler, file, self.cmd, &mut data.writer()),
+ READ_WRITE => T::read_write(handler, file, self.cmd, data),
+ _ => Err(EINVAL),
+ }
+ }
+
+ /// Returns the raw 32-bit value of the command and the ptr-sized argument.
+ pub fn raw(&self) -> (u32, usize) {
+ (self.cmd, self.arg)
+ }
+}
+
+/// Trait for extracting file open arguments from kernel data structures.
+///
+/// This is meant to be implemented by registration managers.
+pub trait OpenAdapter<T: Sync> {
+ /// Converts untyped data stored in [`struct inode`] and [`struct file`] (when [`struct
+ /// file_operations::open`] is called) into the given type. For example, for `miscdev`
+ /// devices, a pointer to the registered [`struct miscdev`] is stored in [`struct
+ /// file::private_data`].
+ ///
+ /// # Safety
+ ///
+ /// This function must be called only when [`struct file_operations::open`] is being called for
+ /// a file that was registered by the implementer. The returned pointer must be valid and
+ /// not-null.
+ unsafe fn convert(_inode: *mut bindings::inode, _file: *mut bindings::file) -> *const T;
+}
+
+/// Corresponds to the kernel's `struct file_operations`.
+///
+/// You implement this trait whenever you would create a `struct file_operations`.
+///
+/// File descriptors may be used from multiple threads/processes concurrently, so your type must be
+/// [`Sync`]. It must also be [`Send`] because [`Operations::release`] will be called from the
+/// thread that decrements that associated file's refcount to zero.
+#[vtable]
+pub trait Operations {
+ /// The type of the context data returned by [`Operations::open`] and made available to
+ /// other methods.
+ type Data: PointerWrapper + Send + Sync = ();
+
+ /// The type of the context data passed to [`Operations::open`].
+ type OpenData: Sync = ();
+
+ /// Creates a new instance of this file.
+ ///
+ /// Corresponds to the `open` function pointer in `struct file_operations`.
+ fn open(context: &Self::OpenData, file: &File) -> Result<Self::Data>;
+
+ /// Cleans up after the last reference to the file goes away.
+ ///
+ /// Note that context data is moved, so it will be freed automatically unless the
+ /// implementation moves it elsewhere.
+ ///
+ /// Corresponds to the `release` function pointer in `struct file_operations`.
+ fn release(_data: Self::Data, _file: &File) {}
+
+ /// Reads data from this file to the caller's buffer.
+ ///
+ /// Corresponds to the `read` and `read_iter` function pointers in `struct file_operations`.
+ fn read(
+ _data: <Self::Data as PointerWrapper>::Borrowed<'_>,
+ _file: &File,
+ _writer: &mut impl IoBufferWriter,
+ _offset: u64,
+ ) -> Result<usize> {
+ Err(EINVAL)
+ }
+
+ /// Writes data from the caller's buffer to this file.
+ ///
+ /// Corresponds to the `write` and `write_iter` function pointers in `struct file_operations`.
+ fn write(
+ _data: <Self::Data as PointerWrapper>::Borrowed<'_>,
+ _file: &File,
+ _reader: &mut impl IoBufferReader,
+ _offset: u64,
+ ) -> Result<usize> {
+ Err(EINVAL)
+ }
+
+ /// Changes the position of the file.
+ ///
+ /// Corresponds to the `llseek` function pointer in `struct file_operations`.
+ fn seek(
+ _data: <Self::Data as PointerWrapper>::Borrowed<'_>,
+ _file: &File,
+ _offset: SeekFrom,
+ ) -> Result<u64> {
+ Err(EINVAL)
+ }
+
+ /// Performs IO control operations that are specific to the file.
+ ///
+ /// Corresponds to the `unlocked_ioctl` function pointer in `struct file_operations`.
+ fn ioctl(
+ _data: <Self::Data as PointerWrapper>::Borrowed<'_>,
+ _file: &File,
+ _cmd: &mut IoctlCommand,
+ ) -> Result<i32> {
+ Err(ENOTTY)
+ }
+
+ /// Performs 32-bit IO control operations on that are specific to the file on 64-bit kernels.
+ ///
+ /// Corresponds to the `compat_ioctl` function pointer in `struct file_operations`.
+ fn compat_ioctl(
+ _data: <Self::Data as PointerWrapper>::Borrowed<'_>,
+ _file: &File,
+ _cmd: &mut IoctlCommand,
+ ) -> Result<i32> {
+ Err(ENOTTY)
+ }
+
+ /// Syncs pending changes to this file.
+ ///
+ /// Corresponds to the `fsync` function pointer in `struct file_operations`.
+ fn fsync(
+ _data: <Self::Data as PointerWrapper>::Borrowed<'_>,
+ _file: &File,
+ _start: u64,
+ _end: u64,
+ _datasync: bool,
+ ) -> Result<u32> {
+ Err(EINVAL)
+ }
+
+ /// Maps areas of the caller's virtual memory with device/file memory.
+ ///
+ /// Corresponds to the `mmap` function pointer in `struct file_operations`.
+ fn mmap(
+ _data: <Self::Data as PointerWrapper>::Borrowed<'_>,
+ _file: &File,
+ _vma: &mut mm::virt::Area,
+ ) -> Result {
+ Err(EINVAL)
+ }
+
+ /// Checks the state of the file and optionally registers for notification when the state
+ /// changes.
+ ///
+ /// Corresponds to the `poll` function pointer in `struct file_operations`.
+ fn poll(
+ _data: <Self::Data as PointerWrapper>::Borrowed<'_>,
+ _file: &File,
+ _table: &PollTable,
+ ) -> Result<u32> {
+ Ok(bindings::POLLIN | bindings::POLLOUT | bindings::POLLRDNORM | bindings::POLLWRNORM)
+ }
+}
diff --git a/rust/kernel/fs.rs b/rust/kernel/fs.rs
new file mode 100644
index 000000000000..46dc38aad2bc
--- /dev/null
+++ b/rust/kernel/fs.rs
@@ -0,0 +1,846 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! File systems.
+//!
+//! C headers: [`include/linux/fs.h`](../../../../include/linux/fs.h)
+
+use crate::{
+ bindings, error::code::*, error::from_kernel_result, str::CStr, to_result,
+ types::PointerWrapper, AlwaysRefCounted, Error, Result, ScopeGuard, ThisModule,
+};
+use alloc::boxed::Box;
+use core::{
+ cell::UnsafeCell,
+ marker::{PhantomData, PhantomPinned},
+ pin::Pin,
+ ptr,
+};
+use macros::vtable;
+
+pub mod param;
+
+/// Type of superblock keying.
+///
+/// It determines how C's `fs_context_operations::get_tree` is implemented.
+pub enum Super {
+ /// Only one such superblock may exist.
+ Single,
+
+ /// As [`Super::Single`], but reconfigure if it exists.
+ SingleReconf,
+
+ /// Superblocks with different data pointers may exist.
+ Keyed,
+
+ /// Multiple independent superblocks may exist.
+ Independent,
+
+ /// Uses a block device.
+ BlockDev,
+}
+
+/// A file system context.
+///
+/// It is used to gather configuration to then mount or reconfigure a file system.
+#[vtable]
+pub trait Context<T: Type + ?Sized> {
+ /// Type of the data associated with the context.
+ type Data: PointerWrapper + Send + Sync + 'static;
+
+ /// The typed file system parameters.
+ ///
+ /// Users are encouraged to define it using the [`crate::define_fs_params`] macro.
+ const PARAMS: param::SpecTable<'static, Self::Data> = param::SpecTable::empty();
+
+ /// Creates a new context.
+ fn try_new() -> Result<Self::Data>;
+
+ /// Parses a parameter that wasn't specified in [`Self::PARAMS`].
+ fn parse_unknown_param(
+ _data: &mut Self::Data,
+ _name: &CStr,
+ _value: param::Value<'_>,
+ ) -> Result {
+ Err(ENOPARAM)
+ }
+
+ /// Parses the whole parameter block, potentially skipping regular handling for parts of it.
+ ///
+ /// The return value is the portion of the input buffer for which the regular handling
+ /// (involving [`Self::PARAMS`] and [`Self::parse_unknown_param`]) will still be carried out.
+ /// If it's `None`, the regular handling is not performed at all.
+ fn parse_monolithic<'a>(
+ _data: &mut Self::Data,
+ _buf: Option<&'a mut [u8]>,
+ ) -> Result<Option<&'a mut [u8]>> {
+ Ok(None)
+ }
+
+ /// Returns the superblock data to be used by this file system context.
+ ///
+ /// This is only needed when [`Type::SUPER_TYPE`] is [`Super::Keyed`], otherwise it is never
+ /// called. In the former case, when the fs is being mounted, an existing superblock is reused
+ /// if one can be found with the same data as the returned value; otherwise a new superblock is
+ /// created.
+ fn tree_key(_data: &mut Self::Data) -> Result<T::Data> {
+ Err(ENOTSUPP)
+ }
+}
+
+struct Tables<T: Type + ?Sized>(T);
+impl<T: Type + ?Sized> Tables<T> {
+ const CONTEXT: bindings::fs_context_operations = bindings::fs_context_operations {
+ free: Some(Self::free_callback),
+ parse_param: Some(Self::parse_param_callback),
+ get_tree: Some(Self::get_tree_callback),
+ reconfigure: Some(Self::reconfigure_callback),
+ parse_monolithic: if <T::Context as Context<T>>::HAS_PARSE_MONOLITHIC {
+ Some(Self::parse_monolithic_callback)
+ } else {
+ None
+ },
+ dup: None,
+ };
+
+ unsafe extern "C" fn free_callback(fc: *mut bindings::fs_context) {
+ // SAFETY: The callback contract guarantees that `fc` is valid.
+ let fc = unsafe { &*fc };
+
+ let ptr = fc.fs_private;
+ if !ptr.is_null() {
+ // SAFETY: `fs_private` was initialised with the result of a `to_pointer` call in
+ // `init_fs_context_callback`, so it's ok to call `from_pointer` here.
+ unsafe { <T::Context as Context<T>>::Data::from_pointer(ptr) };
+ }
+
+ let ptr = fc.s_fs_info;
+ if !ptr.is_null() {
+ // SAFETY: `s_fs_info` may be initialised with the result of a `to_pointer` call in
+ // `get_tree_callback` when keyed superblocks are used (`get_tree_keyed` sets it), so
+ // it's ok to call `from_pointer` here.
+ unsafe { T::Data::from_pointer(ptr) };
+ }
+ }
+
+ unsafe extern "C" fn parse_param_callback(
+ fc: *mut bindings::fs_context,
+ param: *mut bindings::fs_parameter,
+ ) -> core::ffi::c_int {
+ from_kernel_result! {
+ // SAFETY: The callback contract guarantees that `fc` is valid.
+ let ptr = unsafe { (*fc).fs_private };
+
+ // SAFETY: The value of `ptr` (coming from `fs_private` was initialised in
+ // `init_fs_context_callback` to the result of an `into_pointer` call. Since the
+ // context is valid, `from_pointer` wasn't called yet, so `ptr` is valid. Additionally,
+ // the callback contract guarantees that callbacks are serialised, so it is ok to
+ // mutably reference it.
+ let mut data =
+ unsafe { <<T::Context as Context<T>>::Data as PointerWrapper>::borrow_mut(ptr) };
+ let mut result = bindings::fs_parse_result::default();
+ // SAFETY: All parameters are valid at least for the duration of the call.
+ let opt =
+ unsafe { bindings::fs_parse(fc, T::Context::PARAMS.first, param, &mut result) };
+
+ // SAFETY: The callback contract guarantees that `param` is valid for the duration of
+ // the callback.
+ let param = unsafe { &*param };
+ if opt >= 0 {
+ let opt = opt as usize;
+ if opt >= T::Context::PARAMS.handlers.len() {
+ return Err(EINVAL);
+ }
+ T::Context::PARAMS.handlers[opt].handle_param(&mut data, param, &result)?;
+ return Ok(0);
+ }
+
+ if opt != ENOPARAM.to_kernel_errno() {
+ return Err(Error::from_kernel_errno(opt));
+ }
+
+ if !T::Context::HAS_PARSE_UNKNOWN_PARAM {
+ return Err(ENOPARAM);
+ }
+
+ let val = param::Value::from_fs_parameter(param);
+ // SAFETY: The callback contract guarantees the parameter key to be valid and last at
+ // least the duration of the callback.
+ T::Context::parse_unknown_param(
+ &mut data,
+ unsafe { CStr::from_char_ptr(param.key) },
+ val,
+ )?;
+ Ok(0)
+ }
+ }
+
+ unsafe extern "C" fn fill_super_callback(
+ sb_ptr: *mut bindings::super_block,
+ fc: *mut bindings::fs_context,
+ ) -> core::ffi::c_int {
+ from_kernel_result! {
+ // SAFETY: The callback contract guarantees that `fc` is valid. It also guarantees that
+ // the callbacks are serialised for a given `fc`, so it is safe to mutably dereference
+ // it.
+ let fc = unsafe { &mut *fc };
+ let ptr = core::mem::replace(&mut fc.fs_private, ptr::null_mut());
+
+ // SAFETY: The value of `ptr` (coming from `fs_private` was initialised in
+ // `init_fs_context_callback` to the result of an `into_pointer` call. The context is
+ // being used to initialise a superblock, so we took over `ptr` (`fs_private` is set to
+ // null now) and call `from_pointer` below.
+ let data =
+ unsafe { <<T::Context as Context<T>>::Data as PointerWrapper>::from_pointer(ptr) };
+
+ // SAFETY: The callback contract guarantees that `sb_ptr` is a unique pointer to a
+ // newly-created superblock.
+ let newsb = unsafe { NewSuperBlock::new(sb_ptr) };
+ T::fill_super(data, newsb)?;
+ Ok(0)
+ }
+ }
+
+ unsafe extern "C" fn get_tree_callback(fc: *mut bindings::fs_context) -> core::ffi::c_int {
+ // N.B. When new types are added below, we may need to update `kill_sb_callback` to ensure
+ // that we're cleaning up properly.
+ match T::SUPER_TYPE {
+ Super::Single => unsafe {
+ // SAFETY: `fc` is valid per the callback contract. `fill_super_callback` also has
+ // the right type and is a valid callback.
+ bindings::get_tree_single(fc, Some(Self::fill_super_callback))
+ },
+ Super::SingleReconf => unsafe {
+ // SAFETY: `fc` is valid per the callback contract. `fill_super_callback` also has
+ // the right type and is a valid callback.
+ bindings::get_tree_single_reconf(fc, Some(Self::fill_super_callback))
+ },
+ Super::Independent => unsafe {
+ // SAFETY: `fc` is valid per the callback contract. `fill_super_callback` also has
+ // the right type and is a valid callback.
+ bindings::get_tree_nodev(fc, Some(Self::fill_super_callback))
+ },
+ Super::BlockDev => unsafe {
+ // SAFETY: `fc` is valid per the callback contract. `fill_super_callback` also has
+ // the right type and is a valid callback.
+ bindings::get_tree_bdev(fc, Some(Self::fill_super_callback))
+ },
+ Super::Keyed => {
+ from_kernel_result! {
+ // SAFETY: `fc` is valid per the callback contract.
+ let ctx = unsafe { &*fc };
+ let ptr = ctx.fs_private;
+
+ // SAFETY: The value of `ptr` (coming from `fs_private` was initialised in
+ // `init_fs_context_callback` to the result of an `into_pointer` call. Since
+ // the context is valid, `from_pointer` wasn't called yet, so `ptr` is valid.
+ // Additionally, the callback contract guarantees that callbacks are
+ // serialised, so it is ok to mutably reference it.
+ let mut data = unsafe {
+ <<T::Context as Context<T>>::Data as PointerWrapper>::borrow_mut(ptr)
+ };
+ let fs_data = T::Context::tree_key(&mut data)?;
+ let fs_data_ptr = fs_data.into_pointer();
+
+ // `get_tree_keyed` reassigns `ctx.s_fs_info`, which should be ok because
+ // nowhere else is it assigned a non-null value. However, we add the assert
+ // below to ensure that there are no unexpected paths on the C side that may do
+ // this.
+ assert_eq!(ctx.s_fs_info, core::ptr::null_mut());
+
+ // SAFETY: `fc` is valid per the callback contract. `fill_super_callback` also
+ // has the right type and is a valid callback. Lastly, we just called
+ // `into_pointer` above, so `fs_data_ptr` is also valid.
+ to_result(unsafe {
+ bindings::get_tree_keyed(
+ fc,
+ Some(Self::fill_super_callback),
+ fs_data_ptr as _,
+ )
+ })?;
+ Ok(0)
+ }
+ }
+ }
+ }
+
+ unsafe extern "C" fn reconfigure_callback(_fc: *mut bindings::fs_context) -> core::ffi::c_int {
+ EINVAL.to_kernel_errno()
+ }
+
+ unsafe extern "C" fn parse_monolithic_callback(
+ fc: *mut bindings::fs_context,
+ buf: *mut core::ffi::c_void,
+ ) -> core::ffi::c_int {
+ from_kernel_result! {
+ // SAFETY: The callback contract guarantees that `fc` is valid.
+ let ptr = unsafe { (*fc).fs_private };
+
+ // SAFETY: The value of `ptr` (coming from `fs_private` was initialised in
+ // `init_fs_context_callback` to the result of an `into_pointer` call. Since the
+ // context is valid, `from_pointer` wasn't called yet, so `ptr` is valid. Additionally,
+ // the callback contract guarantees that callbacks are serialised, so it is ok to
+ // mutably reference it.
+ let mut data =
+ unsafe { <<T::Context as Context<T>>::Data as PointerWrapper>::borrow_mut(ptr) };
+ let page = if buf.is_null() {
+ None
+ } else {
+ // SAFETY: This callback is called to handle the `mount` syscall, which takes a
+ // page-sized buffer as data.
+ Some(unsafe { &mut *ptr::slice_from_raw_parts_mut(buf.cast(), crate::PAGE_SIZE) })
+ };
+ let regular = T::Context::parse_monolithic(&mut data, page)?;
+ if let Some(buf) = regular {
+ // SAFETY: Both `fc` and `buf` are guaranteed to be valid; the former because the
+ // callback is still ongoing and the latter because its lifefime is tied to that of
+ // `page`, which is also valid for the duration of the callback.
+ to_result(unsafe {
+ bindings::generic_parse_monolithic(fc, buf.as_mut_ptr().cast())
+ })?;
+ }
+ Ok(0)
+ }
+ }
+
+ const SUPER_BLOCK: bindings::super_operations = bindings::super_operations {
+ alloc_inode: None,
+ destroy_inode: None,
+ free_inode: None,
+ dirty_inode: None,
+ write_inode: None,
+ drop_inode: None,
+ evict_inode: None,
+ put_super: None,
+ sync_fs: None,
+ freeze_super: None,
+ freeze_fs: None,
+ thaw_super: None,
+ unfreeze_fs: None,
+ statfs: None,
+ remount_fs: None,
+ umount_begin: None,
+ show_options: None,
+ show_devname: None,
+ show_path: None,
+ show_stats: None,
+ #[cfg(CONFIG_QUOTA)]
+ quota_read: None,
+ #[cfg(CONFIG_QUOTA)]
+ quota_write: None,
+ #[cfg(CONFIG_QUOTA)]
+ get_dquots: None,
+ nr_cached_objects: None,
+ free_cached_objects: None,
+ };
+}
+
+/// A file system type.
+pub trait Type {
+ /// The context used to build fs configuration before it is mounted or reconfigured.
+ type Context: Context<Self> + ?Sized;
+
+ /// Data associated with each file system instance.
+ type Data: PointerWrapper + Send + Sync = ();
+
+ /// Determines how superblocks for this file system type are keyed.
+ const SUPER_TYPE: Super;
+
+ /// The name of the file system type.
+ const NAME: &'static CStr;
+
+ /// The flags of this file system type.
+ ///
+ /// It is a combination of the flags in the [`flags`] module.
+ const FLAGS: i32;
+
+ /// Initialises a super block for this file system type.
+ fn fill_super(
+ data: <Self::Context as Context<Self>>::Data,
+ sb: NewSuperBlock<'_, Self>,
+ ) -> Result<&SuperBlock<Self>>;
+}
+
+/// File system flags.
+pub mod flags {
+ use crate::bindings;
+
+ /// The file system requires a device.
+ pub const REQUIRES_DEV: i32 = bindings::FS_REQUIRES_DEV as _;
+
+ /// The options provided when mounting are in binary form.
+ pub const BINARY_MOUNTDATA: i32 = bindings::FS_BINARY_MOUNTDATA as _;
+
+ /// The file system has a subtype. It is extracted from the name and passed in as a parameter.
+ pub const HAS_SUBTYPE: i32 = bindings::FS_HAS_SUBTYPE as _;
+
+ /// The file system can be mounted by userns root.
+ pub const USERNS_MOUNT: i32 = bindings::FS_USERNS_MOUNT as _;
+
+ /// Disables fanotify permission events.
+ pub const DISALLOW_NOTIFY_PERM: i32 = bindings::FS_DISALLOW_NOTIFY_PERM as _;
+
+ /// The file system has been updated to handle vfs idmappings.
+ pub const ALLOW_IDMAP: i32 = bindings::FS_ALLOW_IDMAP as _;
+
+ /// The file systen will handle `d_move` during `rename` internally.
+ pub const RENAME_DOES_D_MOVE: i32 = bindings::FS_RENAME_DOES_D_MOVE as _;
+}
+
+/// A file system registration.
+#[derive(Default)]
+pub struct Registration {
+ is_registered: bool,
+ fs: UnsafeCell<bindings::file_system_type>,
+ _pin: PhantomPinned,
+}
+
+// SAFETY: `Registration` doesn't really provide any `&self` methods, so it is safe to pass
+// references to it around.
+unsafe impl Sync for Registration {}
+
+// SAFETY: Both registration and unregistration are implemented in C and safe to be performed from
+// any thread, so `Registration` is `Send`.
+unsafe impl Send for Registration {}
+
+impl Registration {
+ /// Creates a new file system registration.
+ ///
+ /// It is not visible or accessible yet. A successful call to [`Registration::register`] needs
+ /// to be made before users can mount it.
+ pub fn new() -> Self {
+ Self {
+ is_registered: false,
+ fs: UnsafeCell::new(bindings::file_system_type::default()),
+ _pin: PhantomPinned,
+ }
+ }
+
+ /// Registers a file system so that it can be mounted by users.
+ ///
+ /// The file system is described by the [`Type`] argument.
+ ///
+ /// It is automatically unregistered when the registration is dropped.
+ pub fn register<T: Type + ?Sized>(self: Pin<&mut Self>, module: &'static ThisModule) -> Result {
+ // SAFETY: We never move out of `this`.
+ let this = unsafe { self.get_unchecked_mut() };
+
+ if this.is_registered {
+ return Err(EINVAL);
+ }
+
+ let mut fs = this.fs.get_mut();
+ fs.owner = module.0;
+ fs.name = T::NAME.as_char_ptr();
+ fs.fs_flags = T::FLAGS;
+ fs.parameters = T::Context::PARAMS.first;
+ fs.init_fs_context = Some(Self::init_fs_context_callback::<T>);
+ fs.kill_sb = Some(Self::kill_sb_callback::<T>);
+
+ // SAFETY: This block registers all fs type keys with lockdep. We just need the memory
+ // locations to be owned by the caller, which is the case.
+ unsafe {
+ bindings::lockdep_register_key(&mut fs.s_lock_key);
+ bindings::lockdep_register_key(&mut fs.s_umount_key);
+ bindings::lockdep_register_key(&mut fs.s_vfs_rename_key);
+ bindings::lockdep_register_key(&mut fs.i_lock_key);
+ bindings::lockdep_register_key(&mut fs.i_mutex_key);
+ bindings::lockdep_register_key(&mut fs.invalidate_lock_key);
+ bindings::lockdep_register_key(&mut fs.i_mutex_dir_key);
+ for key in &mut fs.s_writers_key {
+ bindings::lockdep_register_key(key);
+ }
+ }
+
+ let ptr = this.fs.get();
+
+ // SAFETY: `ptr` as valid as it points to the `self.fs`.
+ let key_guard = ScopeGuard::new(|| unsafe { Self::unregister_keys(ptr) });
+
+ // SAFETY: Pointers stored in `fs` are either static so will live for as long as the
+ // registration is active (it is undone in `drop`).
+ to_result(unsafe { bindings::register_filesystem(ptr) })?;
+ key_guard.dismiss();
+ this.is_registered = true;
+ Ok(())
+ }
+
+ /// Unregisters the lockdep keys in the file system type.
+ ///
+ /// # Safety
+ ///
+ /// `fs` must be non-null and valid.
+ unsafe fn unregister_keys(fs: *mut bindings::file_system_type) {
+ // SAFETY: This block unregisters all fs type keys from lockdep. They must have been
+ // registered before.
+ unsafe {
+ bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).s_lock_key));
+ bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).s_umount_key));
+ bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).s_vfs_rename_key));
+ bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).i_lock_key));
+ bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).i_mutex_key));
+ bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).invalidate_lock_key));
+ bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).i_mutex_dir_key));
+ for i in 0..(*fs).s_writers_key.len() {
+ bindings::lockdep_unregister_key(ptr::addr_of_mut!((*fs).s_writers_key[i]));
+ }
+ }
+ }
+
+ unsafe extern "C" fn init_fs_context_callback<T: Type + ?Sized>(
+ fc_ptr: *mut bindings::fs_context,
+ ) -> core::ffi::c_int {
+ from_kernel_result! {
+ let data = T::Context::try_new()?;
+ // SAFETY: The callback contract guarantees that `fc_ptr` is the only pointer to a
+ // newly-allocated fs context, so it is safe to mutably reference it.
+ let fc = unsafe { &mut *fc_ptr };
+ fc.fs_private = data.into_pointer() as _;
+ fc.ops = &Tables::<T>::CONTEXT;
+ Ok(0)
+ }
+ }
+
+ unsafe extern "C" fn kill_sb_callback<T: Type + ?Sized>(sb_ptr: *mut bindings::super_block) {
+ if let Super::BlockDev = T::SUPER_TYPE {
+ // SAFETY: When the superblock type is `BlockDev`, we have a block device so it's safe
+ // to call `kill_block_super`. Additionally, the callback contract guarantees that
+ // `sb_ptr` is valid.
+ unsafe { bindings::kill_block_super(sb_ptr) }
+ } else {
+ // SAFETY: We always call a `get_tree_nodev` variant from `get_tree_callback` without a
+ // device when `T::SUPER_TYPE` is not `BlockDev`, so we never have a device in such
+ // cases, therefore it is ok to call the function below. Additionally, the callback
+ // contract guarantees that `sb_ptr` is valid.
+ unsafe { bindings::kill_anon_super(sb_ptr) }
+ }
+
+ // SAFETY: The callback contract guarantees that `sb_ptr` is valid.
+ let sb = unsafe { &*sb_ptr };
+
+ // SAFETY: The `kill_sb` callback being called implies that the `s_type` field is valid.
+ unsafe { Self::unregister_keys(sb.s_type) };
+
+ let ptr = sb.s_fs_info;
+ if !ptr.is_null() {
+ // SAFETY: The only place where `s_fs_info` is assigned is `NewSuperBlock::init`, where
+ // it's initialised with the result of a `to_pointer` call. We checked above that ptr
+ // is non-null because it would be null if we never reached the point where we init the
+ // field.
+ unsafe { T::Data::from_pointer(ptr) };
+ }
+ }
+}
+
+impl Drop for Registration {
+ fn drop(&mut self) {
+ if self.is_registered {
+ // SAFETY: When `is_registered` is `true`, a previous call to `register_filesystem` has
+ // succeeded, so it is safe to unregister here.
+ unsafe { bindings::unregister_filesystem(self.fs.get()) };
+ }
+ }
+}
+
+/// State of [`NewSuperBlock`] that indicates that [`NewSuperBlock::init`] needs to be called
+/// eventually.
+pub struct NeedsInit;
+
+/// State of [`NewSuperBlock`] that indicates that [`NewSuperBlock::init_root`] needs to be called
+/// eventually.
+pub struct NeedsRoot;
+
+/// Required superblock parameters.
+///
+/// This is used in [`NewSuperBlock::init`].
+pub struct SuperParams {
+ /// The magic number of the superblock.
+ pub magic: u32,
+
+ /// The size of a block in powers of 2 (i.e., for a value of `n`, the size is `2^n`.
+ pub blocksize_bits: u8,
+
+ /// Maximum size of a file.
+ pub maxbytes: i64,
+
+ /// Granularity of c/m/atime in ns (cannot be worse than a second).
+ pub time_gran: u32,
+}
+
+impl SuperParams {
+ /// Default value for instances of [`SuperParams`].
+ pub const DEFAULT: Self = Self {
+ magic: 0,
+ blocksize_bits: crate::PAGE_SIZE as _,
+ maxbytes: bindings::MAX_LFS_FILESIZE,
+ time_gran: 1,
+ };
+}
+
+/// A superblock that is still being initialised.
+///
+/// It uses type states to ensure that callers use the right sequence of calls.
+///
+/// # Invariants
+///
+/// The superblock is a newly-created one and this is the only active pointer to it.
+pub struct NewSuperBlock<'a, T: Type + ?Sized, S = NeedsInit> {
+ sb: *mut bindings::super_block,
+ _p: PhantomData<(&'a T, S)>,
+}
+
+impl<'a, T: Type + ?Sized> NewSuperBlock<'a, T, NeedsInit> {
+ /// Creates a new instance of [`NewSuperBlock`].
+ ///
+ /// # Safety
+ ///
+ /// `sb` must point to a newly-created superblock and it must be the only active pointer to it.
+ unsafe fn new(sb: *mut bindings::super_block) -> Self {
+ // INVARIANT: The invariants are satisfied by the safety requirements of this function.
+ Self {
+ sb,
+ _p: PhantomData,
+ }
+ }
+
+ /// Initialises the superblock so that it transitions to the [`NeedsRoot`] type state.
+ pub fn init(
+ self,
+ data: T::Data,
+ params: &SuperParams,
+ ) -> Result<NewSuperBlock<'a, T, NeedsRoot>> {
+ // SAFETY: The type invariant guarantees that `self.sb` is the only pointer to a
+ // newly-allocated superblock, so it is safe to mutably reference it.
+ let sb = unsafe { &mut *self.sb };
+
+ sb.s_magic = params.magic as _;
+ sb.s_op = &Tables::<T>::SUPER_BLOCK;
+ sb.s_maxbytes = params.maxbytes;
+ sb.s_time_gran = params.time_gran;
+ sb.s_blocksize_bits = params.blocksize_bits;
+ sb.s_blocksize = 1;
+ if sb.s_blocksize.leading_zeros() < params.blocksize_bits.into() {
+ return Err(EINVAL);
+ }
+ sb.s_blocksize = 1 << sb.s_blocksize_bits;
+
+ // Keyed file systems already have `s_fs_info` initialised.
+ let info = data.into_pointer() as *mut _;
+ if let Super::Keyed = T::SUPER_TYPE {
+ // SAFETY: We just called `into_pointer` above.
+ unsafe { T::Data::from_pointer(info) };
+
+ if sb.s_fs_info != info {
+ return Err(EINVAL);
+ }
+ } else {
+ sb.s_fs_info = info;
+ }
+
+ Ok(NewSuperBlock {
+ sb: self.sb,
+ _p: PhantomData,
+ })
+ }
+}
+
+impl<'a, T: Type + ?Sized> NewSuperBlock<'a, T, NeedsRoot> {
+ /// Initialises the root of the superblock.
+ pub fn init_root(self) -> Result<&'a SuperBlock<T>> {
+ // The following is temporary code to create the root inode and dentry. It will be replaced
+ // once we allow inodes and dentries to be created directly from Rust code.
+
+ // SAFETY: `sb` is initialised (`NeedsRoot` typestate implies it), so it is safe to pass it
+ // to `new_inode`.
+ let inode = unsafe { bindings::new_inode(self.sb) };
+ if inode.is_null() {
+ return Err(ENOMEM);
+ }
+
+ {
+ // SAFETY: This is a newly-created inode. No other references to it exist, so it is
+ // safe to mutably dereference it.
+ let inode = unsafe { &mut *inode };
+
+ // SAFETY: `current_time` requires that `inode.sb` be valid, which is the case here
+ // since we allocated the inode through the superblock.
+ let time = unsafe { bindings::current_time(inode) };
+ inode.i_ino = 1;
+ inode.i_mode = (bindings::S_IFDIR | 0o755) as _;
+ inode.i_mtime = time;
+ inode.i_atime = time;
+ inode.i_ctime = time;
+
+ // SAFETY: `simple_dir_operations` never changes, it's safe to reference it.
+ inode.__bindgen_anon_3.i_fop = unsafe { &bindings::simple_dir_operations };
+
+ // SAFETY: `simple_dir_inode_operations` never changes, it's safe to reference it.
+ inode.i_op = unsafe { &bindings::simple_dir_inode_operations };
+
+ // SAFETY: `inode` is valid for write.
+ unsafe { bindings::set_nlink(inode, 2) };
+ }
+
+ // SAFETY: `d_make_root` requires that `inode` be valid and referenced, which is the
+ // case for this call.
+ //
+ // It takes over the inode, even on failure, so we don't need to clean it up.
+ let dentry = unsafe { bindings::d_make_root(inode) };
+ if dentry.is_null() {
+ return Err(ENOMEM);
+ }
+
+ // SAFETY: The typestate guarantees that `self.sb` is valid.
+ unsafe { (*self.sb).s_root = dentry };
+
+ // SAFETY: The typestate guarantees that `self.sb` is initialised and we just finished
+ // setting its root, so it's a fully ready superblock.
+ Ok(unsafe { &mut *self.sb.cast() })
+ }
+}
+
+/// A file system super block.
+///
+/// Wraps the kernel's `struct super_block`.
+#[repr(transparent)]
+pub struct SuperBlock<T: Type + ?Sized>(
+ pub(crate) UnsafeCell<bindings::super_block>,
+ PhantomData<T>,
+);
+
+/// Wraps the kernel's `struct inode`.
+///
+/// # Invariants
+///
+/// Instances of this type are always ref-counted, that is, a call to `ihold` ensures that the
+/// allocation remains valid at least until the matching call to `iput`.
+#[repr(transparent)]
+pub struct INode(pub(crate) UnsafeCell<bindings::inode>);
+
+// SAFETY: The type invariants guarantee that `INode` is always ref-counted.
+unsafe impl AlwaysRefCounted for INode {
+ fn inc_ref(&self) {
+ // SAFETY: The existence of a shared reference means that the refcount is nonzero.
+ unsafe { bindings::ihold(self.0.get()) };
+ }
+
+ unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
+ // SAFETY: The safety requirements guarantee that the refcount is nonzero.
+ unsafe { bindings::iput(obj.cast().as_ptr()) }
+ }
+}
+
+/// Wraps the kernel's `struct dentry`.
+///
+/// # Invariants
+///
+/// Instances of this type are always ref-counted, that is, a call to `dget` ensures that the
+/// allocation remains valid at least until the matching call to `dput`.
+#[repr(transparent)]
+pub struct DEntry(pub(crate) UnsafeCell<bindings::dentry>);
+
+// SAFETY: The type invariants guarantee that `DEntry` is always ref-counted.
+unsafe impl AlwaysRefCounted for DEntry {
+ fn inc_ref(&self) {
+ // SAFETY: The existence of a shared reference means that the refcount is nonzero.
+ unsafe { bindings::dget(self.0.get()) };
+ }
+
+ unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
+ // SAFETY: The safety requirements guarantee that the refcount is nonzero.
+ unsafe { bindings::dput(obj.cast().as_ptr()) }
+ }
+}
+
+/// Wraps the kernel's `struct filename`.
+#[repr(transparent)]
+pub struct Filename(pub(crate) UnsafeCell<bindings::filename>);
+
+impl Filename {
+ /// Creates a reference to a [`Filename`] from a valid pointer.
+ ///
+ /// # Safety
+ ///
+ /// The caller must ensure that `ptr` is valid and remains valid for the lifetime of the
+ /// returned [`Filename`] instance.
+ pub(crate) unsafe fn from_ptr<'a>(ptr: *const bindings::filename) -> &'a Filename {
+ // SAFETY: The safety requirements guarantee the validity of the dereference, while the
+ // `Filename` type being transparent makes the cast ok.
+ unsafe { &*ptr.cast() }
+ }
+}
+
+/// Kernel module that exposes a single file system implemented by `T`.
+pub struct Module<T: Type> {
+ _fs: Pin<Box<Registration>>,
+ _p: PhantomData<T>,
+}
+
+impl<T: Type + Sync> crate::Module for Module<T> {
+ fn init(_name: &'static CStr, module: &'static ThisModule) -> Result<Self> {
+ let mut reg = Pin::from(Box::try_new(Registration::new())?);
+ reg.as_mut().register::<T>(module)?;
+ Ok(Self {
+ _fs: reg,
+ _p: PhantomData,
+ })
+ }
+}
+
+/// Declares a kernel module that exposes a single file system.
+///
+/// The `type` argument must be a type which implements the [`Type`] trait. Also accepts various
+/// forms of kernel metadata.
+///
+/// # Examples
+///
+/// ```ignore
+/// use kernel::prelude::*;
+/// use kernel::{c_str, fs};
+///
+/// module_fs! {
+/// type: MyFs,
+/// name: b"my_fs_kernel_module",
+/// author: b"Rust for Linux Contributors",
+/// description: b"My very own file system kernel module!",
+/// license: b"GPL",
+/// }
+///
+/// struct MyFs;
+///
+/// #[vtable]
+/// impl fs::Context<Self> for MyFs {
+/// type Data = ();
+/// fn try_new() -> Result {
+/// Ok(())
+/// }
+/// }
+///
+/// impl fs::Type for MyFs {
+/// type Context = Self;
+/// const SUPER_TYPE: fs::Super = fs::Super::Independent;
+/// const NAME: &'static CStr = c_str!("example");
+/// const FLAGS: i32 = 0;
+///
+/// fn fill_super(_data: (), sb: fs::NewSuperBlock<'_, Self>) -> Result<&fs::SuperBlock<Self>> {
+/// let sb = sb.init(
+/// (),
+/// &fs::SuperParams {
+/// magic: 0x6578616d,
+/// ..fs::SuperParams::DEFAULT
+/// },
+/// )?;
+/// let sb = sb.init_root()?;
+/// Ok(sb)
+/// }
+/// }
+/// ```
+#[macro_export]
+macro_rules! module_fs {
+ (type: $type:ty, $($f:tt)*) => {
+ type ModuleType = $crate::fs::Module<$type>;
+ $crate::macros::module! {
+ type: ModuleType,
+ $($f)*
+ }
+ }
+}
diff --git a/rust/kernel/fs/param.rs b/rust/kernel/fs/param.rs
new file mode 100644
index 000000000000..445cea404bcd
--- /dev/null
+++ b/rust/kernel/fs/param.rs
@@ -0,0 +1,553 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! File system parameters and parsing them.
+//!
+//! C headers: [`include/linux/fs_parser.h`](../../../../../include/linux/fs_parser.h)
+
+use crate::{bindings, file, fs, str::CStr, Result};
+use core::{marker::PhantomData, ptr};
+
+/// The value of a file system parameter.
+pub enum Value<'a> {
+ /// The value is undefined.
+ Undefined,
+
+ /// There is no value, but parameter itself is a flag.
+ Flag,
+
+ /// The value is the given string.
+ String(&'a CStr),
+
+ /// The value is the given binary blob.
+ Blob(&'a mut [u8]),
+
+ /// The value is the given file.
+ File(&'a file::File),
+
+ /// The value is the given filename and the given directory file descriptor (which may be
+ /// `AT_FDCWD`, to indicate the current directory).
+ Filename(&'a fs::Filename, i32),
+}
+
+impl<'a> Value<'a> {
+ pub(super) fn from_fs_parameter(p: &'a bindings::fs_parameter) -> Self {
+ match p.type_() {
+ bindings::fs_value_type_fs_value_is_string => {
+ // SAFETY: `type_` is string, so it is ok to use the union field. Additionally, it
+ // is guaranteed to be valid while `p` is valid.
+ Self::String(unsafe { CStr::from_char_ptr(p.__bindgen_anon_1.string) })
+ }
+ bindings::fs_value_type_fs_value_is_flag => Self::Flag,
+ bindings::fs_value_type_fs_value_is_blob => {
+ // SAFETY: `type_` is blob, so it is ok to use the union field and size.
+ // Additionally, it is guaranteed to be valid while `p` is valid.
+ let slice = unsafe {
+ &mut *ptr::slice_from_raw_parts_mut(p.__bindgen_anon_1.blob.cast(), p.size)
+ };
+ Self::Blob(slice)
+ }
+ bindings::fs_value_type_fs_value_is_file => {
+ // SAFETY: `type_` is file, so it is ok to use the union field. Additionally, it is
+ // guaranteed to be valid while `p` is valid.
+ let file_ptr = unsafe { p.__bindgen_anon_1.file };
+ if file_ptr.is_null() {
+ Self::Undefined
+ } else {
+ // SAFETY: `file_ptr` is non-null and guaranteed to be valid while `p` is.
+ Self::File(unsafe { file::File::from_ptr(file_ptr) })
+ }
+ }
+ bindings::fs_value_type_fs_value_is_filename => {
+ // SAFETY: `type_` is filename, so it is ok to use the union field. Additionally,
+ // it is guaranteed to be valid while `p` is valid.
+ let filename_ptr = unsafe { p.__bindgen_anon_1.name };
+ if filename_ptr.is_null() {
+ Self::Undefined
+ } else {
+ // SAFETY: `filename_ptr` is non-null and guaranteed to be valid while `p` is.
+ Self::Filename(unsafe { fs::Filename::from_ptr(filename_ptr) }, p.dirfd)
+ }
+ }
+ _ => Self::Undefined,
+ }
+ }
+}
+
+/// A specification of a file system parameter.
+pub struct Spec {
+ name: &'static CStr,
+ flags: u16,
+ type_: bindings::fs_param_type,
+ extra: *const core::ffi::c_void,
+}
+
+const DEFAULT: Spec = Spec {
+ name: crate::c_str!(""),
+ flags: 0,
+ type_: None,
+ extra: core::ptr::null(),
+};
+
+macro_rules! define_param_type {
+ ($name:ident, $fntype:ty, $spec:expr, |$param:ident, $result:ident| $value:expr) => {
+ /// Module to support `$name` parameter types.
+ pub mod $name {
+ use super::*;
+
+ #[doc(hidden)]
+ pub const fn spec(name: &'static CStr) -> Spec {
+ const GIVEN: Spec = $spec;
+ Spec { name, ..GIVEN }
+ }
+
+ #[doc(hidden)]
+ pub const fn handler<S>(setfn: fn(&mut S, $fntype) -> Result) -> impl Handler<S> {
+ let c =
+ move |s: &mut S,
+ $param: &bindings::fs_parameter,
+ $result: &bindings::fs_parse_result| { setfn(s, $value) };
+ ConcreteHandler {
+ setfn: c,
+ _p: PhantomData,
+ }
+ }
+ }
+ };
+}
+
+// SAFETY: This is only called when the parse result is a boolean, so it is ok to access to union
+// field.
+define_param_type!(flag, bool, Spec { ..DEFAULT }, |_p, r| unsafe {
+ r.__bindgen_anon_1.boolean
+});
+
+define_param_type!(
+ flag_no,
+ bool,
+ Spec {
+ flags: bindings::fs_param_neg_with_no as _,
+ ..DEFAULT
+ },
+ // SAFETY: This is only called when the parse result is a boolean, so it is ok to access to
+ // union field.
+ |_p, r| unsafe { r.__bindgen_anon_1.boolean }
+);
+
+define_param_type!(
+ bool,
+ bool,
+ Spec {
+ type_: Some(bindings::fs_param_is_bool),
+ ..DEFAULT
+ },
+ // SAFETY: This is only called when the parse result is a boolean, so it is ok to access to
+ // union field.
+ |_p, r| unsafe { r.__bindgen_anon_1.boolean }
+);
+
+define_param_type!(
+ u32,
+ u32,
+ Spec {
+ type_: Some(bindings::fs_param_is_u32),
+ ..DEFAULT
+ },
+ // SAFETY: This is only called when the parse result is a u32, so it is ok to access to union
+ // field.
+ |_p, r| unsafe { r.__bindgen_anon_1.uint_32 }
+);
+
+define_param_type!(
+ u32oct,
+ u32,
+ Spec {
+ type_: Some(bindings::fs_param_is_u32),
+ extra: 8 as _,
+ ..DEFAULT
+ },
+ // SAFETY: This is only called when the parse result is a u32, so it is ok to access to union
+ // field.
+ |_p, r| unsafe { r.__bindgen_anon_1.uint_32 }
+);
+
+define_param_type!(
+ u32hex,
+ u32,
+ Spec {
+ type_: Some(bindings::fs_param_is_u32),
+ extra: 16 as _,
+ ..DEFAULT
+ },
+ // SAFETY: This is only called when the parse result is a u32, so it is ok to access to union
+ // field.
+ |_p, r| unsafe { r.__bindgen_anon_1.uint_32 }
+);
+
+define_param_type!(
+ s32,
+ i32,
+ Spec {
+ type_: Some(bindings::fs_param_is_s32),
+ ..DEFAULT
+ },
+ // SAFETY: This is only called when the parse result is an i32, so it is ok to access to union
+ // field.
+ |_p, r| unsafe { r.__bindgen_anon_1.int_32 }
+);
+
+define_param_type!(
+ u64,
+ u64,
+ Spec {
+ type_: Some(bindings::fs_param_is_u64),
+ extra: 16 as _,
+ ..DEFAULT
+ },
+ // SAFETY: This is only called when the parse result is a u32, so it is ok to access to union
+ // field.
+ |_p, r| unsafe { r.__bindgen_anon_1.uint_64 }
+);
+
+define_param_type!(
+ string,
+ &CStr,
+ Spec {
+ type_: Some(bindings::fs_param_is_string),
+ ..DEFAULT
+ },
+ // SAFETY: This is only called when the parse result is a string, so it is ok to access to
+ // union field.
+ |p, _r| unsafe { CStr::from_char_ptr(p.__bindgen_anon_1.string) }
+);
+
+/// Module to support `enum` parameter types.
+pub mod enum_ {
+ use super::*;
+
+ #[doc(hidden)]
+ pub const fn spec(name: &'static CStr, options: ConstantTable<'static>) -> Spec {
+ Spec {
+ name,
+ type_: Some(bindings::fs_param_is_enum),
+ extra: options.first as *const _ as _,
+ ..DEFAULT
+ }
+ }
+
+ #[doc(hidden)]
+ pub const fn handler<S>(setfn: fn(&mut S, u32) -> Result) -> impl Handler<S> {
+ let c = move |s: &mut S, _p: &bindings::fs_parameter, r: &bindings::fs_parse_result| {
+ // SAFETY: This is only called when the parse result is an enum, so it is ok to access
+ // to union field.
+ setfn(s, unsafe { r.__bindgen_anon_1.uint_32 })
+ };
+ ConcreteHandler {
+ setfn: c,
+ _p: PhantomData,
+ }
+ }
+}
+
+const ZERO_SPEC: bindings::fs_parameter_spec = bindings::fs_parameter_spec {
+ name: core::ptr::null(),
+ type_: None,
+ opt: 0,
+ flags: 0,
+ data: core::ptr::null(),
+};
+
+/// A zero-terminated parameter spec array, followed by handlers.
+#[repr(C)]
+pub struct SpecArray<const N: usize, S: 'static> {
+ specs: [bindings::fs_parameter_spec; N],
+ sentinel: bindings::fs_parameter_spec,
+ handlers: [&'static dyn Handler<S>; N],
+}
+
+impl<const N: usize, S: 'static> SpecArray<N, S> {
+ /// Creates a new spec array.
+ ///
+ /// Users are encouraged to use the [`define_fs_params`] macro to define the
+ /// [`super::Context::PARAMS`] constant.
+ ///
+ /// # Safety
+ ///
+ /// The type of the elements in `handlers` must be compatible with the types in specs. For
+ /// example, if `specs` declares that the i-th element is a bool then the i-th handler
+ /// should be for a bool.
+ pub const unsafe fn new(specs: [Spec; N], handlers: [&'static dyn Handler<S>; N]) -> Self {
+ let mut array = Self {
+ specs: [ZERO_SPEC; N],
+ sentinel: ZERO_SPEC,
+ handlers,
+ };
+ let mut i = 0usize;
+ while i < N {
+ array.specs[i] = bindings::fs_parameter_spec {
+ name: specs[i].name.as_char_ptr(),
+ type_: specs[i].type_,
+ opt: i as _,
+ flags: specs[i].flags,
+ data: specs[i].extra,
+ };
+ i += 1;
+ }
+ array
+ }
+
+ /// Returns a [`SpecTable`] backed by `self`.
+ ///
+ /// This is used to essentially erase the array size.
+ pub const fn as_table(&self) -> SpecTable<'_, S> {
+ SpecTable {
+ first: &self.specs[0],
+ handlers: &self.handlers,
+ _p: PhantomData,
+ }
+ }
+}
+
+/// A parameter spec table.
+///
+/// The table is guaranteed to be zero-terminated.
+///
+/// Users are encouraged to use the [`define_fs_params`] macro to define the
+/// [`super::Context::PARAMS`] constant.
+pub struct SpecTable<'a, S: 'static> {
+ pub(super) first: &'a bindings::fs_parameter_spec,
+ pub(super) handlers: &'a [&'static dyn Handler<S>],
+ _p: PhantomData<S>,
+}
+
+impl<S> SpecTable<'static, S> {
+ pub(super) const fn empty() -> Self {
+ Self {
+ first: &ZERO_SPEC,
+ handlers: &[],
+ _p: PhantomData,
+ }
+ }
+}
+
+/// A zero-terminated parameter constant array.
+#[repr(C)]
+pub struct ConstantArray<const N: usize> {
+ consts: [bindings::constant_table; N],
+ sentinel: bindings::constant_table,
+}
+
+impl<const N: usize> ConstantArray<N> {
+ /// Creates a new constant array.
+ ///
+ /// Users are encouraged to use the [`define_fs_params`] macro to define the
+ /// [`super::Context::PARAMS`] constant.
+ pub const fn new(consts: [(&'static CStr, u32); N]) -> Self {
+ const ZERO: bindings::constant_table = bindings::constant_table {
+ name: core::ptr::null(),
+ value: 0,
+ };
+ let mut array = Self {
+ consts: [ZERO; N],
+ sentinel: ZERO,
+ };
+ let mut i = 0usize;
+ while i < N {
+ array.consts[i] = bindings::constant_table {
+ name: consts[i].0.as_char_ptr(),
+ value: consts[i].1 as _,
+ };
+ i += 1;
+ }
+ array
+ }
+
+ /// Returns a [`ConstantTable`] backed by `self`.
+ ///
+ /// This is used to essentially erase the array size.
+ pub const fn as_table(&self) -> ConstantTable<'_> {
+ ConstantTable {
+ first: &self.consts[0],
+ }
+ }
+}
+
+/// A parameter constant table.
+///
+/// The table is guaranteed to be zero-terminated.
+pub struct ConstantTable<'a> {
+ pub(super) first: &'a bindings::constant_table,
+}
+
+#[doc(hidden)]
+pub trait Handler<S> {
+ fn handle_param(
+ &self,
+ state: &mut S,
+ p: &bindings::fs_parameter,
+ r: &bindings::fs_parse_result,
+ ) -> Result;
+}
+
+struct ConcreteHandler<
+ S,
+ T: Fn(&mut S, &bindings::fs_parameter, &bindings::fs_parse_result) -> Result,
+> {
+ setfn: T,
+ _p: PhantomData<S>,
+}
+
+impl<S, T: Fn(&mut S, &bindings::fs_parameter, &bindings::fs_parse_result) -> Result> Handler<S>
+ for ConcreteHandler<S, T>
+{
+ fn handle_param(
+ &self,
+ state: &mut S,
+ p: &bindings::fs_parameter,
+ r: &bindings::fs_parse_result,
+ ) -> Result {
+ (self.setfn)(state, p, r)
+ }
+}
+
+/// Counts the number of comma-separated entries surrounded by braces.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::count_brace_items;
+///
+/// assert_eq!(0, count_brace_items!());
+/// assert_eq!(1, count_brace_items!({ A }));
+/// assert_eq!(1, count_brace_items!({ A },));
+/// assert_eq!(2, count_brace_items!({ A }, { B }));
+/// assert_eq!(2, count_brace_items!({ A }, { B },));
+/// assert_eq!(3, count_brace_items!({ A }, { B }, { C }));
+/// assert_eq!(3, count_brace_items!({ A }, { B }, { C },));
+/// ```
+#[macro_export]
+macro_rules! count_brace_items {
+ ({$($item:tt)*}, $($remaining:tt)*) => { 1 + $crate::count_brace_items!($($remaining)*) };
+ ({$($item:tt)*}) => { 1 };
+ () => { 0 };
+}
+
+/// Defines the file system parameters of a given file system context.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::prelude::*;
+/// # use kernel::{c_str, fs, str::CString};
+///
+/// #[derive(Default)]
+/// struct State {
+/// flag: Option<bool>,
+/// flag_no: Option<bool>,
+/// bool_value: Option<bool>,
+/// u32_value: Option<u32>,
+/// i32_value: Option<i32>,
+/// u64_value: Option<u64>,
+/// str_value: Option<CString>,
+/// enum_value: Option<u32>,
+/// }
+///
+/// fn set_u32(s: &mut Box<State>, v: u32) -> Result {
+/// s.u32_value = Some(v);
+/// Ok(())
+/// }
+///
+/// struct Example;
+///
+/// #[vtable]
+/// impl fs::Context<Self> for Example {
+/// type Data = Box<State>;
+///
+/// kernel::define_fs_params! {Box<State>,
+/// {flag, "flag", |s, v| { s.flag = Some(v); Ok(()) } },
+/// {flag_no, "flagno", |s, v| { s.flag_no = Some(v); Ok(()) } },
+/// {bool, "bool", |s, v| { s.bool_value = Some(v); Ok(()) } },
+/// {u32, "u32", set_u32 },
+/// {u32oct, "u32oct", set_u32 },
+/// {u32hex, "u32hex", set_u32 },
+/// {s32, "s32", |s, v| { s.i32_value = Some(v); Ok(()) } },
+/// {u64, "u64", |s, v| { s.u64_value = Some(v); Ok(()) } },
+/// {string, "string", |s, v| {
+/// s.str_value = Some(CString::try_from_fmt(fmt!("{v}"))?);
+/// Ok(())
+/// }},
+/// {enum, "enum", [("first", 10), ("second", 20)], |s, v| {
+/// s.enum_value = Some(v);
+/// Ok(())
+/// }},
+/// }
+///
+/// fn try_new() -> Result<Self::Data> {
+/// Ok(Box::try_new(State::default())?)
+/// }
+/// }
+///
+/// # impl fs::Type for Example {
+/// # type Context = Self;
+/// # const SUPER_TYPE: fs::Super = fs::Super::Independent;
+/// # const NAME: &'static CStr = c_str!("example");
+/// # const FLAGS: i32 = 0;
+/// #
+/// # fn fill_super<'a>(
+/// # _data: Box<State>,
+/// # sb: fs::NewSuperBlock<'_, Self>,
+/// # ) -> Result<&fs::SuperBlock<Self>> {
+/// # let sb = sb.init(
+/// # (),
+/// # &fs::SuperParams {
+/// # magic: 0x6578616d,
+/// # ..fs::SuperParams::DEFAULT
+/// # },
+/// # )?;
+/// # let sb = sb.init_root()?;
+/// # Ok(sb)
+/// # }
+/// # }
+/// ```
+#[macro_export]
+macro_rules! define_fs_params {
+ ($data_type:ty, $({$($t:tt)*}),+ $(,)?) => {
+ const PARAMS: $crate::fs::param::SpecTable<'static, $data_type> =
+ {
+ use $crate::fs::param::{self, ConstantArray, Spec, SpecArray, Handler};
+ use $crate::c_str;
+ const COUNT: usize = $crate::count_brace_items!($({$($t)*},)*);
+ const SPECS: [Spec; COUNT] = $crate::define_fs_params!(@specs $({$($t)*},)*);
+ const HANDLERS: [&dyn Handler<$data_type>; COUNT] =
+ $crate::define_fs_params!(@handlers $data_type, $({$($t)*},)*);
+ // SAFETY: We defined matching specs and handlers above.
+ const ARRAY: SpecArray<COUNT, $data_type> =
+ unsafe { SpecArray::new(SPECS, HANDLERS) };
+ ARRAY.as_table()
+ };
+ };
+
+ (@handlers $data_type:ty, $({$($t:tt)*},)*) => {
+ [ $($crate::define_fs_params!(@handler $data_type, $($t)*),)* ]
+ };
+ (@handler $data_type:ty, enum, $name:expr, $opts:expr, $closure:expr) => {
+ ¶m::enum_::handler::<$data_type>($closure)
+ };
+ (@handler $data_type:ty, $type:ident, $name:expr, $closure:expr) => {
+ ¶m::$type::handler::<$data_type>($closure)
+ };
+
+ (@specs $({$($t:tt)*},)*) => {[ $($crate::define_fs_params!(@spec $($t)*),)* ]};
+ (@spec enum, $name:expr, [$($opts:tt)*], $closure:expr) => {
+ {
+ const COUNT: usize = $crate::count_paren_items!($($opts)*);
+ const OPTIONS: ConstantArray<COUNT> =
+ ConstantArray::new($crate::define_fs_params!(@c_str_first $($opts)*));
+ param::enum_::spec(c_str!($name), OPTIONS.as_table())
+ }
+ };
+ (@spec $type:ident, $name:expr, $closure:expr) => { param::$type::spec(c_str!($name)) };
+
+ (@c_str_first $(($first:expr, $second:expr)),+ $(,)?) => {
+ [$((c_str!($first), $second),)*]
+ };
+}
diff --git a/rust/kernel/gpio.rs b/rust/kernel/gpio.rs
new file mode 100644
index 000000000000..53c7b398d10b
--- /dev/null
+++ b/rust/kernel/gpio.rs
@@ -0,0 +1,505 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Support for gpio device drivers.
+//!
+//! C header: [`include/linux/gpio/driver.h`](../../../../include/linux/gpio/driver.h)
+
+use crate::{
+ bindings, device, error::code::*, error::from_kernel_result, sync::LockClassKey,
+ types::PointerWrapper, Error, Result,
+};
+use core::{
+ cell::UnsafeCell,
+ marker::{PhantomData, PhantomPinned},
+ pin::Pin,
+};
+use macros::vtable;
+
+#[cfg(CONFIG_GPIOLIB_IRQCHIP)]
+pub use irqchip::{ChipWithIrqChip, RegistrationWithIrqChip};
+
+/// The direction of a gpio line.
+pub enum LineDirection {
+ /// Direction is input.
+ In = bindings::GPIO_LINE_DIRECTION_IN as _,
+
+ /// Direction is output.
+ Out = bindings::GPIO_LINE_DIRECTION_OUT as _,
+}
+
+/// A gpio chip.
+#[vtable]
+pub trait Chip {
+ /// Context data associated with the gpio chip.
+ ///
+ /// It determines the type of the context data passed to each of the methods of the trait.
+ type Data: PointerWrapper + Sync + Send;
+
+ /// Returns the direction of the given gpio line.
+ fn get_direction(
+ _data: <Self::Data as PointerWrapper>::Borrowed<'_>,
+ _offset: u32,
+ ) -> Result<LineDirection> {
+ Err(ENOTSUPP)
+ }
+
+ /// Configures the direction as input of the given gpio line.
+ fn direction_input(
+ _data: <Self::Data as PointerWrapper>::Borrowed<'_>,
+ _offset: u32,
+ ) -> Result {
+ Err(EIO)
+ }
+
+ /// Configures the direction as output of the given gpio line.
+ ///
+ /// The value that will be initially output is also specified.
+ fn direction_output(
+ _data: <Self::Data as PointerWrapper>::Borrowed<'_>,
+ _offset: u32,
+ _value: bool,
+ ) -> Result {
+ Err(ENOTSUPP)
+ }
+
+ /// Returns the current value of the given gpio line.
+ fn get(_data: <Self::Data as PointerWrapper>::Borrowed<'_>, _offset: u32) -> Result<bool> {
+ Err(EIO)
+ }
+
+ /// Sets the value of the given gpio line.
+ fn set(_data: <Self::Data as PointerWrapper>::Borrowed<'_>, _offset: u32, _value: bool) {}
+}
+
+/// A registration of a gpio chip.
+///
+/// # Examples
+///
+/// The following example registers an empty gpio chip.
+///
+/// ```
+/// # use kernel::prelude::*;
+/// use kernel::{
+/// device::RawDevice,
+/// gpio::{self, Registration},
+/// };
+///
+/// struct MyGpioChip;
+/// #[vtable]
+/// impl gpio::Chip for MyGpioChip {
+/// type Data = ();
+/// }
+///
+/// fn example(parent: &dyn RawDevice) -> Result<Pin<Box<Registration<MyGpioChip>>>> {
+/// let mut r = Pin::from(Box::try_new(Registration::new())?);
+/// kernel::gpio_chip_register!(r.as_mut(), 32, None, parent, ())?;
+/// Ok(r)
+/// }
+/// ```
+pub struct Registration<T: Chip> {
+ gc: UnsafeCell<bindings::gpio_chip>,
+ parent: Option<device::Device>,
+ _p: PhantomData<T>,
+ _pin: PhantomPinned,
+}
+
+impl<T: Chip> Registration<T> {
+ /// Creates a new [`Registration`] but does not register it yet.
+ ///
+ /// It is allowed to move.
+ pub fn new() -> Self {
+ Self {
+ parent: None,
+ gc: UnsafeCell::new(bindings::gpio_chip::default()),
+ _pin: PhantomPinned,
+ _p: PhantomData,
+ }
+ }
+
+ /// Registers a gpio chip with the rest of the kernel.
+ ///
+ /// Users are encouraged to use the [`gpio_chip_register`] macro because it automatically
+ /// defines the lock classes and calls the registration function.
+ pub fn register(
+ self: Pin<&mut Self>,
+ gpio_count: u16,
+ base: Option<i32>,
+ parent: &dyn device::RawDevice,
+ data: T::Data,
+ lock_keys: [&'static LockClassKey; 2],
+ ) -> Result {
+ if self.parent.is_some() {
+ // Already registered.
+ return Err(EINVAL);
+ }
+
+ // SAFETY: We never move out of `this`.
+ let this = unsafe { self.get_unchecked_mut() };
+ {
+ let gc = this.gc.get_mut();
+
+ // Set up the callbacks.
+ gc.request = Some(bindings::gpiochip_generic_request);
+ gc.free = Some(bindings::gpiochip_generic_free);
+ if T::HAS_GET_DIRECTION {
+ gc.get_direction = Some(get_direction_callback::<T>);
+ }
+ if T::HAS_DIRECTION_INPUT {
+ gc.direction_input = Some(direction_input_callback::<T>);
+ }
+ if T::HAS_DIRECTION_OUTPUT {
+ gc.direction_output = Some(direction_output_callback::<T>);
+ }
+ if T::HAS_GET {
+ gc.get = Some(get_callback::<T>);
+ }
+ if T::HAS_SET {
+ gc.set = Some(set_callback::<T>);
+ }
+
+ // When a base is not explicitly given, use -1 for one to be picked.
+ if let Some(b) = base {
+ gc.base = b;
+ } else {
+ gc.base = -1;
+ }
+
+ gc.ngpio = gpio_count;
+ gc.parent = parent.raw_device();
+ gc.label = parent.name().as_char_ptr();
+
+ // TODO: Define `gc.owner` as well.
+ }
+
+ let data_pointer = <T::Data as PointerWrapper>::into_pointer(data);
+ // SAFETY: `gc` was initilised above, so it is valid.
+ let ret = unsafe {
+ bindings::gpiochip_add_data_with_key(
+ this.gc.get(),
+ data_pointer as _,
+ lock_keys[0].get(),
+ lock_keys[1].get(),
+ )
+ };
+ if ret < 0 {
+ // SAFETY: `data_pointer` was returned by `into_pointer` above.
+ unsafe { T::Data::from_pointer(data_pointer) };
+ return Err(Error::from_kernel_errno(ret));
+ }
+
+ this.parent = Some(device::Device::from_dev(parent));
+ Ok(())
+ }
+}
+
+// SAFETY: `Registration` doesn't offer any methods or access to fields when shared between threads
+// or CPUs, so it is safe to share it.
+unsafe impl<T: Chip> Sync for Registration<T> {}
+
+// SAFETY: Registration with and unregistration from the gpio subsystem can happen from any thread.
+// Additionally, `T::Data` (which is dropped during unregistration) is `Send`, so it is ok to move
+// `Registration` to different threads.
+#[allow(clippy::non_send_fields_in_send_ty)]
+unsafe impl<T: Chip> Send for Registration<T> {}
+
+impl<T: Chip> Default for Registration<T> {
+ fn default() -> Self {
+ Self::new()
+ }
+}
+
+impl<T: Chip> Drop for Registration<T> {
+ /// Removes the registration from the kernel if it has completed successfully before.
+ fn drop(&mut self) {
+ if self.parent.is_some() {
+ // Get a pointer to the data stored in chip before destroying it.
+ // SAFETY: `gc` was during registration, which is guaranteed to have succeeded (because
+ // `parent` is `Some(_)`, so it remains valid.
+ let data_pointer = unsafe { bindings::gpiochip_get_data(self.gc.get()) };
+
+ // SAFETY: By the same argument above, `gc` is still valid.
+ unsafe { bindings::gpiochip_remove(self.gc.get()) };
+
+ // Free data as well.
+ // SAFETY: `data_pointer` was returned by `into_pointer` during registration.
+ unsafe { <T::Data as PointerWrapper>::from_pointer(data_pointer) };
+ }
+ }
+}
+
+/// Registers a gpio chip with the rest of the kernel.
+///
+/// It automatically defines the required lock classes.
+#[macro_export]
+macro_rules! gpio_chip_register {
+ ($reg:expr, $count:expr, $base:expr, $parent:expr, $data:expr $(,)?) => {{
+ static CLASS1: $crate::sync::LockClassKey = $crate::sync::LockClassKey::new();
+ static CLASS2: $crate::sync::LockClassKey = $crate::sync::LockClassKey::new();
+ $crate::gpio::Registration::register(
+ $reg,
+ $count,
+ $base,
+ $parent,
+ $data,
+ [&CLASS1, &CLASS2],
+ )
+ }};
+}
+
+unsafe extern "C" fn get_direction_callback<T: Chip>(
+ gc: *mut bindings::gpio_chip,
+ offset: core::ffi::c_uint,
+) -> core::ffi::c_int {
+ from_kernel_result! {
+ // SAFETY: The value stored as chip data was returned by `into_pointer` during registration.
+ let data = unsafe { T::Data::borrow(bindings::gpiochip_get_data(gc)) };
+ Ok(T::get_direction(data, offset)? as i32)
+ }
+}
+
+unsafe extern "C" fn direction_input_callback<T: Chip>(
+ gc: *mut bindings::gpio_chip,
+ offset: core::ffi::c_uint,
+) -> core::ffi::c_int {
+ from_kernel_result! {
+ // SAFETY: The value stored as chip data was returned by `into_pointer` during registration.
+ let data = unsafe { T::Data::borrow(bindings::gpiochip_get_data(gc)) };
+ T::direction_input(data, offset)?;
+ Ok(0)
+ }
+}
+
+unsafe extern "C" fn direction_output_callback<T: Chip>(
+ gc: *mut bindings::gpio_chip,
+ offset: core::ffi::c_uint,
+ value: core::ffi::c_int,
+) -> core::ffi::c_int {
+ from_kernel_result! {
+ // SAFETY: The value stored as chip data was returned by `into_pointer` during registration.
+ let data = unsafe { T::Data::borrow(bindings::gpiochip_get_data(gc)) };
+ T::direction_output(data, offset, value != 0)?;
+ Ok(0)
+ }
+}
+
+unsafe extern "C" fn get_callback<T: Chip>(
+ gc: *mut bindings::gpio_chip,
+ offset: core::ffi::c_uint,
+) -> core::ffi::c_int {
+ from_kernel_result! {
+ // SAFETY: The value stored as chip data was returned by `into_pointer` during registration.
+ let data = unsafe { T::Data::borrow(bindings::gpiochip_get_data(gc)) };
+ let v = T::get(data, offset)?;
+ Ok(v as _)
+ }
+}
+
+unsafe extern "C" fn set_callback<T: Chip>(
+ gc: *mut bindings::gpio_chip,
+ offset: core::ffi::c_uint,
+ value: core::ffi::c_int,
+) {
+ // SAFETY: The value stored as chip data was returned by `into_pointer` during registration.
+ let data = unsafe { T::Data::borrow(bindings::gpiochip_get_data(gc)) };
+ T::set(data, offset, value != 0);
+}
+
+#[cfg(CONFIG_GPIOLIB_IRQCHIP)]
+mod irqchip {
+ use super::*;
+ use crate::irq;
+
+ /// A gpio chip that includes an irq chip.
+ pub trait ChipWithIrqChip: Chip {
+ /// Implements the irq flow for the gpio chip.
+ fn handle_irq_flow(
+ _data: <Self::Data as PointerWrapper>::Borrowed<'_>,
+ _desc: &irq::Descriptor,
+ _domain: &irq::Domain,
+ );
+ }
+
+ /// A registration of a gpio chip that includes an irq chip.
+ pub struct RegistrationWithIrqChip<T: ChipWithIrqChip> {
+ reg: Registration<T>,
+ irq_chip: UnsafeCell<bindings::irq_chip>,
+ parent_irq: u32,
+ }
+
+ impl<T: ChipWithIrqChip> RegistrationWithIrqChip<T> {
+ /// Creates a new [`RegistrationWithIrqChip`] but does not register it yet.
+ ///
+ /// It is allowed to move.
+ pub fn new() -> Self {
+ Self {
+ reg: Registration::new(),
+ irq_chip: UnsafeCell::new(bindings::irq_chip::default()),
+ parent_irq: 0,
+ }
+ }
+
+ /// Registers a gpio chip and its irq chip with the rest of the kernel.
+ ///
+ /// Users are encouraged to use the [`gpio_irq_chip_register`] macro because it
+ /// automatically defines the lock classes and calls the registration function.
+ pub fn register<U: irq::Chip<Data = T::Data>>(
+ mut self: Pin<&mut Self>,
+ gpio_count: u16,
+ base: Option<i32>,
+ parent: &dyn device::RawDevice,
+ data: T::Data,
+ parent_irq: u32,
+ lock_keys: [&'static LockClassKey; 2],
+ ) -> Result {
+ if self.reg.parent.is_some() {
+ // Already registered.
+ return Err(EINVAL);
+ }
+
+ // SAFETY: We never move out of `this`.
+ let this = unsafe { self.as_mut().get_unchecked_mut() };
+
+ // Initialise the irq_chip.
+ {
+ let irq_chip = this.irq_chip.get_mut();
+ irq_chip.name = parent.name().as_char_ptr();
+
+ // SAFETY: The gpio subsystem configures a pointer to `gpio_chip` as the irq chip
+ // data, so we use `IrqChipAdapter` to convert to the `T::Data`, which is the same
+ // as `irq::Chip::Data` per the bound above.
+ unsafe { irq::init_chip::<IrqChipAdapter<U>>(irq_chip) };
+ }
+
+ // Initialise gc irq state.
+ {
+ let girq = &mut this.reg.gc.get_mut().irq;
+ girq.chip = this.irq_chip.get();
+ // SAFETY: By leaving `parent_handler_data` set to `null`, the gpio subsystem
+ // initialises it to a pointer to the gpio chip, which is what `FlowHandler<T>`
+ // expects.
+ girq.parent_handler = unsafe { irq::new_flow_handler::<FlowHandler<T>>() };
+ girq.num_parents = 1;
+ girq.parents = &mut this.parent_irq;
+ this.parent_irq = parent_irq;
+ girq.default_type = bindings::IRQ_TYPE_NONE;
+ girq.handler = Some(bindings::handle_bad_irq);
+ }
+
+ // SAFETY: `reg` is pinned when `self` is.
+ let pinned = unsafe { self.map_unchecked_mut(|r| &mut r.reg) };
+ pinned.register(gpio_count, base, parent, data, lock_keys)
+ }
+ }
+
+ impl<T: ChipWithIrqChip> Default for RegistrationWithIrqChip<T> {
+ fn default() -> Self {
+ Self::new()
+ }
+ }
+
+ // SAFETY: `RegistrationWithIrqChip` doesn't offer any methods or access to fields when shared
+ // between threads or CPUs, so it is safe to share it.
+ unsafe impl<T: ChipWithIrqChip> Sync for RegistrationWithIrqChip<T> {}
+
+ // SAFETY: Registration with and unregistration from the gpio subsystem (including irq chips for
+ // them) can happen from any thread. Additionally, `T::Data` (which is dropped during
+ // unregistration) is `Send`, so it is ok to move `Registration` to different threads.
+ #[allow(clippy::non_send_fields_in_send_ty)]
+ unsafe impl<T: ChipWithIrqChip> Send for RegistrationWithIrqChip<T> where T::Data: Send {}
+
+ struct FlowHandler<T: ChipWithIrqChip>(PhantomData<T>);
+
+ impl<T: ChipWithIrqChip> irq::FlowHandler for FlowHandler<T> {
+ type Data = *mut bindings::gpio_chip;
+
+ fn handle_irq_flow(gc: *mut bindings::gpio_chip, desc: &irq::Descriptor) {
+ // SAFETY: `FlowHandler` is only used in gpio chips, and it is removed when the gpio is
+ // unregistered, so we know that `gc` must still be valid. We also know that the value
+ // stored as gpio data was returned by `T::Data::into_pointer` again because
+ // `FlowHandler` is a private structure only used in this way.
+ let data = unsafe { T::Data::borrow(bindings::gpiochip_get_data(gc)) };
+
+ // SAFETY: `gc` is valid (see comment above), so we can dereference it.
+ let domain = unsafe { irq::Domain::from_ptr((*gc).irq.domain) };
+
+ T::handle_irq_flow(data, desc, &domain);
+ }
+ }
+
+ /// Adapter from an irq chip with `gpio_chip` pointer as context to one where the gpio chip
+ /// data is passed as context.
+ struct IrqChipAdapter<T: irq::Chip>(PhantomData<T>);
+
+ #[vtable]
+ impl<T: irq::Chip> irq::Chip for IrqChipAdapter<T> {
+ type Data = *mut bindings::gpio_chip;
+
+ const HAS_SET_TYPE: bool = T::HAS_SET_TYPE;
+ const HAS_SET_WAKE: bool = T::HAS_SET_WAKE;
+
+ fn ack(gc: *mut bindings::gpio_chip, irq_data: &irq::IrqData) {
+ // SAFETY: `IrqChipAdapter` is a private struct, only used when the data stored in the
+ // gpio chip is known to come from `T::Data`, and only valid while the gpio chip is
+ // registered, so `gc` is valid.
+ let data = unsafe { T::Data::borrow(bindings::gpiochip_get_data(gc as _)) };
+ T::ack(data, irq_data);
+ }
+
+ fn mask(gc: *mut bindings::gpio_chip, irq_data: &irq::IrqData) {
+ // SAFETY: `IrqChipAdapter` is a private struct, only used when the data stored in the
+ // gpio chip is known to come from `T::Data`, and only valid while the gpio chip is
+ // registered, so `gc` is valid.
+ let data = unsafe { T::Data::borrow(bindings::gpiochip_get_data(gc as _)) };
+ T::mask(data, irq_data);
+ }
+
+ fn unmask(gc: *mut bindings::gpio_chip, irq_data: &irq::IrqData) {
+ // SAFETY: `IrqChipAdapter` is a private struct, only used when the data stored in the
+ // gpio chip is known to come from `T::Data`, and only valid while the gpio chip is
+ // registered, so `gc` is valid.
+ let data = unsafe { T::Data::borrow(bindings::gpiochip_get_data(gc as _)) };
+ T::unmask(data, irq_data);
+ }
+
+ fn set_type(
+ gc: *mut bindings::gpio_chip,
+ irq_data: &mut irq::LockedIrqData,
+ flow_type: u32,
+ ) -> Result<irq::ExtraResult> {
+ // SAFETY: `IrqChipAdapter` is a private struct, only used when the data stored in the
+ // gpio chip is known to come from `T::Data`, and only valid while the gpio chip is
+ // registered, so `gc` is valid.
+ let data = unsafe { T::Data::borrow(bindings::gpiochip_get_data(gc as _)) };
+ T::set_type(data, irq_data, flow_type)
+ }
+
+ fn set_wake(gc: *mut bindings::gpio_chip, irq_data: &irq::IrqData, on: bool) -> Result {
+ // SAFETY: `IrqChipAdapter` is a private struct, only used when the data stored in the
+ // gpio chip is known to come from `T::Data`, and only valid while the gpio chip is
+ // registered, so `gc` is valid.
+ let data = unsafe { T::Data::borrow(bindings::gpiochip_get_data(gc as _)) };
+ T::set_wake(data, irq_data, on)
+ }
+ }
+
+ /// Registers a gpio chip and its irq chip with the rest of the kernel.
+ ///
+ /// It automatically defines the required lock classes.
+ #[macro_export]
+ macro_rules! gpio_irq_chip_register {
+ ($reg:expr, $irqchip:ty, $count:expr, $base:expr, $parent:expr, $data:expr,
+ $parent_irq:expr $(,)?) => {{
+ static CLASS1: $crate::sync::LockClassKey = $crate::sync::LockClassKey::new();
+ static CLASS2: $crate::sync::LockClassKey = $crate::sync::LockClassKey::new();
+ $crate::gpio::RegistrationWithIrqChip::register::<$irqchip>(
+ $reg,
+ $count,
+ $base,
+ $parent,
+ $data,
+ $parent_irq,
+ [&CLASS1, &CLASS2],
+ )
+ }};
+ }
+}
diff --git a/rust/kernel/hwrng.rs b/rust/kernel/hwrng.rs
new file mode 100644
index 000000000000..5918f567c332
--- /dev/null
+++ b/rust/kernel/hwrng.rs
@@ -0,0 +1,210 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Hardware Random Number Generator.
+//!
+//! C header: [`include/linux/hw_random.h`](../../../../include/linux/hw_random.h)
+
+use alloc::{boxed::Box, slice::from_raw_parts_mut};
+
+use crate::{
+ bindings, error::code::*, error::from_kernel_result, str::CString, to_result,
+ types::PointerWrapper, Result, ScopeGuard,
+};
+use macros::vtable;
+
+use core::{cell::UnsafeCell, fmt, marker::PhantomData, pin::Pin};
+
+/// This trait is implemented in order to provide callbacks to `struct hwrng`.
+#[vtable]
+pub trait Operations {
+ /// The pointer type that will be used to hold user-defined data type.
+ type Data: PointerWrapper + Send + Sync = ();
+
+ /// Initialization callback, can be left undefined.
+ fn init(_data: <Self::Data as PointerWrapper>::Borrowed<'_>) -> Result {
+ Err(EINVAL)
+ }
+
+ /// Cleanup callback, can be left undefined.
+ fn cleanup(_data: Self::Data) {}
+
+ /// Read data into the provided buffer.
+ /// Drivers can fill up to max bytes of data into the buffer.
+ /// The buffer is aligned for any type and its size is a multiple of 4 and >= 32 bytes.
+ fn read(
+ data: <Self::Data as PointerWrapper>::Borrowed<'_>,
+ buffer: &mut [u8],
+ wait: bool,
+ ) -> Result<u32>;
+}
+
+/// Registration structure for Hardware Random Number Generator driver.
+pub struct Registration<T: Operations> {
+ hwrng: UnsafeCell<bindings::hwrng>,
+ name: Option<CString>,
+ registered: bool,
+ _p: PhantomData<T>,
+}
+
+impl<T: Operations> Registration<T> {
+ /// Creates new instance of registration.
+ ///
+ /// The data must be registered.
+ pub fn new() -> Self {
+ Self {
+ hwrng: UnsafeCell::new(bindings::hwrng::default()),
+ name: None,
+ registered: false,
+ _p: PhantomData,
+ }
+ }
+
+ /// Returns a registered and pinned, heap-allocated representation of the registration.
+ pub fn new_pinned(
+ name: fmt::Arguments<'_>,
+ quality: u16,
+ data: T::Data,
+ ) -> Result<Pin<Box<Self>>> {
+ let mut reg = Pin::from(Box::try_new(Self::new())?);
+ reg.as_mut().register(name, quality, data)?;
+ Ok(reg)
+ }
+
+ /// Registers a hwrng device within the rest of the kernel.
+ ///
+ /// It must be pinned because the memory block that represents
+ /// the registration may be self-referential.
+ pub fn register(
+ self: Pin<&mut Self>,
+ name: fmt::Arguments<'_>,
+ quality: u16,
+ data: T::Data,
+ ) -> Result {
+ // SAFETY: We never move out of `this`.
+ let this = unsafe { self.get_unchecked_mut() };
+
+ if this.registered {
+ return Err(EINVAL);
+ }
+
+ let data_pointer = data.into_pointer();
+
+ // SAFETY: `data_pointer` comes from the call to `data.into_pointer()` above.
+ let guard = ScopeGuard::new(|| unsafe {
+ T::Data::from_pointer(data_pointer);
+ });
+
+ let name = CString::try_from_fmt(name)?;
+
+ // SAFETY: Registration is pinned and contains allocated and set to zero
+ // `bindings::hwrng` structure.
+ Self::init_hwrng(
+ unsafe { &mut *this.hwrng.get() },
+ &name,
+ quality,
+ data_pointer,
+ );
+
+ // SAFETY: `bindings::hwrng` is initialized above which guarantees safety.
+ to_result(unsafe { bindings::hwrng_register(this.hwrng.get()) })?;
+
+ this.registered = true;
+ this.name = Some(name);
+ guard.dismiss();
+ Ok(())
+ }
+
+ fn init_hwrng(
+ hwrng: &mut bindings::hwrng,
+ name: &CString,
+ quality: u16,
+ data: *const core::ffi::c_void,
+ ) {
+ hwrng.name = name.as_char_ptr();
+
+ hwrng.init = if T::HAS_INIT {
+ Some(Self::init_callback)
+ } else {
+ None
+ };
+ hwrng.cleanup = if T::HAS_CLEANUP {
+ Some(Self::cleanup_callback)
+ } else {
+ None
+ };
+ hwrng.data_present = None;
+ hwrng.data_read = None;
+ hwrng.read = Some(Self::read_callback);
+
+ hwrng.priv_ = data as _;
+ hwrng.quality = quality;
+
+ // SAFETY: All fields are properly initialized as
+ // remaining fields `list`, `ref` and `cleanup_done` are already
+ // zeroed by `bindings::hwrng::default()` call.
+ }
+
+ unsafe extern "C" fn init_callback(rng: *mut bindings::hwrng) -> core::ffi::c_int {
+ from_kernel_result! {
+ // SAFETY: `priv` private data field was initialized during creation of
+ // the `bindings::hwrng` in `Self::init_hwrng` method. This callback is only
+ // called once the driver is registered.
+ let data = unsafe { T::Data::borrow((*rng).priv_ as *const _) };
+ T::init(data)?;
+ Ok(0)
+ }
+ }
+
+ unsafe extern "C" fn cleanup_callback(rng: *mut bindings::hwrng) {
+ // SAFETY: `priv` private data field was initialized during creation of
+ // the `bindings::hwrng` in `Self::init_hwrng` method. This callback is only
+ // called once the driver is registered.
+ let data = unsafe { T::Data::from_pointer((*rng).priv_ as *const _) };
+ T::cleanup(data);
+ }
+
+ unsafe extern "C" fn read_callback(
+ rng: *mut bindings::hwrng,
+ data: *mut core::ffi::c_void,
+ max: usize,
+ wait: bindings::bool_,
+ ) -> core::ffi::c_int {
+ from_kernel_result! {
+ // SAFETY: `priv` private data field was initialized during creation of
+ // the `bindings::hwrng` in `Self::init_hwrng` method. This callback is only
+ // called once the driver is registered.
+ let drv_data = unsafe { T::Data::borrow((*rng).priv_ as *const _) };
+
+ // SAFETY: Slice is created from `data` and `max` arguments that are C's buffer
+ // along with its size in bytes that are safe for this conversion.
+ let buffer = unsafe { from_raw_parts_mut(data as *mut u8, max) };
+ let ret = T::read(drv_data, buffer, wait)?;
+ Ok(ret as _)
+ }
+ }
+}
+
+impl<T: Operations> Default for Registration<T> {
+ fn default() -> Self {
+ Self::new()
+ }
+}
+
+// SAFETY: `Registration` does not expose any of its state across threads.
+unsafe impl<T: Operations> Sync for Registration<T> {}
+
+// SAFETY: `Registration` is not restricted to a single thread,
+// its `T::Data` is also `Send` so it may be moved to different threads.
+#[allow(clippy::non_send_fields_in_send_ty)]
+unsafe impl<T: Operations> Send for Registration<T> {}
+
+impl<T: Operations> Drop for Registration<T> {
+ /// Removes the registration from the kernel if it has completed successfully before.
+ fn drop(&mut self) {
+ // SAFETY: The instance of Registration<T> is unregistered only
+ // after being initialized and registered before.
+ if self.registered {
+ unsafe { bindings::hwrng_unregister(self.hwrng.get()) };
+ }
+ }
+}
diff --git a/rust/kernel/io_buffer.rs b/rust/kernel/io_buffer.rs
new file mode 100644
index 000000000000..ccecc4763aca
--- /dev/null
+++ b/rust/kernel/io_buffer.rs
@@ -0,0 +1,153 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Buffers used in IO.
+
+use crate::Result;
+use alloc::vec::Vec;
+use core::mem::{size_of, MaybeUninit};
+
+/// Represents a buffer to be read from during IO.
+pub trait IoBufferReader {
+ /// Returns the number of bytes left to be read from the io buffer.
+ ///
+ /// Note that even reading less than this number of bytes may fail.
+ fn len(&self) -> usize;
+
+ /// Returns `true` if no data is available in the io buffer.
+ fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ /// Reads raw data from the io buffer into a raw kernel buffer.
+ ///
+ /// # Safety
+ ///
+ /// The output buffer must be valid.
+ unsafe fn read_raw(&mut self, out: *mut u8, len: usize) -> Result;
+
+ /// Reads all data remaining in the io buffer.
+ ///
+ /// Returns `EFAULT` if the address does not currently point to mapped, readable memory.
+ fn read_all(&mut self) -> Result<Vec<u8>> {
+ let mut data = Vec::<u8>::new();
+ data.try_resize(self.len(), 0)?;
+
+ // SAFETY: The output buffer is valid as we just allocated it.
+ unsafe { self.read_raw(data.as_mut_ptr(), data.len())? };
+ Ok(data)
+ }
+
+ /// Reads a byte slice from the io buffer.
+ ///
+ /// Returns `EFAULT` if the byte slice is bigger than the remaining size of the user slice or
+ /// if the address does not currently point to mapped, readable memory.
+ fn read_slice(&mut self, data: &mut [u8]) -> Result {
+ // SAFETY: The output buffer is valid as it's coming from a live reference.
+ unsafe { self.read_raw(data.as_mut_ptr(), data.len()) }
+ }
+
+ /// Reads the contents of a plain old data (POD) type from the io buffer.
+ fn read<T: ReadableFromBytes>(&mut self) -> Result<T> {
+ let mut out = MaybeUninit::<T>::uninit();
+ // SAFETY: The buffer is valid as it was just allocated.
+ unsafe { self.read_raw(out.as_mut_ptr() as _, size_of::<T>()) }?;
+ // SAFETY: We just initialised the data.
+ Ok(unsafe { out.assume_init() })
+ }
+}
+
+/// Represents a buffer to be written to during IO.
+pub trait IoBufferWriter {
+ /// Returns the number of bytes left to be written into the io buffer.
+ ///
+ /// Note that even writing less than this number of bytes may fail.
+ fn len(&self) -> usize;
+
+ /// Returns `true` if the io buffer cannot hold any additional data.
+ fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ /// Writes zeroes to the io buffer.
+ ///
+ /// Differently from the other write functions, `clear` will zero as much as it can and update
+ /// the writer internal state to reflect this. It will, however, return an error if it cannot
+ /// clear `len` bytes.
+ ///
+ /// For example, if a caller requests that 100 bytes be cleared but a segfault happens after
+ /// 20 bytes, then EFAULT is returned and the writer is advanced by 20 bytes.
+ fn clear(&mut self, len: usize) -> Result;
+
+ /// Writes a byte slice into the io buffer.
+ ///
+ /// Returns `EFAULT` if the byte slice is bigger than the remaining size of the io buffer or if
+ /// the address does not currently point to mapped, writable memory.
+ fn write_slice(&mut self, data: &[u8]) -> Result {
+ // SAFETY: The input buffer is valid as it's coming from a live reference.
+ unsafe { self.write_raw(data.as_ptr(), data.len()) }
+ }
+
+ /// Writes raw data to the io buffer from a raw kernel buffer.
+ ///
+ /// # Safety
+ ///
+ /// The input buffer must be valid.
+ unsafe fn write_raw(&mut self, data: *const u8, len: usize) -> Result;
+
+ /// Writes the contents of the given data into the io buffer.
+ fn write<T: WritableToBytes>(&mut self, data: &T) -> Result {
+ // SAFETY: The input buffer is valid as it's coming from a live
+ // reference to a type that implements `WritableToBytes`.
+ unsafe { self.write_raw(data as *const T as _, size_of::<T>()) }
+ }
+}
+
+/// Specifies that a type is safely readable from byte slices.
+///
+/// Not all types can be safely read from byte slices; examples from
+/// <https://doc.rust-lang.org/reference/behavior-considered-undefined.html> include `bool`
+/// that must be either `0` or `1`, and `char` that cannot be a surrogate or above `char::MAX`.
+///
+/// # Safety
+///
+/// Implementers must ensure that the type is made up only of types that can be safely read from
+/// arbitrary byte sequences (e.g., `u32`, `u64`, etc.).
+pub unsafe trait ReadableFromBytes {}
+
+// SAFETY: All bit patterns are acceptable values of the types below.
+unsafe impl ReadableFromBytes for u8 {}
+unsafe impl ReadableFromBytes for u16 {}
+unsafe impl ReadableFromBytes for u32 {}
+unsafe impl ReadableFromBytes for u64 {}
+unsafe impl ReadableFromBytes for usize {}
+unsafe impl ReadableFromBytes for i8 {}
+unsafe impl ReadableFromBytes for i16 {}
+unsafe impl ReadableFromBytes for i32 {}
+unsafe impl ReadableFromBytes for i64 {}
+unsafe impl ReadableFromBytes for isize {}
+
+/// Specifies that a type is safely writable to byte slices.
+///
+/// This means that we don't read undefined values (which leads to UB) in preparation for writing
+/// to the byte slice. It also ensures that no potentially sensitive information is leaked into the
+/// byte slices.
+///
+/// # Safety
+///
+/// A type must not include padding bytes and must be fully initialised to safely implement
+/// [`WritableToBytes`] (i.e., it doesn't contain [`MaybeUninit`] fields). A composition of
+/// writable types in a structure is not necessarily writable because it may result in padding
+/// bytes.
+pub unsafe trait WritableToBytes {}
+
+// SAFETY: Initialised instances of the following types have no uninitialised portions.
+unsafe impl WritableToBytes for u8 {}
+unsafe impl WritableToBytes for u16 {}
+unsafe impl WritableToBytes for u32 {}
+unsafe impl WritableToBytes for u64 {}
+unsafe impl WritableToBytes for usize {}
+unsafe impl WritableToBytes for i8 {}
+unsafe impl WritableToBytes for i16 {}
+unsafe impl WritableToBytes for i32 {}
+unsafe impl WritableToBytes for i64 {}
+unsafe impl WritableToBytes for isize {}
diff --git a/rust/kernel/io_mem.rs b/rust/kernel/io_mem.rs
new file mode 100644
index 000000000000..ff6886a9e3b7
--- /dev/null
+++ b/rust/kernel/io_mem.rs
@@ -0,0 +1,278 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Memory-mapped IO.
+//!
+//! C header: [`include/asm-generic/io.h`](../../../../include/asm-generic/io.h)
+
+#![allow(dead_code)]
+
+use crate::{bindings, error::code::*, Result};
+use core::convert::TryInto;
+
+/// Represents a memory resource.
+pub struct Resource {
+ offset: bindings::resource_size_t,
+ size: bindings::resource_size_t,
+}
+
+impl Resource {
+ pub(crate) fn new(
+ start: bindings::resource_size_t,
+ end: bindings::resource_size_t,
+ ) -> Option<Self> {
+ if start == 0 {
+ return None;
+ }
+ Some(Self {
+ offset: start,
+ size: end.checked_sub(start)?.checked_add(1)?,
+ })
+ }
+}
+
+/// Represents a memory block of at least `SIZE` bytes.
+///
+/// # Invariants
+///
+/// `ptr` is a non-null and valid address of at least `SIZE` bytes and returned by an `ioremap`
+/// variant. `ptr` is also 8-byte aligned.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::prelude::*;
+/// use kernel::io_mem::{IoMem, Resource};
+///
+/// fn test(res: Resource) -> Result {
+/// // Create an io mem block of at least 100 bytes.
+/// // SAFETY: No DMA operations are initiated through `mem`.
+/// let mem = unsafe { IoMem::<100>::try_new(res) }?;
+///
+/// // Read one byte from offset 10.
+/// let v = mem.readb(10);
+///
+/// // Write value to offset 20.
+/// mem.writeb(v, 20);
+///
+/// Ok(())
+/// }
+/// ```
+pub struct IoMem<const SIZE: usize> {
+ ptr: usize,
+}
+
+macro_rules! define_read {
+ ($(#[$attr:meta])* $name:ident, $try_name:ident, $type_name:ty) => {
+ /// Reads IO data from the given offset known, at compile time.
+ ///
+ /// If the offset is not known at compile time, the build will fail.
+ $(#[$attr])*
+ #[inline]
+ pub fn $name(&self, offset: usize) -> $type_name {
+ Self::check_offset::<$type_name>(offset);
+ let ptr = self.ptr.wrapping_add(offset);
+ // SAFETY: The type invariants guarantee that `ptr` is a valid pointer. The check above
+ // guarantees that the code won't build if `offset` makes the read go out of bounds
+ // (including the type size).
+ unsafe { bindings::$name(ptr as _) }
+ }
+
+ /// Reads IO data from the given offset.
+ ///
+ /// It fails if/when the offset (plus the type size) is out of bounds.
+ $(#[$attr])*
+ pub fn $try_name(&self, offset: usize) -> Result<$type_name> {
+ if !Self::offset_ok::<$type_name>(offset) {
+ return Err(EINVAL);
+ }
+ let ptr = self.ptr.wrapping_add(offset);
+ // SAFETY: The type invariants guarantee that `ptr` is a valid pointer. The check above
+ // returns an error if `offset` would make the read go out of bounds (including the
+ // type size).
+ Ok(unsafe { bindings::$name(ptr as _) })
+ }
+ };
+}
+
+macro_rules! define_write {
+ ($(#[$attr:meta])* $name:ident, $try_name:ident, $type_name:ty) => {
+ /// Writes IO data to the given offset, known at compile time.
+ ///
+ /// If the offset is not known at compile time, the build will fail.
+ $(#[$attr])*
+ #[inline]
+ pub fn $name(&self, value: $type_name, offset: usize) {
+ Self::check_offset::<$type_name>(offset);
+ let ptr = self.ptr.wrapping_add(offset);
+ // SAFETY: The type invariants guarantee that `ptr` is a valid pointer. The check above
+ // guarantees that the code won't link if `offset` makes the write go out of bounds
+ // (including the type size).
+ unsafe { bindings::$name(value, ptr as _) }
+ }
+
+ /// Writes IO data to the given offset.
+ ///
+ /// It fails if/when the offset (plus the type size) is out of bounds.
+ $(#[$attr])*
+ pub fn $try_name(&self, value: $type_name, offset: usize) -> Result {
+ if !Self::offset_ok::<$type_name>(offset) {
+ return Err(EINVAL);
+ }
+ let ptr = self.ptr.wrapping_add(offset);
+ // SAFETY: The type invariants guarantee that `ptr` is a valid pointer. The check above
+ // returns an error if `offset` would make the write go out of bounds (including the
+ // type size).
+ unsafe { bindings::$name(value, ptr as _) };
+ Ok(())
+ }
+ };
+}
+
+impl<const SIZE: usize> IoMem<SIZE> {
+ /// Tries to create a new instance of a memory block.
+ ///
+ /// The resource described by `res` is mapped into the CPU's address space so that it can be
+ /// accessed directly. It is also consumed by this function so that it can't be mapped again
+ /// to a different address.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that either (a) the resulting interface cannot be used to initiate DMA
+ /// operations, or (b) that DMA operations initiated via the returned interface use DMA handles
+ /// allocated through the `dma` module.
+ pub unsafe fn try_new(res: Resource) -> Result<Self> {
+ // Check that the resource has at least `SIZE` bytes in it.
+ if res.size < SIZE.try_into()? {
+ return Err(EINVAL);
+ }
+
+ // To be able to check pointers at compile time based only on offsets, we need to guarantee
+ // that the base pointer is minimally aligned. So we conservatively expect at least 8 bytes.
+ if res.offset % 8 != 0 {
+ crate::pr_err!("Physical address is not 64-bit aligned: {:x}", res.offset);
+ return Err(EDOM);
+ }
+
+ // Try to map the resource.
+ // SAFETY: Just mapping the memory range.
+ let addr = unsafe { bindings::ioremap(res.offset, res.size as _) };
+ if addr.is_null() {
+ Err(ENOMEM)
+ } else {
+ // INVARIANT: `addr` is non-null and was returned by `ioremap`, so it is valid. It is
+ // also 8-byte aligned because we checked it above.
+ Ok(Self { ptr: addr as usize })
+ }
+ }
+
+ #[inline]
+ const fn offset_ok<T>(offset: usize) -> bool {
+ let type_size = core::mem::size_of::<T>();
+ if let Some(end) = offset.checked_add(type_size) {
+ end <= SIZE && offset % type_size == 0
+ } else {
+ false
+ }
+ }
+
+ fn offset_ok_of_val<T: ?Sized>(offset: usize, value: &T) -> bool {
+ let value_size = core::mem::size_of_val(value);
+ let value_alignment = core::mem::align_of_val(value);
+ if let Some(end) = offset.checked_add(value_size) {
+ end <= SIZE && offset % value_alignment == 0
+ } else {
+ false
+ }
+ }
+
+ #[inline]
+ const fn check_offset<T>(offset: usize) {
+ crate::build_assert!(Self::offset_ok::<T>(offset), "IoMem offset overflow");
+ }
+
+ /// Copy memory block from an i/o memory by filling the specified buffer with it.
+ ///
+ /// # Examples
+ /// ```
+ /// use kernel::io_mem::{self, IoMem, Resource};
+ ///
+ /// fn test(res: Resource) -> Result {
+ /// // Create an i/o memory block of at least 100 bytes.
+ /// let mem = unsafe { IoMem::<100>::try_new(res) }?;
+ ///
+ /// let mut buffer: [u8; 32] = [0; 32];
+ ///
+ /// // Memcpy 16 bytes from an offset 10 of i/o memory block into the buffer.
+ /// mem.try_memcpy_fromio(&mut buffer[..16], 10)?;
+ ///
+ /// Ok(())
+ /// }
+ /// ```
+ pub fn try_memcpy_fromio(&self, buffer: &mut [u8], offset: usize) -> Result {
+ if !Self::offset_ok_of_val(offset, buffer) {
+ return Err(EINVAL);
+ }
+
+ let ptr = self.ptr.wrapping_add(offset);
+
+ // SAFETY:
+ // - The type invariants guarantee that `ptr` is a valid pointer.
+ // - The bounds of `buffer` are checked with a call to `offset_ok_of_val()`.
+ unsafe {
+ bindings::memcpy_fromio(
+ buffer.as_mut_ptr() as *mut _,
+ ptr as *const _,
+ buffer.len() as _,
+ )
+ };
+ Ok(())
+ }
+
+ define_read!(readb, try_readb, u8);
+ define_read!(readw, try_readw, u16);
+ define_read!(readl, try_readl, u32);
+ define_read!(
+ #[cfg(CONFIG_64BIT)]
+ readq,
+ try_readq,
+ u64
+ );
+
+ define_read!(readb_relaxed, try_readb_relaxed, u8);
+ define_read!(readw_relaxed, try_readw_relaxed, u16);
+ define_read!(readl_relaxed, try_readl_relaxed, u32);
+ define_read!(
+ #[cfg(CONFIG_64BIT)]
+ readq_relaxed,
+ try_readq_relaxed,
+ u64
+ );
+
+ define_write!(writeb, try_writeb, u8);
+ define_write!(writew, try_writew, u16);
+ define_write!(writel, try_writel, u32);
+ define_write!(
+ #[cfg(CONFIG_64BIT)]
+ writeq,
+ try_writeq,
+ u64
+ );
+
+ define_write!(writeb_relaxed, try_writeb_relaxed, u8);
+ define_write!(writew_relaxed, try_writew_relaxed, u16);
+ define_write!(writel_relaxed, try_writel_relaxed, u32);
+ define_write!(
+ #[cfg(CONFIG_64BIT)]
+ writeq_relaxed,
+ try_writeq_relaxed,
+ u64
+ );
+}
+
+impl<const SIZE: usize> Drop for IoMem<SIZE> {
+ fn drop(&mut self) {
+ // SAFETY: By the type invariant, `self.ptr` is a value returned by a previous successful
+ // call to `ioremap`.
+ unsafe { bindings::iounmap(self.ptr as _) };
+ }
+}
diff --git a/rust/kernel/iov_iter.rs b/rust/kernel/iov_iter.rs
new file mode 100644
index 000000000000..b9b8dc882bd0
--- /dev/null
+++ b/rust/kernel/iov_iter.rs
@@ -0,0 +1,81 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! IO vector iterators.
+//!
+//! C header: [`include/linux/uio.h`](../../../../include/linux/uio.h)
+
+use crate::{
+ bindings,
+ error::code::*,
+ io_buffer::{IoBufferReader, IoBufferWriter},
+ Result,
+};
+
+/// Wraps the kernel's `struct iov_iter`.
+///
+/// # Invariants
+///
+/// The pointer `IovIter::ptr` is non-null and valid.
+pub struct IovIter {
+ ptr: *mut bindings::iov_iter,
+}
+
+impl IovIter {
+ fn common_len(&self) -> usize {
+ // SAFETY: `IovIter::ptr` is guaranteed to be valid by the type invariants.
+ unsafe { (*self.ptr).count }
+ }
+
+ /// Constructs a new [`struct iov_iter`] wrapper.
+ ///
+ /// # Safety
+ ///
+ /// The pointer `ptr` must be non-null and valid for the lifetime of the object.
+ pub(crate) unsafe fn from_ptr(ptr: *mut bindings::iov_iter) -> Self {
+ // INVARIANTS: the safety contract ensures the type invariant will hold.
+ Self { ptr }
+ }
+}
+
+impl IoBufferWriter for IovIter {
+ fn len(&self) -> usize {
+ self.common_len()
+ }
+
+ fn clear(&mut self, mut len: usize) -> Result {
+ while len > 0 {
+ // SAFETY: `IovIter::ptr` is guaranteed to be valid by the type invariants.
+ let written = unsafe { bindings::iov_iter_zero(len, self.ptr) };
+ if written == 0 {
+ return Err(EFAULT);
+ }
+
+ len -= written;
+ }
+ Ok(())
+ }
+
+ unsafe fn write_raw(&mut self, data: *const u8, len: usize) -> Result {
+ let res = unsafe { bindings::copy_to_iter(data as _, len, self.ptr) };
+ if res != len {
+ Err(EFAULT)
+ } else {
+ Ok(())
+ }
+ }
+}
+
+impl IoBufferReader for IovIter {
+ fn len(&self) -> usize {
+ self.common_len()
+ }
+
+ unsafe fn read_raw(&mut self, out: *mut u8, len: usize) -> Result {
+ let res = unsafe { bindings::copy_from_iter(out as _, len, self.ptr) };
+ if res != len {
+ Err(EFAULT)
+ } else {
+ Ok(())
+ }
+ }
+}
diff --git a/rust/kernel/irq.rs b/rust/kernel/irq.rs
new file mode 100644
index 000000000000..f2fa270dd728
--- /dev/null
+++ b/rust/kernel/irq.rs
@@ -0,0 +1,681 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Interrupts and interrupt chips.
+//!
+//! See <https://www.kernel.org/doc/Documentation/core-api/genericirq.rst>.
+//!
+//! C headers: [`include/linux/irq.h`](../../../../include/linux/irq.h) and
+//! [`include/linux/interrupt.h`](../../../../include/linux/interrupt.h).
+
+#![allow(dead_code)]
+
+use crate::{
+ bindings,
+ error::{from_kernel_result, to_result},
+ str::CString,
+ types::PointerWrapper,
+ Error, Result, ScopeGuard,
+};
+use core::{fmt, marker::PhantomData, ops::Deref};
+use macros::vtable;
+
+/// The type of irq hardware numbers.
+pub type HwNumber = bindings::irq_hw_number_t;
+
+/// Wraps the kernel's `struct irq_data`.
+///
+/// # Invariants
+///
+/// The pointer `IrqData::ptr` is non-null and valid.
+pub struct IrqData {
+ ptr: *mut bindings::irq_data,
+}
+
+impl IrqData {
+ /// Creates a new `IrqData` instance from a raw pointer.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that `ptr` is non-null and valid when the function is called, and that
+ /// it remains valid for the lifetime of the return [`IrqData`] instance.
+ unsafe fn from_ptr(ptr: *mut bindings::irq_data) -> Self {
+ // INVARIANTS: By the safety requirements, the instance we're creating satisfies the type
+ // invariants.
+ Self { ptr }
+ }
+
+ /// Returns the hardware irq number.
+ pub fn hwirq(&self) -> HwNumber {
+ // SAFETY: By the type invariants, it's ok to dereference `ptr`.
+ unsafe { (*self.ptr).hwirq }
+ }
+}
+
+/// Wraps the kernel's `struct irq_data` when it is locked.
+///
+/// Being locked allows additional operations to be performed on the data.
+pub struct LockedIrqData(IrqData);
+
+impl LockedIrqData {
+ /// Sets the high-level irq flow handler to the builtin one for level-triggered irqs.
+ pub fn set_level_handler(&mut self) {
+ // SAFETY: By the type invariants of `self.0`, we know `self.0.ptr` is valid.
+ unsafe { bindings::irq_set_handler_locked(self.0.ptr, Some(bindings::handle_level_irq)) };
+ }
+
+ /// Sets the high-level irq flow handler to the builtin one for edge-triggered irqs.
+ pub fn set_edge_handler(&mut self) {
+ // SAFETY: By the type invariants of `self.0`, we know `self.0.ptr` is valid.
+ unsafe { bindings::irq_set_handler_locked(self.0.ptr, Some(bindings::handle_edge_irq)) };
+ }
+
+ /// Sets the high-level irq flow handler to the builtin one for bad irqs.
+ pub fn set_bad_handler(&mut self) {
+ // SAFETY: By the type invariants of `self.0`, we know `self.0.ptr` is valid.
+ unsafe { bindings::irq_set_handler_locked(self.0.ptr, Some(bindings::handle_bad_irq)) };
+ }
+}
+
+impl Deref for LockedIrqData {
+ type Target = IrqData;
+
+ fn deref(&self) -> &Self::Target {
+ &self.0
+ }
+}
+
+/// Extra information returned by some of the [`Chip`] methods on success.
+pub enum ExtraResult {
+ /// Indicates that the caller (irq core) will update the descriptor state.
+ None = bindings::IRQ_SET_MASK_OK as _,
+
+ /// Indicates that the callee (irq chip implementation) already updated the descriptor state.
+ NoCopy = bindings::IRQ_SET_MASK_OK_NOCOPY as _,
+
+ /// Same as [`ExtraResult::None`] in terms of updating descriptor state. It is used in stacked
+ /// irq chips to indicate that descendant chips should be skipped.
+ Done = bindings::IRQ_SET_MASK_OK_DONE as _,
+}
+
+/// An irq chip.
+///
+/// It is a trait for the functions defined in [`struct irq_chip`].
+///
+/// [`struct irq_chip`]: ../../../include/linux/irq.h
+#[vtable]
+pub trait Chip: Sized {
+ /// The type of the context data stored in the irq chip and made available on each callback.
+ type Data: PointerWrapper;
+
+ /// Called at the start of a new interrupt.
+ fn ack(data: <Self::Data as PointerWrapper>::Borrowed<'_>, irq_data: &IrqData);
+
+ /// Masks an interrupt source.
+ fn mask(data: <Self::Data as PointerWrapper>::Borrowed<'_>, irq_data: &IrqData);
+
+ /// Unmasks an interrupt source.
+ fn unmask(_data: <Self::Data as PointerWrapper>::Borrowed<'_>, irq_data: &IrqData);
+
+ /// Sets the flow type of an interrupt.
+ ///
+ /// The flow type is a combination of the constants in [`Type`].
+ fn set_type(
+ _data: <Self::Data as PointerWrapper>::Borrowed<'_>,
+ _irq_data: &mut LockedIrqData,
+ _flow_type: u32,
+ ) -> Result<ExtraResult> {
+ Ok(ExtraResult::None)
+ }
+
+ /// Enables or disables power-management wake-on of an interrupt.
+ fn set_wake(
+ _data: <Self::Data as PointerWrapper>::Borrowed<'_>,
+ _irq_data: &IrqData,
+ _on: bool,
+ ) -> Result {
+ Ok(())
+ }
+}
+
+/// Initialises `chip` with the callbacks defined in `T`.
+///
+/// # Safety
+///
+/// The caller must ensure that the value stored in the irq chip data is the result of calling
+/// [`PointerWrapper::into_pointer] for the [`T::Data`] type.
+pub(crate) unsafe fn init_chip<T: Chip>(chip: &mut bindings::irq_chip) {
+ chip.irq_ack = Some(irq_ack_callback::<T>);
+ chip.irq_mask = Some(irq_mask_callback::<T>);
+ chip.irq_unmask = Some(irq_unmask_callback::<T>);
+
+ if T::HAS_SET_TYPE {
+ chip.irq_set_type = Some(irq_set_type_callback::<T>);
+ }
+
+ if T::HAS_SET_WAKE {
+ chip.irq_set_wake = Some(irq_set_wake_callback::<T>);
+ }
+}
+
+/// Enables or disables power-management wake-on for the given irq number.
+pub fn set_wake(irq: u32, on: bool) -> Result {
+ // SAFETY: Just an FFI call, there are no extra requirements for safety.
+ let ret = unsafe { bindings::irq_set_irq_wake(irq, on as _) };
+ if ret < 0 {
+ Err(Error::from_kernel_errno(ret))
+ } else {
+ Ok(())
+ }
+}
+
+unsafe extern "C" fn irq_ack_callback<T: Chip>(irq_data: *mut bindings::irq_data) {
+ // SAFETY: The safety requirements of `init_chip`, which is the only place that uses this
+ // callback, ensure that the value stored as irq chip data comes from a previous call to
+ // `PointerWrapper::into_pointer`.
+ let data = unsafe { T::Data::borrow(bindings::irq_data_get_irq_chip_data(irq_data)) };
+
+ // SAFETY: The value returned by `IrqData` is only valid until the end of this function, and
+ // `irq_data` is guaranteed to be valid until then (by the contract with C code).
+ T::ack(data, unsafe { &IrqData::from_ptr(irq_data) })
+}
+
+unsafe extern "C" fn irq_mask_callback<T: Chip>(irq_data: *mut bindings::irq_data) {
+ // SAFETY: The safety requirements of `init_chip`, which is the only place that uses this
+ // callback, ensure that the value stored as irq chip data comes from a previous call to
+ // `PointerWrapper::into_pointer`.
+ let data = unsafe { T::Data::borrow(bindings::irq_data_get_irq_chip_data(irq_data)) };
+
+ // SAFETY: The value returned by `IrqData` is only valid until the end of this function, and
+ // `irq_data` is guaranteed to be valid until then (by the contract with C code).
+ T::mask(data, unsafe { &IrqData::from_ptr(irq_data) })
+}
+
+unsafe extern "C" fn irq_unmask_callback<T: Chip>(irq_data: *mut bindings::irq_data) {
+ // SAFETY: The safety requirements of `init_chip`, which is the only place that uses this
+ // callback, ensure that the value stored as irq chip data comes from a previous call to
+ // `PointerWrapper::into_pointer`.
+ let data = unsafe { T::Data::borrow(bindings::irq_data_get_irq_chip_data(irq_data)) };
+
+ // SAFETY: The value returned by `IrqData` is only valid until the end of this function, and
+ // `irq_data` is guaranteed to be valid until then (by the contract with C code).
+ T::unmask(data, unsafe { &IrqData::from_ptr(irq_data) })
+}
+
+unsafe extern "C" fn irq_set_type_callback<T: Chip>(
+ irq_data: *mut bindings::irq_data,
+ flow_type: core::ffi::c_uint,
+) -> core::ffi::c_int {
+ from_kernel_result! {
+ // SAFETY: The safety requirements of `init_chip`, which is the only place that uses this
+ // callback, ensure that the value stored as irq chip data comes from a previous call to
+ // `PointerWrapper::into_pointer`.
+ let data = unsafe { T::Data::borrow(bindings::irq_data_get_irq_chip_data(irq_data)) };
+
+ // SAFETY: The value returned by `IrqData` is only valid until the end of this function, and
+ // `irq_data` is guaranteed to be valid until then (by the contract with C code).
+ let ret = T::set_type(
+ data,
+ &mut LockedIrqData(unsafe { IrqData::from_ptr(irq_data) }),
+ flow_type,
+ )?;
+ Ok(ret as _)
+ }
+}
+
+unsafe extern "C" fn irq_set_wake_callback<T: Chip>(
+ irq_data: *mut bindings::irq_data,
+ on: core::ffi::c_uint,
+) -> core::ffi::c_int {
+ from_kernel_result! {
+ // SAFETY: The safety requirements of `init_chip`, which is the only place that uses this
+ // callback, ensure that the value stored as irq chip data comes from a previous call to
+ // `PointerWrapper::into_pointer`.
+ let data = unsafe { T::Data::borrow(bindings::irq_data_get_irq_chip_data(irq_data)) };
+
+ // SAFETY: The value returned by `IrqData` is only valid until the end of this function, and
+ // `irq_data` is guaranteed to be valid until then (by the contract with C code).
+ T::set_wake(data, unsafe { &IrqData::from_ptr(irq_data) }, on != 0)?;
+ Ok(0)
+ }
+}
+
+/// Contains constants that describes how an interrupt can be triggered.
+///
+/// It is tagged with `non_exhaustive` to prevent users from instantiating it.
+#[non_exhaustive]
+pub struct Type;
+
+impl Type {
+ /// The interrupt cannot be triggered.
+ pub const NONE: u32 = bindings::IRQ_TYPE_NONE;
+
+ /// The interrupt is triggered when the signal goes from low to high.
+ pub const EDGE_RISING: u32 = bindings::IRQ_TYPE_EDGE_RISING;
+
+ /// The interrupt is triggered when the signal goes from high to low.
+ pub const EDGE_FALLING: u32 = bindings::IRQ_TYPE_EDGE_FALLING;
+
+ /// The interrupt is triggered when the signal goes from low to high and when it goes to high
+ /// to low.
+ pub const EDGE_BOTH: u32 = bindings::IRQ_TYPE_EDGE_BOTH;
+
+ /// The interrupt is triggered while the signal is held high.
+ pub const LEVEL_HIGH: u32 = bindings::IRQ_TYPE_LEVEL_HIGH;
+
+ /// The interrupt is triggered while the signal is held low.
+ pub const LEVEL_LOW: u32 = bindings::IRQ_TYPE_LEVEL_LOW;
+}
+
+/// Wraps the kernel's `struct irq_desc`.
+///
+/// # Invariants
+///
+/// The pointer `Descriptor::ptr` is non-null and valid.
+pub struct Descriptor {
+ pub(crate) ptr: *mut bindings::irq_desc,
+}
+
+impl Descriptor {
+ /// Constructs a new `struct irq_desc` wrapper.
+ ///
+ /// # Safety
+ ///
+ /// The pointer `ptr` must be non-null and valid for the lifetime of the returned object.
+ unsafe fn from_ptr(ptr: *mut bindings::irq_desc) -> Self {
+ // INVARIANT: The safety requirements ensure the invariant.
+ Self { ptr }
+ }
+
+ /// Calls `chained_irq_enter` and returns a guard that calls `chained_irq_exit` once dropped.
+ ///
+ /// It is meant to be used by chained irq handlers to dispatch irqs to the next handlers.
+ pub fn enter_chained(&self) -> ChainedGuard<'_> {
+ // SAFETY: By the type invariants, `ptr` is always non-null and valid.
+ let irq_chip = unsafe { bindings::irq_desc_get_chip(self.ptr) };
+
+ // SAFETY: By the type invariants, `ptr` is always non-null and valid. `irq_chip` was just
+ // returned from `ptr`, so it is still valid too.
+ unsafe { bindings::chained_irq_enter(irq_chip, self.ptr) };
+ ChainedGuard {
+ desc: self,
+ irq_chip,
+ }
+ }
+}
+
+struct InternalRegistration<T: PointerWrapper> {
+ irq: u32,
+ data: *mut core::ffi::c_void,
+ name: CString,
+ _p: PhantomData<T>,
+}
+
+impl<T: PointerWrapper> InternalRegistration<T> {
+ /// Registers a new irq handler.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that `handler` and `thread_fn` are compatible with the registration,
+ /// that is, that they only use their second argument while the call is happening and that they
+ /// only call [`T::borrow`] on it (e.g., they shouldn't call [`T::from_pointer`] and consume
+ /// it).
+ unsafe fn try_new(
+ irq: core::ffi::c_uint,
+ handler: bindings::irq_handler_t,
+ thread_fn: bindings::irq_handler_t,
+ flags: usize,
+ data: T,
+ name: fmt::Arguments<'_>,
+ ) -> Result<Self> {
+ let ptr = data.into_pointer() as *mut _;
+ let name = CString::try_from_fmt(name)?;
+ let guard = ScopeGuard::new(|| {
+ // SAFETY: `ptr` came from a previous call to `into_pointer`.
+ unsafe { T::from_pointer(ptr) };
+ });
+ // SAFETY: `name` and `ptr` remain valid as long as the registration is alive.
+ to_result(unsafe {
+ bindings::request_threaded_irq(
+ irq,
+ handler,
+ thread_fn,
+ flags as _,
+ name.as_char_ptr(),
+ ptr,
+ )
+ })?;
+ guard.dismiss();
+ Ok(Self {
+ irq,
+ name,
+ data: ptr,
+ _p: PhantomData,
+ })
+ }
+}
+
+impl<T: PointerWrapper> Drop for InternalRegistration<T> {
+ fn drop(&mut self) {
+ // Unregister irq handler.
+ //
+ // SAFETY: When `try_new` succeeds, the irq was successfully requested, so it is ok to free
+ // it here.
+ unsafe { bindings::free_irq(self.irq, self.data) };
+
+ // Free context data.
+ //
+ // SAFETY: This matches the call to `into_pointer` from `try_new` in the success case.
+ unsafe { T::from_pointer(self.data) };
+ }
+}
+
+/// An irq handler.
+pub trait Handler {
+ /// The context data associated with and made available to the handler.
+ type Data: PointerWrapper;
+
+ /// Called from interrupt context when the irq happens.
+ fn handle_irq(data: <Self::Data as PointerWrapper>::Borrowed<'_>) -> Return;
+}
+
+/// The registration of an interrupt handler.
+///
+/// # Examples
+///
+/// The following is an example of a regular handler with a boxed `u32` as data.
+///
+/// ```
+/// # use kernel::prelude::*;
+/// use kernel::irq;
+///
+/// struct Example;
+///
+/// impl irq::Handler for Example {
+/// type Data = Box<u32>;
+///
+/// fn handle_irq(_data: &u32) -> irq::Return {
+/// irq::Return::None
+/// }
+/// }
+///
+/// fn request_irq(irq: u32, data: Box<u32>) -> Result<irq::Registration<Example>> {
+/// irq::Registration::try_new(irq, data, irq::flags::SHARED, fmt!("example_{irq}"))
+/// }
+/// ```
+pub struct Registration<H: Handler>(InternalRegistration<H::Data>);
+
+impl<H: Handler> Registration<H> {
+ /// Registers a new irq handler.
+ ///
+ /// The valid values of `flags` come from the [`flags`] module.
+ pub fn try_new(
+ irq: u32,
+ data: H::Data,
+ flags: usize,
+ name: fmt::Arguments<'_>,
+ ) -> Result<Self> {
+ // SAFETY: `handler` only calls `H::Data::borrow` on `raw_data`.
+ Ok(Self(unsafe {
+ InternalRegistration::try_new(irq, Some(Self::handler), None, flags, data, name)?
+ }))
+ }
+
+ unsafe extern "C" fn handler(
+ _irq: core::ffi::c_int,
+ raw_data: *mut core::ffi::c_void,
+ ) -> bindings::irqreturn_t {
+ // SAFETY: On registration, `into_pointer` was called, so it is safe to borrow from it here
+ // because `from_pointer` is called only after the irq is unregistered.
+ let data = unsafe { H::Data::borrow(raw_data) };
+ H::handle_irq(data) as _
+ }
+}
+
+/// A threaded irq handler.
+pub trait ThreadedHandler {
+ /// The context data associated with and made available to the handlers.
+ type Data: PointerWrapper;
+
+ /// Called from interrupt context when the irq first happens.
+ fn handle_primary_irq(_data: <Self::Data as PointerWrapper>::Borrowed<'_>) -> Return {
+ Return::WakeThread
+ }
+
+ /// Called from the handler thread.
+ fn handle_threaded_irq(data: <Self::Data as PointerWrapper>::Borrowed<'_>) -> Return;
+}
+
+/// The registration of a threaded interrupt handler.
+///
+/// # Examples
+///
+/// The following is an example of a threaded handler with a ref-counted u32 as data:
+///
+/// ```
+/// # use kernel::prelude::*;
+/// use kernel::{
+/// irq,
+/// sync::{Ref, RefBorrow},
+/// };
+///
+/// struct Example;
+///
+/// impl irq::ThreadedHandler for Example {
+/// type Data = Ref<u32>;
+///
+/// fn handle_threaded_irq(_data: RefBorrow<'_, u32>) -> irq::Return {
+/// irq::Return::None
+/// }
+/// }
+///
+/// fn request_irq(irq: u32, data: Ref<u32>) -> Result<irq::ThreadedRegistration<Example>> {
+/// irq::ThreadedRegistration::try_new(irq, data, irq::flags::SHARED, fmt!("example_{irq}"))
+/// }
+/// ```
+pub struct ThreadedRegistration<H: ThreadedHandler>(InternalRegistration<H::Data>);
+
+impl<H: ThreadedHandler> ThreadedRegistration<H> {
+ /// Registers a new threaded irq handler.
+ ///
+ /// The valid values of `flags` come from the [`flags`] module.
+ pub fn try_new(
+ irq: u32,
+ data: H::Data,
+ flags: usize,
+ name: fmt::Arguments<'_>,
+ ) -> Result<Self> {
+ // SAFETY: both `primary_handler` and `threaded_handler` only call `H::Data::borrow` on
+ // `raw_data`.
+ Ok(Self(unsafe {
+ InternalRegistration::try_new(
+ irq,
+ Some(Self::primary_handler),
+ Some(Self::threaded_handler),
+ flags,
+ data,
+ name,
+ )?
+ }))
+ }
+
+ unsafe extern "C" fn primary_handler(
+ _irq: core::ffi::c_int,
+ raw_data: *mut core::ffi::c_void,
+ ) -> bindings::irqreturn_t {
+ // SAFETY: On registration, `into_pointer` was called, so it is safe to borrow from it here
+ // because `from_pointer` is called only after the irq is unregistered.
+ let data = unsafe { H::Data::borrow(raw_data) };
+ H::handle_primary_irq(data) as _
+ }
+
+ unsafe extern "C" fn threaded_handler(
+ _irq: core::ffi::c_int,
+ raw_data: *mut core::ffi::c_void,
+ ) -> bindings::irqreturn_t {
+ // SAFETY: On registration, `into_pointer` was called, so it is safe to borrow from it here
+ // because `from_pointer` is called only after the irq is unregistered.
+ let data = unsafe { H::Data::borrow(raw_data) };
+ H::handle_threaded_irq(data) as _
+ }
+}
+
+/// The return value from interrupt handlers.
+pub enum Return {
+ /// The interrupt was not from this device or was not handled.
+ None = bindings::irqreturn_IRQ_NONE as _,
+
+ /// The interrupt was handled by this device.
+ Handled = bindings::irqreturn_IRQ_HANDLED as _,
+
+ /// The handler wants the handler thread to wake up.
+ WakeThread = bindings::irqreturn_IRQ_WAKE_THREAD as _,
+}
+
+/// Container for interrupt flags.
+pub mod flags {
+ use crate::bindings;
+
+ /// Use the interrupt line as already configured.
+ pub const TRIGGER_NONE: usize = bindings::IRQF_TRIGGER_NONE as _;
+
+ /// The interrupt is triggered when the signal goes from low to high.
+ pub const TRIGGER_RISING: usize = bindings::IRQF_TRIGGER_RISING as _;
+
+ /// The interrupt is triggered when the signal goes from high to low.
+ pub const TRIGGER_FALLING: usize = bindings::IRQF_TRIGGER_FALLING as _;
+
+ /// The interrupt is triggered while the signal is held high.
+ pub const TRIGGER_HIGH: usize = bindings::IRQF_TRIGGER_HIGH as _;
+
+ /// The interrupt is triggered while the signal is held low.
+ pub const TRIGGER_LOW: usize = bindings::IRQF_TRIGGER_LOW as _;
+
+ /// Allow sharing the irq among several devices.
+ pub const SHARED: usize = bindings::IRQF_SHARED as _;
+
+ /// Set by callers when they expect sharing mismatches to occur.
+ pub const PROBE_SHARED: usize = bindings::IRQF_PROBE_SHARED as _;
+
+ /// Flag to mark this interrupt as timer interrupt.
+ pub const TIMER: usize = bindings::IRQF_TIMER as _;
+
+ /// Interrupt is per cpu.
+ pub const PERCPU: usize = bindings::IRQF_PERCPU as _;
+
+ /// Flag to exclude this interrupt from irq balancing.
+ pub const NOBALANCING: usize = bindings::IRQF_NOBALANCING as _;
+
+ /// Interrupt is used for polling (only the interrupt that is registered first in a shared
+ /// interrupt is considered for performance reasons).
+ pub const IRQPOLL: usize = bindings::IRQF_IRQPOLL as _;
+
+ /// Interrupt is not reenabled after the hardirq handler finished. Used by threaded interrupts
+ /// which need to keep the irq line disabled until the threaded handler has been run.
+ pub const ONESHOT: usize = bindings::IRQF_ONESHOT as _;
+
+ /// Do not disable this IRQ during suspend. Does not guarantee that this interrupt will wake
+ /// the system from a suspended state.
+ pub const NO_SUSPEND: usize = bindings::IRQF_NO_SUSPEND as _;
+
+ /// Force enable it on resume even if [`NO_SUSPEND`] is set.
+ pub const FORCE_RESUME: usize = bindings::IRQF_FORCE_RESUME as _;
+
+ /// Interrupt cannot be threaded.
+ pub const NO_THREAD: usize = bindings::IRQF_NO_THREAD as _;
+
+ /// Resume IRQ early during syscore instead of at device resume time.
+ pub const EARLY_RESUME: usize = bindings::IRQF_EARLY_RESUME as _;
+
+ /// If the IRQ is shared with a NO_SUSPEND user, execute this interrupt handler after
+ /// suspending interrupts. For system wakeup devices users need to implement wakeup detection
+ /// in their interrupt handlers.
+ pub const COND_SUSPEND: usize = bindings::IRQF_COND_SUSPEND as _;
+
+ /// Don't enable IRQ or NMI automatically when users request it. Users will enable it
+ /// explicitly by `enable_irq` or `enable_nmi` later.
+ pub const NO_AUTOEN: usize = bindings::IRQF_NO_AUTOEN as _;
+
+ /// Exclude from runnaway detection for IPI and similar handlers, depends on `PERCPU`.
+ pub const NO_DEBUG: usize = bindings::IRQF_NO_DEBUG as _;
+}
+
+/// A guard to call `chained_irq_exit` after `chained_irq_enter` was called.
+///
+/// It is also used as evidence that a previous `chained_irq_enter` was called. So there are no
+/// public constructors and it is only created after indeed calling `chained_irq_enter`.
+pub struct ChainedGuard<'a> {
+ desc: &'a Descriptor,
+ irq_chip: *mut bindings::irq_chip,
+}
+
+impl Drop for ChainedGuard<'_> {
+ fn drop(&mut self) {
+ // SAFETY: The lifetime of `ChainedGuard` guarantees that `self.desc` remains valid, so it
+ // also guarantess `irq_chip` (which was returned from it) and `self.desc.ptr` (guaranteed
+ // by the type invariants).
+ unsafe { bindings::chained_irq_exit(self.irq_chip, self.desc.ptr) };
+ }
+}
+
+/// Wraps the kernel's `struct irq_domain`.
+///
+/// # Invariants
+///
+/// The pointer `Domain::ptr` is non-null and valid.
+#[cfg(CONFIG_IRQ_DOMAIN)]
+pub struct Domain {
+ ptr: *mut bindings::irq_domain,
+}
+
+#[cfg(CONFIG_IRQ_DOMAIN)]
+impl Domain {
+ /// Constructs a new `struct irq_domain` wrapper.
+ ///
+ /// # Safety
+ ///
+ /// The pointer `ptr` must be non-null and valid for the lifetime of the returned object.
+ pub(crate) unsafe fn from_ptr(ptr: *mut bindings::irq_domain) -> Self {
+ // INVARIANT: The safety requirements ensure the invariant.
+ Self { ptr }
+ }
+
+ /// Invokes the chained handler of the given hw irq of the given domain.
+ ///
+ /// It requires evidence that `chained_irq_enter` was called, which is done by passing a
+ /// `ChainedGuard` instance.
+ pub fn generic_handle_chained(&self, hwirq: u32, _guard: &ChainedGuard<'_>) {
+ // SAFETY: `ptr` is valid by the type invariants.
+ unsafe { bindings::generic_handle_domain_irq(self.ptr, hwirq) };
+ }
+}
+
+/// A high-level irq flow handler.
+pub trait FlowHandler {
+ /// The data associated with the handler.
+ type Data: PointerWrapper;
+
+ /// Implements the irq flow for the given descriptor.
+ fn handle_irq_flow(data: <Self::Data as PointerWrapper>::Borrowed<'_>, desc: &Descriptor);
+}
+
+/// Returns the raw irq flow handler corresponding to the (high-level) one defined in `T`.
+///
+/// # Safety
+///
+/// The caller must ensure that the value stored in the irq handler data (as returned by
+/// `irq_desc_get_handler_data`) is the result of calling [`PointerWrapper::into_pointer] for the
+/// [`T::Data`] type.
+pub(crate) unsafe fn new_flow_handler<T: FlowHandler>() -> bindings::irq_flow_handler_t {
+ Some(irq_flow_handler::<T>)
+}
+
+unsafe extern "C" fn irq_flow_handler<T: FlowHandler>(desc: *mut bindings::irq_desc) {
+ // SAFETY: By the safety requirements of `new_flow_handler`, we know that the value returned by
+ // `irq_desc_get_handler_data` comes from calling `T::Data::into_pointer`. `desc` is valid by
+ // the C API contract.
+ let data = unsafe { T::Data::borrow(bindings::irq_desc_get_handler_data(desc)) };
+
+ // SAFETY: The C API guarantees that `desc` is valid for the duration of this call, which
+ // outlives the lifetime returned by `from_desc`.
+ T::handle_irq_flow(data, &unsafe { Descriptor::from_ptr(desc) });
+}
diff --git a/rust/kernel/kasync.rs b/rust/kernel/kasync.rs
new file mode 100644
index 000000000000..d48e9041e804
--- /dev/null
+++ b/rust/kernel/kasync.rs
@@ -0,0 +1,50 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Kernel async functionality.
+
+use core::{
+ future::Future,
+ pin::Pin,
+ task::{Context, Poll},
+};
+
+pub mod executor;
+#[cfg(CONFIG_NET)]
+pub mod net;
+
+/// Yields execution of the current task so that other tasks may execute.
+///
+/// The task continues to be in a "runnable" state though, so it will eventually run again.
+///
+/// # Examples
+///
+/// ```
+/// use kernel::kasync::yield_now;
+///
+/// async fn example() {
+/// pr_info!("Before yield\n");
+/// yield_now().await;
+/// pr_info!("After yield\n");
+/// }
+/// ```
+pub fn yield_now() -> impl Future<Output = ()> {
+ struct Yield {
+ first_poll: bool,
+ }
+
+ impl Future for Yield {
+ type Output = ();
+
+ fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
+ if !self.first_poll {
+ Poll::Ready(())
+ } else {
+ self.first_poll = false;
+ cx.waker().wake_by_ref();
+ Poll::Pending
+ }
+ }
+ }
+
+ Yield { first_poll: true }
+}
diff --git a/rust/kernel/kasync/executor.rs b/rust/kernel/kasync/executor.rs
new file mode 100644
index 000000000000..e8e55dcfdf35
--- /dev/null
+++ b/rust/kernel/kasync/executor.rs
@@ -0,0 +1,154 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Kernel support for executing futures.
+
+use crate::{
+ sync::{LockClassKey, Ref, RefBorrow},
+ types::PointerWrapper,
+ Result,
+};
+use core::{
+ future::Future,
+ task::{RawWaker, RawWakerVTable, Waker},
+};
+
+pub mod workqueue;
+
+/// Spawns a new task to run in the given executor.
+///
+/// It also automatically defines a new lockdep lock class for executors (e.g., workqueue) that
+/// require one.
+#[macro_export]
+macro_rules! spawn_task {
+ ($executor:expr, $task:expr) => {{
+ static CLASS: $crate::sync::LockClassKey = $crate::sync::LockClassKey::new();
+ $crate::kasync::executor::Executor::spawn($executor, &CLASS, $task)
+ }};
+}
+
+/// A task spawned in an executor.
+pub trait Task {
+ /// Synchronously stops the task.
+ ///
+ /// It ensures that the task won't run again and releases resources needed to run the task
+ /// (e.g., the closure is dropped). If the task is inflight, it waits for the task to block or
+ /// complete before cleaning up and returning.
+ ///
+ /// Callers must not call this from within the task itself as it will likely lead to a
+ /// deadlock.
+ fn sync_stop(self: Ref<Self>);
+}
+
+/// An environment for executing tasks.
+pub trait Executor: Sync + Send {
+ /// Starts executing a task defined by the given future.
+ ///
+ /// Callers are encouraged to use the [`spawn_task`] macro because it automatically defines a
+ /// new lock class key.
+ fn spawn(
+ self: RefBorrow<'_, Self>,
+ lock_class_key: &'static LockClassKey,
+ future: impl Future + 'static + Send,
+ ) -> Result<Ref<dyn Task>>
+ where
+ Self: Sized;
+
+ /// Stops the executor.
+ ///
+ /// After it is called, attempts to spawn new tasks will result in an error and existing ones
+ /// won't be polled anymore.
+ fn stop(&self);
+}
+
+/// A waker that is wrapped in [`Ref`] for its reference counting.
+///
+/// Types that implement this trait can get a [`Waker`] by calling [`ref_waker`].
+pub trait RefWake: Send + Sync {
+ /// Wakes a task up.
+ fn wake_by_ref(self: RefBorrow<'_, Self>);
+
+ /// Wakes a task up and consumes a reference.
+ fn wake(self: Ref<Self>) {
+ self.as_ref_borrow().wake_by_ref();
+ }
+}
+
+/// Creates a [`Waker`] from a [`Ref<T>`], where `T` implements the [`RefWake`] trait.
+pub fn ref_waker<T: 'static + RefWake>(w: Ref<T>) -> Waker {
+ fn raw_waker<T: 'static + RefWake>(w: Ref<T>) -> RawWaker {
+ let data = w.into_pointer();
+ RawWaker::new(
+ data.cast(),
+ &RawWakerVTable::new(clone::<T>, wake::<T>, wake_by_ref::<T>, drop::<T>),
+ )
+ }
+
+ unsafe fn clone<T: 'static + RefWake>(ptr: *const ()) -> RawWaker {
+ // SAFETY: The data stored in the raw waker is the result of a call to `into_pointer`.
+ let w = unsafe { Ref::<T>::borrow(ptr.cast()) };
+ raw_waker(w.into())
+ }
+
+ unsafe fn wake<T: 'static + RefWake>(ptr: *const ()) {
+ // SAFETY: The data stored in the raw waker is the result of a call to `into_pointer`.
+ let w = unsafe { Ref::<T>::from_pointer(ptr.cast()) };
+ w.wake();
+ }
+
+ unsafe fn wake_by_ref<T: 'static + RefWake>(ptr: *const ()) {
+ // SAFETY: The data stored in the raw waker is the result of a call to `into_pointer`.
+ let w = unsafe { Ref::<T>::borrow(ptr.cast()) };
+ w.wake_by_ref();
+ }
+
+ unsafe fn drop<T: 'static + RefWake>(ptr: *const ()) {
+ // SAFETY: The data stored in the raw waker is the result of a call to `into_pointer`.
+ unsafe { Ref::<T>::from_pointer(ptr.cast()) };
+ }
+
+ let raw = raw_waker(w);
+ // SAFETY: The vtable of the raw waker satisfy the behaviour requirements of a waker.
+ unsafe { Waker::from_raw(raw) }
+}
+
+/// A handle to an executor that automatically stops it on drop.
+pub struct AutoStopHandle<T: Executor + ?Sized> {
+ executor: Option<Ref<T>>,
+}
+
+impl<T: Executor + ?Sized> AutoStopHandle<T> {
+ /// Creates a new instance of an [`AutoStopHandle`].
+ pub fn new(executor: Ref<T>) -> Self {
+ Self {
+ executor: Some(executor),
+ }
+ }
+
+ /// Detaches from the auto-stop handle.
+ ///
+ /// That is, extracts the executor from the handle and doesn't stop it anymore.
+ pub fn detach(mut self) -> Ref<T> {
+ self.executor.take().unwrap()
+ }
+
+ /// Returns the executor associated with the auto-stop handle.
+ ///
+ /// This is so that callers can, for example, spawn new tasks.
+ pub fn executor(&self) -> RefBorrow<'_, T> {
+ self.executor.as_ref().unwrap().as_ref_borrow()
+ }
+}
+
+impl<T: Executor + ?Sized> Drop for AutoStopHandle<T> {
+ fn drop(&mut self) {
+ if let Some(ex) = self.executor.take() {
+ ex.stop();
+ }
+ }
+}
+
+impl<T: 'static + Executor> From<AutoStopHandle<T>> for AutoStopHandle<dyn Executor> {
+ fn from(src: AutoStopHandle<T>) -> Self {
+ Self::new(src.detach())
+ }
+}
diff --git a/rust/kernel/kasync/executor/workqueue.rs b/rust/kernel/kasync/executor/workqueue.rs
new file mode 100644
index 000000000000..81cd16880600
--- /dev/null
+++ b/rust/kernel/kasync/executor/workqueue.rs
@@ -0,0 +1,291 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Kernel support for executing futures in C workqueues (`struct workqueue_struct`).
+
+use super::{AutoStopHandle, RefWake};
+use crate::{
+ error::code::*,
+ mutex_init,
+ revocable::AsyncRevocable,
+ sync::{LockClassKey, Mutex, Ref, RefBorrow, UniqueRef},
+ unsafe_list,
+ workqueue::{BoxedQueue, Queue, Work, WorkAdapter},
+ Either, Left, Result, Right,
+};
+use core::{cell::UnsafeCell, future::Future, marker::PhantomPinned, pin::Pin, task::Context};
+
+trait RevocableTask {
+ fn revoke(&self);
+ fn flush(self: Ref<Self>);
+ fn to_links(&self) -> &unsafe_list::Links<dyn RevocableTask>;
+}
+
+// SAFETY: `Task` has a single `links` field and only one adapter.
+unsafe impl unsafe_list::Adapter for dyn RevocableTask {
+ type EntryType = dyn RevocableTask;
+ fn to_links(obj: &dyn RevocableTask) -> &unsafe_list::Links<dyn RevocableTask> {
+ obj.to_links()
+ }
+}
+
+struct Task<T: 'static + Send + Future> {
+ links: unsafe_list::Links<dyn RevocableTask>,
+ executor: Ref<Executor>,
+ work: Work,
+ future: AsyncRevocable<UnsafeCell<T>>,
+}
+
+// SAFETY: The `future` field is only used by one thread at a time (in the `poll` method, which is
+// called by the work queue, who guarantees no reentrancy), so a task is `Sync` as long as the
+// future is `Send`.
+unsafe impl<T: 'static + Send + Future> Sync for Task<T> {}
+
+// SAFETY: If the future `T` is `Send`, so is the task.
+unsafe impl<T: 'static + Send + Future> Send for Task<T> {}
+
+impl<T: 'static + Send + Future> Task<T> {
+ fn try_new(
+ executor: Ref<Executor>,
+ key: &'static LockClassKey,
+ future: T,
+ ) -> Result<Ref<Self>> {
+ let task = UniqueRef::try_new(Self {
+ executor: executor.clone(),
+ links: unsafe_list::Links::new(),
+ // SAFETY: `work` is initialised below.
+ work: unsafe { Work::new() },
+ future: AsyncRevocable::new(UnsafeCell::new(future)),
+ })?;
+
+ Work::init(&task, key);
+
+ let task = Ref::from(task);
+
+ // Add task to list.
+ {
+ let mut guard = executor.inner.lock();
+ if guard.stopped {
+ return Err(EINVAL);
+ }
+
+ // Convert one reference into a pointer so that we hold on to a ref count while the
+ // task is in the list.
+ Ref::into_raw(task.clone());
+
+ // SAFETY: The task was just created, so it is not in any other lists. It remains alive
+ // because we incremented the refcount to account for it being in the list. It never
+ // moves because it's pinned behind a `Ref`.
+ unsafe { guard.tasks.push_back(&*task) };
+ }
+
+ Ok(task)
+ }
+}
+
+unsafe impl<T: 'static + Send + Future> WorkAdapter for Task<T> {
+ type Target = Self;
+ const FIELD_OFFSET: isize = crate::offset_of!(Self, work);
+ fn run(task: Ref<Task<T>>) {
+ let waker = super::ref_waker(task.clone());
+ let mut ctx = Context::from_waker(&waker);
+
+ let guard = if let Some(g) = task.future.try_access() {
+ g
+ } else {
+ return;
+ };
+
+ // SAFETY: `future` is pinned when the task is. The task is pinned because it's behind a
+ // `Ref`, which is always pinned.
+ //
+ // Work queues guarantee no reentrancy and this is the only place where the future is
+ // dereferenced, so it's ok to do it mutably.
+ let future = unsafe { Pin::new_unchecked(&mut *guard.get()) };
+ if future.poll(&mut ctx).is_ready() {
+ drop(guard);
+ task.revoke();
+ }
+ }
+}
+
+impl<T: 'static + Send + Future> super::Task for Task<T> {
+ fn sync_stop(self: Ref<Self>) {
+ self.revoke();
+ self.flush();
+ }
+}
+
+impl<T: 'static + Send + Future> RevocableTask for Task<T> {
+ fn revoke(&self) {
+ if !self.future.revoke() {
+ // Nothing to do if the task was already revoked.
+ return;
+ }
+
+ // SAFETY: The object is inserted into the list on creation and only removed when the
+ // future is first revoked. (Subsequent revocations don't result in additional attempts
+ // to remove per the check above.)
+ unsafe { self.executor.inner.lock().tasks.remove(self) };
+
+ // Decrement the refcount now that the task is no longer in the list.
+ //
+ // SAFETY: `into_raw` was called from `try_new` when the task was added to the list.
+ unsafe { Ref::from_raw(self) };
+ }
+
+ fn flush(self: Ref<Self>) {
+ self.work.cancel();
+ }
+
+ fn to_links(&self) -> &unsafe_list::Links<dyn RevocableTask> {
+ &self.links
+ }
+}
+
+impl<T: 'static + Send + Future> RefWake for Task<T> {
+ fn wake(self: Ref<Self>) {
+ if self.future.is_revoked() {
+ return;
+ }
+
+ match &self.executor.queue {
+ Left(q) => &**q,
+ Right(q) => *q,
+ }
+ .enqueue(self.clone());
+ }
+
+ fn wake_by_ref(self: RefBorrow<'_, Self>) {
+ Ref::from(self).wake();
+ }
+}
+
+struct ExecutorInner {
+ stopped: bool,
+ tasks: unsafe_list::List<dyn RevocableTask>,
+}
+
+/// An executor backed by a work queue.
+///
+/// # Examples
+///
+/// The following example runs two tasks on the shared system workqueue.
+///
+/// ```
+/// # use kernel::prelude::*;
+/// use kernel::kasync::executor::workqueue::Executor;
+/// use kernel::spawn_task;
+/// use kernel::workqueue;
+///
+/// fn example_shared_workqueue() -> Result {
+/// let mut handle = Executor::try_new(workqueue::system())?;
+/// spawn_task!(handle.executor(), async {
+/// pr_info!("First workqueue task\n");
+/// })?;
+/// spawn_task!(handle.executor(), async {
+/// pr_info!("Second workqueue task\n");
+/// })?;
+/// handle.detach();
+/// Ok(())
+/// }
+///
+/// # example_shared_workqueue().unwrap();
+/// ```
+pub struct Executor {
+ queue: Either<BoxedQueue, &'static Queue>,
+ inner: Mutex<ExecutorInner>,
+ _pin: PhantomPinned,
+}
+
+// SAFETY: The executor is backed by a kernel `struct workqueue_struct`, which works from any
+// thread.
+unsafe impl Send for Executor {}
+
+// SAFETY: The executor is backed by a kernel `struct workqueue_struct`, which can be used
+// concurrently by multiple threads.
+unsafe impl Sync for Executor {}
+
+impl Executor {
+ /// Creates a new workqueue-based executor using a static work queue.
+ pub fn try_new(wq: &'static Queue) -> Result<AutoStopHandle<Self>> {
+ Self::new_internal(Right(wq))
+ }
+
+ /// Creates a new workqueue-based executor using an owned (boxed) work queue.
+ pub fn try_new_owned(wq: BoxedQueue) -> Result<AutoStopHandle<Self>> {
+ Self::new_internal(Left(wq))
+ }
+
+ /// Creates a new workqueue-based executor.
+ ///
+ /// It uses the given work queue to run its tasks.
+ fn new_internal(queue: Either<BoxedQueue, &'static Queue>) -> Result<AutoStopHandle<Self>> {
+ let mut e = Pin::from(UniqueRef::try_new(Self {
+ queue,
+ _pin: PhantomPinned,
+ // SAFETY: `mutex_init` is called below.
+ inner: unsafe {
+ Mutex::new(ExecutorInner {
+ stopped: false,
+ tasks: unsafe_list::List::new(),
+ })
+ },
+ })?);
+ // SAFETY: `tasks` is pinned when the executor is.
+ let pinned = unsafe { e.as_mut().map_unchecked_mut(|e| &mut e.inner) };
+ mutex_init!(pinned, "Executor::inner");
+
+ Ok(AutoStopHandle::new(e.into()))
+ }
+}
+
+impl super::Executor for Executor {
+ fn spawn(
+ self: RefBorrow<'_, Self>,
+ key: &'static LockClassKey,
+ future: impl Future + 'static + Send,
+ ) -> Result<Ref<dyn super::Task>> {
+ let task = Task::try_new(self.into(), key, future)?;
+ task.clone().wake();
+ Ok(task)
+ }
+
+ fn stop(&self) {
+ // Set the `stopped` flag.
+ self.inner.lock().stopped = true;
+
+ // Go through all tasks and revoke & flush them.
+ //
+ // N.B. If we decide to allow "asynchronous" stops, we need to ensure that tasks that have
+ // been revoked but not flushed yet remain in the list so that we can flush them here.
+ // Otherwise we may have a race where we may have a running task (was revoked while
+ // running) that isn't the list anymore, so we think we've synchronously stopped all tasks
+ // when we haven't really -- unloading a module in this situation leads to memory safety
+ // issues (running unloaded code).
+ loop {
+ let guard = self.inner.lock();
+
+ let front = if let Some(t) = guard.tasks.front() {
+ t
+ } else {
+ break;
+ };
+
+ // Get a new reference to the task.
+ //
+ // SAFETY: We know all entries in the list are of type `Ref<dyn RevocableTask>` and
+ // that a reference exists while the entry is in the list, and since we are holding the
+ // list lock, we know it cannot go away. The `into_raw` call below ensures that we
+ // don't decrement the refcount accidentally.
+ let tasktmp = unsafe { Ref::<dyn RevocableTask>::from_raw(front.as_ptr()) };
+ let task = tasktmp.clone();
+ Ref::into_raw(tasktmp);
+
+ // Release the mutex before revoking the task.
+ drop(guard);
+
+ task.revoke();
+ task.flush();
+ }
+ }
+}
diff --git a/rust/kernel/kasync/net.rs b/rust/kernel/kasync/net.rs
new file mode 100644
index 000000000000..b4bbeffad94a
--- /dev/null
+++ b/rust/kernel/kasync/net.rs
@@ -0,0 +1,322 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Async networking.
+
+use crate::{bindings, error::code::*, net, sync::NoWaitLock, types::Opaque, Result};
+use core::{
+ future::Future,
+ marker::{PhantomData, PhantomPinned},
+ ops::Deref,
+ pin::Pin,
+ task::{Context, Poll, Waker},
+};
+
+/// A socket listening on a TCP port.
+///
+/// The [`TcpListener::accept`] method is meant to be used in async contexts.
+pub struct TcpListener {
+ listener: net::TcpListener,
+}
+
+impl TcpListener {
+ /// Creates a new TCP listener.
+ ///
+ /// It is configured to listen on the given socket address for the given namespace.
+ pub fn try_new(ns: &net::Namespace, addr: &net::SocketAddr) -> Result<Self> {
+ Ok(Self {
+ listener: net::TcpListener::try_new(ns, addr)?,
+ })
+ }
+
+ /// Accepts a new connection.
+ ///
+ /// Returns a future that when ready indicates the result of the accept operation; on success,
+ /// it contains the newly-accepted tcp stream.
+ pub fn accept(&self) -> impl Future<Output = Result<TcpStream>> + '_ {
+ SocketFuture::from_listener(
+ self,
+ bindings::BINDINGS_EPOLLIN | bindings::BINDINGS_EPOLLERR,
+ || {
+ Ok(TcpStream {
+ stream: self.listener.accept(false)?,
+ })
+ },
+ )
+ }
+}
+
+impl Deref for TcpListener {
+ type Target = net::TcpListener;
+
+ fn deref(&self) -> &Self::Target {
+ &self.listener
+ }
+}
+
+/// A connected TCP socket.
+///
+/// The potentially blocking methods (e.g., [`TcpStream::read`], [`TcpStream::write`]) are meant
+/// to be used in async contexts.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::prelude::*;
+/// # use kernel::kasync::net::TcpStream;
+/// async fn echo_server(stream: TcpStream) -> Result {
+/// let mut buf = [0u8; 1024];
+/// loop {
+/// let n = stream.read(&mut buf).await?;
+/// if n == 0 {
+/// return Ok(());
+/// }
+/// stream.write_all(&buf[..n]).await?;
+/// }
+/// }
+/// ```
+pub struct TcpStream {
+ stream: net::TcpStream,
+}
+
+impl TcpStream {
+ /// Reads data from a connected socket.
+ ///
+ /// Returns a future that when ready indicates the result of the read operation; on success, it
+ /// contains the number of bytes read, which will be zero if the connection is closed.
+ pub fn read<'a>(&'a self, buf: &'a mut [u8]) -> impl Future<Output = Result<usize>> + 'a {
+ SocketFuture::from_stream(
+ self,
+ bindings::BINDINGS_EPOLLIN | bindings::BINDINGS_EPOLLHUP | bindings::BINDINGS_EPOLLERR,
+ || self.stream.read(buf, false),
+ )
+ }
+
+ /// Writes data to the connected socket.
+ ///
+ /// Returns a future that when ready indicates the result of the write operation; on success, it
+ /// contains the number of bytes written.
+ pub fn write<'a>(&'a self, buf: &'a [u8]) -> impl Future<Output = Result<usize>> + 'a {
+ SocketFuture::from_stream(
+ self,
+ bindings::BINDINGS_EPOLLOUT | bindings::BINDINGS_EPOLLHUP | bindings::BINDINGS_EPOLLERR,
+ || self.stream.write(buf, false),
+ )
+ }
+
+ /// Writes all the data to the connected socket.
+ ///
+ /// Returns a future that when ready indicates the result of the write operation; on success, it
+ /// has written all the data.
+ pub async fn write_all<'a>(&'a self, buf: &'a [u8]) -> Result {
+ let mut rem = buf;
+
+ while !rem.is_empty() {
+ let n = self.write(rem).await?;
+ rem = &rem[n..];
+ }
+
+ Ok(())
+ }
+}
+
+impl Deref for TcpStream {
+ type Target = net::TcpStream;
+
+ fn deref(&self) -> &Self::Target {
+ &self.stream
+ }
+}
+
+/// A future for a socket operation.
+///
+/// # Invariants
+///
+/// `sock` is always non-null and valid for the duration of the lifetime of the instance.
+struct SocketFuture<'a, Out, F: FnMut() -> Result<Out> + Send + 'a> {
+ sock: *mut bindings::socket,
+ mask: u32,
+ is_queued: bool,
+ wq_entry: Opaque<bindings::wait_queue_entry>,
+ waker: NoWaitLock<Option<Waker>>,
+ _p: PhantomData<&'a ()>,
+ _pin: PhantomPinned,
+ operation: F,
+}
+
+// SAFETY: A kernel socket can be used from any thread, `wq_entry` is only used on drop and when
+// `is_queued` is initially `false`.
+unsafe impl<Out, F: FnMut() -> Result<Out> + Send> Send for SocketFuture<'_, Out, F> {}
+
+impl<'a, Out, F: FnMut() -> Result<Out> + Send + 'a> SocketFuture<'a, Out, F> {
+ /// Creates a new socket future.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that `sock` is non-null, valid, and remains valid for the lifetime
+ /// (`'a`) of the returned instance.
+ unsafe fn new(sock: *mut bindings::socket, mask: u32, operation: F) -> Self {
+ Self {
+ sock,
+ mask,
+ is_queued: false,
+ wq_entry: Opaque::uninit(),
+ waker: NoWaitLock::new(None),
+ operation,
+ _p: PhantomData,
+ _pin: PhantomPinned,
+ }
+ }
+
+ /// Creates a new socket future for a tcp listener.
+ fn from_listener(listener: &'a TcpListener, mask: u32, operation: F) -> Self {
+ // SAFETY: The socket is guaranteed to remain valid because it is bound to the reference to
+ // the listener (whose existence guarantees the socket remains valid).
+ unsafe { Self::new(listener.listener.sock, mask, operation) }
+ }
+
+ /// Creates a new socket future for a tcp stream.
+ fn from_stream(stream: &'a TcpStream, mask: u32, operation: F) -> Self {
+ // SAFETY: The socket is guaranteed to remain valid because it is bound to the reference to
+ // the stream (whose existence guarantees the socket remains valid).
+ unsafe { Self::new(stream.stream.sock, mask, operation) }
+ }
+
+ /// Callback called when the socket changes state.
+ ///
+ /// If the state matches the one we're waiting on, we wake up the task so that the future can be
+ /// polled again.
+ unsafe extern "C" fn wake_callback(
+ wq_entry: *mut bindings::wait_queue_entry,
+ _mode: core::ffi::c_uint,
+ _flags: core::ffi::c_int,
+ key: *mut core::ffi::c_void,
+ ) -> core::ffi::c_int {
+ let mask = key as u32;
+
+ // SAFETY: The future is valid while this callback is called because we remove from the
+ // queue on drop.
+ //
+ // There is a potential soundness issue here because we're generating a shared reference to
+ // `Self` while `Self::poll` has a mutable (unique) reference. However, for `!Unpin` types
+ // (like `Self`), `&mut T` is treated as `*mut T` per
+ // <https://github.com/rust-lang/rust/issues/63818> -- so we avoid the unsoundness. Once a
+ // more definitive solution is available, we can change this to use it.
+ let s = unsafe { &*crate::container_of!(wq_entry, Self, wq_entry) };
+ if mask & s.mask == 0 {
+ // Nothing to do as this notification doesn't interest us.
+ return 0;
+ }
+
+ // If we can't acquire the waker lock, the waker is in the process of being modified. Our
+ // attempt to acquire the lock will be reported to the lock owner, so it will trigger the
+ // wake up.
+ if let Some(guard) = s.waker.try_lock() {
+ if let Some(ref w) = *guard {
+ let cloned = w.clone();
+ drop(guard);
+ cloned.wake();
+ return 1;
+ }
+ }
+ 0
+ }
+
+ /// Poll the future once.
+ ///
+ /// It calls the operation and converts `EAGAIN` errors into a pending state.
+ fn poll_once(self: Pin<&mut Self>) -> Poll<Result<Out>> {
+ // SAFETY: We never move out of `this`.
+ let this = unsafe { self.get_unchecked_mut() };
+ match (this.operation)() {
+ Ok(s) => Poll::Ready(Ok(s)),
+ Err(e) => {
+ if e == EAGAIN {
+ Poll::Pending
+ } else {
+ Poll::Ready(Err(e))
+ }
+ }
+ }
+ }
+
+ /// Updates the waker stored in the future.
+ ///
+ /// It automatically triggers a wake up on races with the reactor.
+ fn set_waker(&self, waker: &Waker) {
+ if let Some(mut guard) = self.waker.try_lock() {
+ let old = core::mem::replace(&mut *guard, Some(waker.clone()));
+ let contention = guard.unlock();
+ drop(old);
+ if !contention {
+ return;
+ }
+ }
+
+ // We either couldn't store the waker because the existing one is being awakened, or the
+ // reactor tried to acquire the lock while we held it (contention). In either case, we just
+ // wake it up to ensure we don't miss any notification.
+ waker.wake_by_ref();
+ }
+}
+
+impl<Out, F: FnMut() -> Result<Out> + Send> Future for SocketFuture<'_, Out, F> {
+ type Output = Result<Out>;
+
+ fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
+ match self.as_mut().poll_once() {
+ Poll::Ready(r) => Poll::Ready(r),
+ Poll::Pending => {
+ // Store away the latest waker every time we may `Pending`.
+ self.set_waker(cx.waker());
+ if self.is_queued {
+ // Nothing else to do was the waiter is already queued.
+ return Poll::Pending;
+ }
+
+ // SAFETY: We never move out of `this`.
+ let this = unsafe { self.as_mut().get_unchecked_mut() };
+
+ this.is_queued = true;
+
+ // SAFETY: `wq_entry` is valid for write.
+ unsafe {
+ bindings::init_waitqueue_func_entry(
+ this.wq_entry.get(),
+ Some(Self::wake_callback),
+ )
+ };
+
+ // SAFETY: `wq_entry` was just initialised above and is valid for read/write.
+ // By the type invariants, the socket is always valid.
+ unsafe {
+ bindings::add_wait_queue(
+ core::ptr::addr_of_mut!((*this.sock).wq.wait),
+ this.wq_entry.get(),
+ )
+ };
+
+ // If the future wasn't queued yet, we need to poll again in case it reached
+ // the desired state between the last poll and being queued (in which case we
+ // would have missed the notification).
+ self.poll_once()
+ }
+ }
+ }
+}
+
+impl<Out, F: FnMut() -> Result<Out> + Send> Drop for SocketFuture<'_, Out, F> {
+ fn drop(&mut self) {
+ if !self.is_queued {
+ return;
+ }
+
+ // SAFETY: `wq_entry` is initialised because `is_queued` is set to `true`, so it is valid
+ // for read/write. By the type invariants, the socket is always valid.
+ unsafe {
+ bindings::remove_wait_queue(
+ core::ptr::addr_of_mut!((*self.sock).wq.wait),
+ self.wq_entry.get(),
+ )
+ };
+ }
+}
diff --git a/rust/kernel/kunit.rs b/rust/kernel/kunit.rs
new file mode 100644
index 000000000000..5f3e102962c3
--- /dev/null
+++ b/rust/kernel/kunit.rs
@@ -0,0 +1,91 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! KUnit-based macros for Rust unit tests.
+//!
+//! C header: [`include/kunit/test.h`](../../../../../include/kunit/test.h)
+//!
+//! Reference: <https://www.kernel.org/doc/html/latest/dev-tools/kunit/index.html>
+
+/// Asserts that a boolean expression is `true` at runtime.
+///
+/// Public but hidden since it should only be used from generated tests.
+///
+/// Unlike the one in `core`, this one does not panic; instead, it is mapped to the KUnit
+/// facilities. See [`assert!`] for more details.
+#[doc(hidden)]
+#[macro_export]
+macro_rules! kunit_assert {
+ ($test:expr, $cond:expr $(,)?) => {{
+ if !$cond {
+ #[repr(transparent)]
+ struct Location($crate::bindings::kunit_loc);
+
+ #[repr(transparent)]
+ struct UnaryAssert($crate::bindings::kunit_unary_assert);
+
+ // SAFETY: There is only a static instance and in that one the pointer field
+ // points to an immutable C string.
+ unsafe impl Sync for Location {}
+
+ // SAFETY: There is only a static instance and in that one the pointer field
+ // points to an immutable C string.
+ unsafe impl Sync for UnaryAssert {}
+
+ static FILE: &'static $crate::str::CStr = $crate::c_str!(core::file!());
+ static LOCATION: Location = Location($crate::bindings::kunit_loc {
+ file: FILE.as_char_ptr(),
+ line: core::line!() as i32,
+ });
+ static CONDITION: &'static $crate::str::CStr = $crate::c_str!(stringify!($cond));
+ static ASSERTION: UnaryAssert = UnaryAssert($crate::bindings::kunit_unary_assert {
+ assert: $crate::bindings::kunit_assert {
+ format: Some($crate::bindings::kunit_unary_assert_format),
+ },
+ condition: CONDITION.as_char_ptr(),
+ expected_true: true,
+ });
+
+ // SAFETY:
+ // - FFI call.
+ // - The `test` pointer is valid because this hidden macro should only be called by
+ // the generated documentation tests which forward the test pointer given by KUnit.
+ // - The string pointers (`file` and `condition`) point to null-terminated ones.
+ // - The function pointer (`format`) points to the proper function.
+ // - The pointers passed will remain valid since they point to statics.
+ // - The format string is allowed to be null.
+ // - There are, however, problems with this: first of all, this will end up stopping
+ // the thread, without running destructors. While that is problematic in itself,
+ // it is considered UB to have what is effectively an forced foreign unwind
+ // with `extern "C"` ABI. One could observe the stack that is now gone from
+ // another thread. We should avoid pinning stack variables to prevent library UB,
+ // too. For the moment, given test failures are reported immediately before the
+ // next test runs, that test failures should be fixed and that KUnit is explicitly
+ // documented as not suitable for production environments, we feel it is reasonable.
+ unsafe {
+ $crate::bindings::kunit_do_failed_assertion(
+ $test,
+ core::ptr::addr_of!(LOCATION.0),
+ $crate::bindings::kunit_assert_type_KUNIT_ASSERTION,
+ core::ptr::addr_of!(ASSERTION.0.assert),
+ core::ptr::null(),
+ );
+ }
+ }
+ }};
+}
+
+/// Asserts that two expressions are equal to each other (using [`PartialEq`]).
+///
+/// Public but hidden since it should only be used from generated tests.
+///
+/// Unlike the one in `core`, this one does not panic; instead, it is mapped to the KUnit
+/// facilities. See [`assert!`] for more details.
+#[doc(hidden)]
+#[macro_export]
+macro_rules! kunit_assert_eq {
+ ($test:expr, $left:expr, $right:expr $(,)?) => {{
+ // For the moment, we just forward to the expression assert because,
+ // for binary asserts, KUnit supports only a few types (e.g. integers).
+ $crate::kunit_assert!($test, $left == $right);
+ }};
+}
diff --git a/rust/kernel/lib.rs b/rust/kernel/lib.rs
new file mode 100644
index 000000000000..b55fe00761c2
--- /dev/null
+++ b/rust/kernel/lib.rs
@@ -0,0 +1,267 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! The `kernel` crate.
+//!
+//! This crate contains the kernel APIs that have been ported or wrapped for
+//! usage by Rust code in the kernel and is shared by all of them.
+//!
+//! In other words, all the rest of the Rust code in the kernel (e.g. kernel
+//! modules written in Rust) depends on [`core`], [`alloc`] and this crate.
+//!
+//! If you need a kernel C API that is not ported or wrapped yet here, then
+//! do so first instead of bypassing this crate.
+
+#![no_std]
+#![feature(allocator_api)]
+#![feature(associated_type_defaults)]
+#![feature(coerce_unsized)]
+#![feature(const_mut_refs)]
+#![feature(const_ptr_offset_from)]
+#![feature(const_refs_to_cell)]
+#![feature(const_trait_impl)]
+#![feature(core_ffi_c)]
+#![feature(c_size_t)]
+#![feature(dispatch_from_dyn)]
+#![feature(doc_cfg)]
+#![feature(duration_constants)]
+#![feature(generic_associated_types)]
+#![feature(ptr_metadata)]
+#![feature(receiver_trait)]
+#![feature(unsize)]
+
+// Ensure conditional compilation based on the kernel configuration works;
+// otherwise we may silently break things like initcall handling.
+#[cfg(not(CONFIG_RUST))]
+compile_error!("Missing kernel configuration for conditional compilation");
+
+#[cfg(not(test))]
+#[cfg(not(testlib))]
+mod allocator;
+
+#[doc(hidden)]
+pub use bindings;
+
+pub use macros;
+
+#[cfg(CONFIG_ARM_AMBA)]
+pub mod amba;
+pub mod chrdev;
+#[cfg(CONFIG_COMMON_CLK)]
+pub mod clk;
+pub mod cred;
+pub mod delay;
+pub mod device;
+pub mod driver;
+pub mod error;
+pub mod file;
+pub mod fs;
+pub mod gpio;
+pub mod hwrng;
+pub mod irq;
+pub mod kasync;
+pub mod miscdev;
+pub mod mm;
+#[cfg(CONFIG_NET)]
+pub mod net;
+pub mod pages;
+pub mod power;
+pub mod revocable;
+pub mod security;
+pub mod str;
+pub mod task;
+pub mod workqueue;
+
+pub mod linked_list;
+mod raw_list;
+pub mod rbtree;
+pub mod unsafe_list;
+
+#[doc(hidden)]
+pub mod module_param;
+
+mod build_assert;
+pub mod prelude;
+pub mod print;
+pub mod random;
+mod static_assert;
+#[doc(hidden)]
+pub mod std_vendor;
+pub mod sync;
+
+#[cfg(any(CONFIG_SYSCTL, doc))]
+#[doc(cfg(CONFIG_SYSCTL))]
+pub mod sysctl;
+
+pub mod io_buffer;
+#[cfg(CONFIG_HAS_IOMEM)]
+pub mod io_mem;
+pub mod iov_iter;
+pub mod of;
+pub mod platform;
+mod types;
+pub mod user_ptr;
+
+#[cfg(CONFIG_KUNIT)]
+pub mod kunit;
+
+#[doc(hidden)]
+pub use build_error::build_error;
+
+pub use crate::error::{to_result, Error, Result};
+pub use crate::types::{
+ bit, bits_iter, ARef, AlwaysRefCounted, Bool, Either, Either::Left, Either::Right, False, Mode,
+ Opaque, PointerWrapper, ScopeGuard, True,
+};
+
+use core::marker::PhantomData;
+
+/// Page size defined in terms of the `PAGE_SHIFT` macro from C.
+///
+/// [`PAGE_SHIFT`]: ../../../include/asm-generic/page.h
+pub const PAGE_SIZE: usize = 1 << bindings::PAGE_SHIFT;
+
+/// Prefix to appear before log messages printed from within the kernel crate.
+const __LOG_PREFIX: &[u8] = b"rust_kernel\0";
+
+/// The top level entrypoint to implementing a kernel module.
+///
+/// For any teardown or cleanup operations, your type may implement [`Drop`].
+pub trait Module: Sized + Sync {
+ /// Called at module initialization time.
+ ///
+ /// Use this method to perform whatever setup or registration your module
+ /// should do.
+ ///
+ /// Equivalent to the `module_init` macro in the C API.
+ fn init(name: &'static str::CStr, module: &'static ThisModule) -> Result<Self>;
+}
+
+/// Equivalent to `THIS_MODULE` in the C API.
+///
+/// C header: `include/linux/export.h`
+pub struct ThisModule(*mut bindings::module);
+
+// SAFETY: `THIS_MODULE` may be used from all threads within a module.
+unsafe impl Sync for ThisModule {}
+
+impl ThisModule {
+ /// Creates a [`ThisModule`] given the `THIS_MODULE` pointer.
+ ///
+ /// # Safety
+ ///
+ /// The pointer must be equal to the right `THIS_MODULE`.
+ pub const unsafe fn from_ptr(ptr: *mut bindings::module) -> ThisModule {
+ ThisModule(ptr)
+ }
+
+ /// Locks the module parameters to access them.
+ ///
+ /// Returns a [`KParamGuard`] that will release the lock when dropped.
+ pub fn kernel_param_lock(&self) -> KParamGuard<'_> {
+ // SAFETY: `kernel_param_lock` will check if the pointer is null and
+ // use the built-in mutex in that case.
+ #[cfg(CONFIG_SYSFS)]
+ unsafe {
+ bindings::kernel_param_lock(self.0)
+ }
+
+ KParamGuard {
+ #[cfg(CONFIG_SYSFS)]
+ this_module: self,
+ phantom: PhantomData,
+ }
+ }
+}
+
+/// Scoped lock on the kernel parameters of [`ThisModule`].
+///
+/// Lock will be released when this struct is dropped.
+pub struct KParamGuard<'a> {
+ #[cfg(CONFIG_SYSFS)]
+ this_module: &'a ThisModule,
+ phantom: PhantomData<&'a ()>,
+}
+
+#[cfg(CONFIG_SYSFS)]
+impl<'a> Drop for KParamGuard<'a> {
+ fn drop(&mut self) {
+ // SAFETY: `kernel_param_lock` will check if the pointer is null and
+ // use the built-in mutex in that case. The existence of `self`
+ // guarantees that the lock is held.
+ unsafe { bindings::kernel_param_unlock(self.this_module.0) }
+ }
+}
+
+/// Calculates the offset of a field from the beginning of the struct it belongs to.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::prelude::*;
+/// # use kernel::offset_of;
+/// struct Test {
+/// a: u64,
+/// b: u32,
+/// }
+///
+/// assert_eq!(offset_of!(Test, b), 8);
+/// ```
+#[macro_export]
+macro_rules! offset_of {
+ ($type:ty, $($f:tt)*) => {{
+ let tmp = core::mem::MaybeUninit::<$type>::uninit();
+ let outer = tmp.as_ptr();
+ // To avoid warnings when nesting `unsafe` blocks.
+ #[allow(unused_unsafe)]
+ // SAFETY: The pointer is valid and aligned, just not initialised; `addr_of` ensures that
+ // we don't actually read from `outer` (which would be UB) nor create an intermediate
+ // reference.
+ let inner = unsafe { core::ptr::addr_of!((*outer).$($f)*) } as *const u8;
+ // To avoid warnings when nesting `unsafe` blocks.
+ #[allow(unused_unsafe)]
+ // SAFETY: The two pointers are within the same allocation block.
+ unsafe { inner.offset_from(outer as *const u8) }
+ }}
+}
+
+/// Produces a pointer to an object from a pointer to one of its fields.
+///
+/// # Safety
+///
+/// Callers must ensure that the pointer to the field is in fact a pointer to the specified field,
+/// as opposed to a pointer to another object of the same type. If this condition is not met,
+/// any dereference of the resulting pointer is UB.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::container_of;
+/// struct Test {
+/// a: u64,
+/// b: u32,
+/// }
+///
+/// let test = Test { a: 10, b: 20 };
+/// let b_ptr = &test.b;
+/// let test_alias = container_of!(b_ptr, Test, b);
+/// assert!(core::ptr::eq(&test, test_alias));
+/// ```
+#[macro_export]
+macro_rules! container_of {
+ ($ptr:expr, $type:ty, $($f:tt)*) => {{
+ let ptr = $ptr as *const _ as *const u8;
+ let offset = $crate::offset_of!($type, $($f)*);
+ ptr.wrapping_offset(-offset) as *const $type
+ }}
+}
+
+#[cfg(not(any(testlib, test)))]
+#[panic_handler]
+fn panic(info: &core::panic::PanicInfo<'_>) -> ! {
+ pr_emerg!("{}\n", info);
+ // SAFETY: FFI call.
+ unsafe { bindings::BUG() };
+ // Bindgen currently does not recognize `__noreturn` so `BUG` returns `()`
+ // instead of `!`. See <https://github.com/rust-lang/rust-bindgen/issues/2094>.
+ loop {}
+}
diff --git a/rust/kernel/linked_list.rs b/rust/kernel/linked_list.rs
new file mode 100644
index 000000000000..3330edcc7ca8
--- /dev/null
+++ b/rust/kernel/linked_list.rs
@@ -0,0 +1,247 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Linked lists.
+//!
+//! TODO: This module is a work in progress.
+
+use alloc::boxed::Box;
+use core::ptr::NonNull;
+
+pub use crate::raw_list::{Cursor, GetLinks, Links};
+use crate::{raw_list, raw_list::RawList, sync::Ref};
+
+// TODO: Use the one from `kernel::file_operations::PointerWrapper` instead.
+/// Wraps an object to be inserted in a linked list.
+pub trait Wrapper<T: ?Sized> {
+ /// Converts the wrapped object into a pointer that represents it.
+ fn into_pointer(self) -> NonNull<T>;
+
+ /// Converts the object back from the pointer representation.
+ ///
+ /// # Safety
+ ///
+ /// The passed pointer must come from a previous call to [`Wrapper::into_pointer()`].
+ unsafe fn from_pointer(ptr: NonNull<T>) -> Self;
+
+ /// Returns a reference to the wrapped object.
+ fn as_ref(&self) -> &T;
+}
+
+impl<T: ?Sized> Wrapper<T> for Box<T> {
+ fn into_pointer(self) -> NonNull<T> {
+ NonNull::new(Box::into_raw(self)).unwrap()
+ }
+
+ unsafe fn from_pointer(ptr: NonNull<T>) -> Self {
+ unsafe { Box::from_raw(ptr.as_ptr()) }
+ }
+
+ fn as_ref(&self) -> &T {
+ AsRef::as_ref(self)
+ }
+}
+
+impl<T: ?Sized> Wrapper<T> for Ref<T> {
+ fn into_pointer(self) -> NonNull<T> {
+ NonNull::new(Ref::into_raw(self) as _).unwrap()
+ }
+
+ unsafe fn from_pointer(ptr: NonNull<T>) -> Self {
+ // SAFETY: The safety requirements of `from_pointer` satisfy the ones from `Ref::from_raw`.
+ unsafe { Ref::from_raw(ptr.as_ptr() as _) }
+ }
+
+ fn as_ref(&self) -> &T {
+ AsRef::as_ref(self)
+ }
+}
+
+impl<T: ?Sized> Wrapper<T> for &T {
+ fn into_pointer(self) -> NonNull<T> {
+ NonNull::from(self)
+ }
+
+ unsafe fn from_pointer(ptr: NonNull<T>) -> Self {
+ unsafe { &*ptr.as_ptr() }
+ }
+
+ fn as_ref(&self) -> &T {
+ self
+ }
+}
+
+/// A descriptor of wrapped list elements.
+pub trait GetLinksWrapped: GetLinks {
+ /// Specifies which wrapper (e.g., `Box` and `Arc`) wraps the list entries.
+ type Wrapped: Wrapper<Self::EntryType>;
+}
+
+impl<T: ?Sized> GetLinksWrapped for Box<T>
+where
+ Box<T>: GetLinks,
+{
+ type Wrapped = Box<<Box<T> as GetLinks>::EntryType>;
+}
+
+impl<T: GetLinks + ?Sized> GetLinks for Box<T> {
+ type EntryType = T::EntryType;
+ fn get_links(data: &Self::EntryType) -> &Links<Self::EntryType> {
+ <T as GetLinks>::get_links(data)
+ }
+}
+
+impl<T: ?Sized> GetLinksWrapped for Ref<T>
+where
+ Ref<T>: GetLinks,
+{
+ type Wrapped = Ref<<Ref<T> as GetLinks>::EntryType>;
+}
+
+impl<T: GetLinks + ?Sized> GetLinks for Ref<T> {
+ type EntryType = T::EntryType;
+
+ fn get_links(data: &Self::EntryType) -> &Links<Self::EntryType> {
+ <T as GetLinks>::get_links(data)
+ }
+}
+
+/// A linked list.
+///
+/// Elements in the list are wrapped and ownership is transferred to the list while the element is
+/// in the list.
+pub struct List<G: GetLinksWrapped> {
+ list: RawList<G>,
+}
+
+impl<G: GetLinksWrapped> List<G> {
+ /// Constructs a new empty linked list.
+ pub fn new() -> Self {
+ Self {
+ list: RawList::new(),
+ }
+ }
+
+ /// Returns whether the list is empty.
+ pub fn is_empty(&self) -> bool {
+ self.list.is_empty()
+ }
+
+ /// Adds the given object to the end (back) of the list.
+ ///
+ /// It is dropped if it's already on this (or another) list; this can happen for
+ /// reference-counted objects, so dropping means decrementing the reference count.
+ pub fn push_back(&mut self, data: G::Wrapped) {
+ let ptr = data.into_pointer();
+
+ // SAFETY: We took ownership of the entry, so it is safe to insert it.
+ if !unsafe { self.list.push_back(ptr.as_ref()) } {
+ // If insertion failed, rebuild object so that it can be freed.
+ // SAFETY: We just called `into_pointer` above.
+ unsafe { G::Wrapped::from_pointer(ptr) };
+ }
+ }
+
+ /// Inserts the given object after `existing`.
+ ///
+ /// It is dropped if it's already on this (or another) list; this can happen for
+ /// reference-counted objects, so dropping means decrementing the reference count.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that `existing` points to a valid entry that is on the list.
+ pub unsafe fn insert_after(&mut self, existing: NonNull<G::EntryType>, data: G::Wrapped) {
+ let ptr = data.into_pointer();
+ let entry = unsafe { &*existing.as_ptr() };
+ if unsafe { !self.list.insert_after(entry, ptr.as_ref()) } {
+ // If insertion failed, rebuild object so that it can be freed.
+ unsafe { G::Wrapped::from_pointer(ptr) };
+ }
+ }
+
+ /// Removes the given entry.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that `data` is either on this list or in no list. It being on another
+ /// list leads to memory unsafety.
+ pub unsafe fn remove(&mut self, data: &G::Wrapped) -> Option<G::Wrapped> {
+ let entry_ref = Wrapper::as_ref(data);
+ if unsafe { self.list.remove(entry_ref) } {
+ Some(unsafe { G::Wrapped::from_pointer(NonNull::from(entry_ref)) })
+ } else {
+ None
+ }
+ }
+
+ /// Removes the element currently at the front of the list and returns it.
+ ///
+ /// Returns `None` if the list is empty.
+ pub fn pop_front(&mut self) -> Option<G::Wrapped> {
+ let front = self.list.pop_front()?;
+ // SAFETY: Elements on the list were inserted after a call to `into_pointer `.
+ Some(unsafe { G::Wrapped::from_pointer(front) })
+ }
+
+ /// Returns a cursor starting on the first (front) element of the list.
+ pub fn cursor_front(&self) -> Cursor<'_, G> {
+ self.list.cursor_front()
+ }
+
+ /// Returns a mutable cursor starting on the first (front) element of the list.
+ pub fn cursor_front_mut(&mut self) -> CursorMut<'_, G> {
+ CursorMut::new(self.list.cursor_front_mut())
+ }
+}
+
+impl<G: GetLinksWrapped> Default for List<G> {
+ fn default() -> Self {
+ Self::new()
+ }
+}
+
+impl<G: GetLinksWrapped> Drop for List<G> {
+ fn drop(&mut self) {
+ while self.pop_front().is_some() {}
+ }
+}
+
+/// A list cursor that allows traversing a linked list and inspecting & mutating elements.
+pub struct CursorMut<'a, G: GetLinksWrapped> {
+ cursor: raw_list::CursorMut<'a, G>,
+}
+
+impl<'a, G: GetLinksWrapped> CursorMut<'a, G> {
+ fn new(cursor: raw_list::CursorMut<'a, G>) -> Self {
+ Self { cursor }
+ }
+
+ /// Returns the element the cursor is currently positioned on.
+ pub fn current(&mut self) -> Option<&mut G::EntryType> {
+ self.cursor.current()
+ }
+
+ /// Removes the element the cursor is currently positioned on.
+ ///
+ /// After removal, it advances the cursor to the next element.
+ pub fn remove_current(&mut self) -> Option<G::Wrapped> {
+ let ptr = self.cursor.remove_current()?;
+
+ // SAFETY: Elements on the list were inserted after a call to `into_pointer `.
+ Some(unsafe { G::Wrapped::from_pointer(ptr) })
+ }
+
+ /// Returns the element immediately after the one the cursor is positioned on.
+ pub fn peek_next(&mut self) -> Option<&mut G::EntryType> {
+ self.cursor.peek_next()
+ }
+
+ /// Returns the element immediately before the one the cursor is positioned on.
+ pub fn peek_prev(&mut self) -> Option<&mut G::EntryType> {
+ self.cursor.peek_prev()
+ }
+
+ /// Moves the cursor to the next element.
+ pub fn move_next(&mut self) {
+ self.cursor.move_next();
+ }
+}
diff --git a/rust/kernel/miscdev.rs b/rust/kernel/miscdev.rs
new file mode 100644
index 000000000000..65b95d6dba90
--- /dev/null
+++ b/rust/kernel/miscdev.rs
@@ -0,0 +1,290 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Miscellaneous devices.
+//!
+//! C header: [`include/linux/miscdevice.h`](../../../../include/linux/miscdevice.h)
+//!
+//! Reference: <https://www.kernel.org/doc/html/latest/driver-api/misc_devices.html>
+
+use crate::bindings;
+use crate::error::{code::*, Error, Result};
+use crate::file;
+use crate::{device, str::CStr, str::CString, ThisModule};
+use alloc::boxed::Box;
+use core::marker::PhantomPinned;
+use core::{fmt, mem::MaybeUninit, pin::Pin};
+
+/// Options which can be used to configure how a misc device is registered.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::{c_str, device::RawDevice, file, miscdev, prelude::*};
+/// fn example(
+/// reg: Pin<&mut miscdev::Registration<impl file::Operations<OpenData = ()>>>,
+/// parent: &dyn RawDevice,
+/// ) -> Result {
+/// miscdev::Options::new()
+/// .mode(0o600)
+/// .minor(10)
+/// .parent(parent)
+/// .register(reg, fmt!("sample"), ())
+/// }
+/// ```
+#[derive(Default)]
+pub struct Options<'a> {
+ minor: Option<i32>,
+ mode: Option<u16>,
+ parent: Option<&'a dyn device::RawDevice>,
+}
+
+impl<'a> Options<'a> {
+ /// Creates new [`Options`] instance with the required fields.
+ pub const fn new() -> Self {
+ Self {
+ minor: None,
+ mode: None,
+ parent: None,
+ }
+ }
+
+ /// Sets the minor device number.
+ pub const fn minor(&mut self, v: i32) -> &mut Self {
+ self.minor = Some(v);
+ self
+ }
+
+ /// Sets the device mode.
+ ///
+ /// This is usually an octal number and describes who can perform read/write/execute operations
+ /// on the device.
+ pub const fn mode(&mut self, m: u16) -> &mut Self {
+ self.mode = Some(m);
+ self
+ }
+
+ /// Sets the device parent.
+ pub const fn parent(&mut self, p: &'a dyn device::RawDevice) -> &mut Self {
+ self.parent = Some(p);
+ self
+ }
+
+ /// Registers a misc device using the configured options.
+ pub fn register<T: file::Operations>(
+ &self,
+ reg: Pin<&mut Registration<T>>,
+ name: fmt::Arguments<'_>,
+ open_data: T::OpenData,
+ ) -> Result {
+ reg.register_with_options(name, open_data, self)
+ }
+
+ /// Allocates a new registration of a misc device and completes the registration with the
+ /// configured options.
+ pub fn register_new<T: file::Operations>(
+ &self,
+ name: fmt::Arguments<'_>,
+ open_data: T::OpenData,
+ ) -> Result<Pin<Box<Registration<T>>>> {
+ let mut r = Pin::from(Box::try_new(Registration::new())?);
+ self.register(r.as_mut(), name, open_data)?;
+ Ok(r)
+ }
+}
+
+/// A registration of a miscellaneous device.
+///
+/// # Invariants
+///
+/// `Context` is always initialised when `registered` is `true`, and not initialised otherwise.
+pub struct Registration<T: file::Operations> {
+ registered: bool,
+ mdev: bindings::miscdevice,
+ name: Option<CString>,
+ _pin: PhantomPinned,
+
+ /// Context initialised on construction and made available to all file instances on
+ /// [`file::Operations::open`].
+ open_data: MaybeUninit<T::OpenData>,
+}
+
+impl<T: file::Operations> Registration<T> {
+ /// Creates a new [`Registration`] but does not register it yet.
+ ///
+ /// It is allowed to move.
+ pub fn new() -> Self {
+ // INVARIANT: `registered` is `false` and `open_data` is not initialised.
+ Self {
+ registered: false,
+ mdev: bindings::miscdevice::default(),
+ name: None,
+ _pin: PhantomPinned,
+ open_data: MaybeUninit::uninit(),
+ }
+ }
+
+ /// Registers a miscellaneous device.
+ ///
+ /// Returns a pinned heap-allocated representation of the registration.
+ pub fn new_pinned(name: fmt::Arguments<'_>, open_data: T::OpenData) -> Result<Pin<Box<Self>>> {
+ Options::new().register_new(name, open_data)
+ }
+
+ /// Registers a miscellaneous device with the rest of the kernel.
+ ///
+ /// It must be pinned because the memory block that represents the registration is
+ /// self-referential.
+ pub fn register(
+ self: Pin<&mut Self>,
+ name: fmt::Arguments<'_>,
+ open_data: T::OpenData,
+ ) -> Result {
+ Options::new().register(self, name, open_data)
+ }
+
+ /// Registers a miscellaneous device with the rest of the kernel. Additional optional settings
+ /// are provided via the `opts` parameter.
+ ///
+ /// It must be pinned because the memory block that represents the registration is
+ /// self-referential.
+ pub fn register_with_options(
+ self: Pin<&mut Self>,
+ name: fmt::Arguments<'_>,
+ open_data: T::OpenData,
+ opts: &Options<'_>,
+ ) -> Result {
+ // SAFETY: We must ensure that we never move out of `this`.
+ let this = unsafe { self.get_unchecked_mut() };
+ if this.registered {
+ // Already registered.
+ return Err(EINVAL);
+ }
+
+ let name = CString::try_from_fmt(name)?;
+
+ // SAFETY: The adapter is compatible with `misc_register`.
+ this.mdev.fops = unsafe { file::OperationsVtable::<Self, T>::build() };
+ this.mdev.name = name.as_char_ptr();
+ this.mdev.minor = opts.minor.unwrap_or(bindings::MISC_DYNAMIC_MINOR as i32);
+ this.mdev.mode = opts.mode.unwrap_or(0);
+ this.mdev.parent = opts
+ .parent
+ .map_or(core::ptr::null_mut(), |p| p.raw_device());
+
+ // We write to `open_data` here because as soon as `misc_register` succeeds, the file can be
+ // opened, so we need `open_data` configured ahead of time.
+ //
+ // INVARIANT: `registered` is set to `true`, but `open_data` is also initialised.
+ this.registered = true;
+ this.open_data.write(open_data);
+
+ let ret = unsafe { bindings::misc_register(&mut this.mdev) };
+ if ret < 0 {
+ // INVARIANT: `registered` is set back to `false` and the `open_data` is destructued.
+ this.registered = false;
+ // SAFETY: `open_data` was initialised a few lines above.
+ unsafe { this.open_data.assume_init_drop() };
+ return Err(Error::from_kernel_errno(ret));
+ }
+
+ this.name = Some(name);
+
+ Ok(())
+ }
+}
+
+impl<T: file::Operations> Default for Registration<T> {
+ fn default() -> Self {
+ Self::new()
+ }
+}
+
+impl<T: file::Operations> file::OpenAdapter<T::OpenData> for Registration<T> {
+ unsafe fn convert(
+ _inode: *mut bindings::inode,
+ file: *mut bindings::file,
+ ) -> *const T::OpenData {
+ // SAFETY: The caller must guarantee that `file` is valid.
+ let reg = crate::container_of!(unsafe { (*file).private_data }, Self, mdev);
+
+ // SAFETY: This function is only called while the misc device is still registered, so the
+ // registration must be valid. Additionally, the type invariants guarantee that while the
+ // miscdev is registered, `open_data` is initialised.
+ unsafe { (*reg).open_data.as_ptr() }
+ }
+}
+
+// SAFETY: The only method is `register()`, which requires a (pinned) mutable `Registration`, so it
+// is safe to pass `&Registration` to multiple threads because it offers no interior mutability.
+unsafe impl<T: file::Operations> Sync for Registration<T> {}
+
+// SAFETY: All functions work from any thread. So as long as the `Registration::open_data` is
+// `Send`, so is `Registration<T>`.
+unsafe impl<T: file::Operations> Send for Registration<T> where T::OpenData: Send {}
+
+impl<T: file::Operations> Drop for Registration<T> {
+ /// Removes the registration from the kernel if it has completed successfully before.
+ fn drop(&mut self) {
+ if self.registered {
+ // SAFETY: `registered` being `true` indicates that a previous call to `misc_register`
+ // succeeded.
+ unsafe { bindings::misc_deregister(&mut self.mdev) };
+
+ // SAFETY: The type invariant guarantees that `open_data` is initialised when
+ // `registered` is `true`.
+ unsafe { self.open_data.assume_init_drop() };
+ }
+ }
+}
+
+/// Kernel module that exposes a single miscdev device implemented by `T`.
+pub struct Module<T: file::Operations<OpenData = ()>> {
+ _dev: Pin<Box<Registration<T>>>,
+}
+
+impl<T: file::Operations<OpenData = ()>> crate::Module for Module<T> {
+ fn init(name: &'static CStr, _module: &'static ThisModule) -> Result<Self> {
+ Ok(Self {
+ _dev: Registration::new_pinned(crate::fmt!("{name}"), ())?,
+ })
+ }
+}
+
+/// Declares a kernel module that exposes a single misc device.
+///
+/// The `type` argument should be a type which implements the [`FileOpener`] trait. Also accepts
+/// various forms of kernel metadata.
+///
+/// C header: [`include/linux/moduleparam.h`](../../../include/linux/moduleparam.h)
+///
+/// [`FileOpener`]: ../kernel/file_operations/trait.FileOpener.html
+///
+/// # Examples
+///
+/// ```ignore
+/// use kernel::prelude::*;
+///
+/// module_misc_device! {
+/// type: MyFile,
+/// name: b"my_miscdev_kernel_module",
+/// author: b"Rust for Linux Contributors",
+/// description: b"My very own misc device kernel module!",
+/// license: b"GPL",
+/// }
+///
+/// #[derive(Default)]
+/// struct MyFile;
+///
+/// #[vtable]
+/// impl kernel::file::Operations for MyFile {}
+/// ```
+#[macro_export]
+macro_rules! module_misc_device {
+ (type: $type:ty, $($f:tt)*) => {
+ type ModuleType = kernel::miscdev::Module<$type>;
+ module! {
+ type: ModuleType,
+ $($f)*
+ }
+ }
+}
diff --git a/rust/kernel/mm.rs b/rust/kernel/mm.rs
new file mode 100644
index 000000000000..8a69c69dddd9
--- /dev/null
+++ b/rust/kernel/mm.rs
@@ -0,0 +1,149 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Memory management.
+//!
+//! C header: [`include/linux/mm.h`](../../../../include/linux/mm.h)
+
+use crate::{bindings, pages, to_result, Result};
+
+/// Virtual memory.
+pub mod virt {
+ use super::*;
+
+ /// A wrapper for the kernel's `struct vm_area_struct`.
+ ///
+ /// It represents an area of virtual memory.
+ ///
+ /// # Invariants
+ ///
+ /// `vma` is always non-null and valid.
+ pub struct Area {
+ vma: *mut bindings::vm_area_struct,
+ }
+
+ impl Area {
+ /// Creates a new instance of a virtual memory area.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that `vma` is non-null and valid for the duration of the new area's
+ /// lifetime.
+ pub(crate) unsafe fn from_ptr(vma: *mut bindings::vm_area_struct) -> Self {
+ // INVARIANTS: The safety requirements guarantee the invariants.
+ Self { vma }
+ }
+
+ /// Returns the flags associated with the virtual memory area.
+ ///
+ /// The possible flags are a combination of the constants in [`flags`].
+ pub fn flags(&self) -> usize {
+ // SAFETY: `self.vma` is valid by the type invariants.
+ unsafe { (*self.vma).vm_flags as _ }
+ }
+
+ /// Sets the flags associated with the virtual memory area.
+ ///
+ /// The possible flags are a combination of the constants in [`flags`].
+ pub fn set_flags(&mut self, flags: usize) {
+ // SAFETY: `self.vma` is valid by the type invariants.
+ unsafe { (*self.vma).vm_flags = flags as _ };
+ }
+
+ /// Returns the start address of the virtual memory area.
+ pub fn start(&self) -> usize {
+ // SAFETY: `self.vma` is valid by the type invariants.
+ unsafe { (*self.vma).vm_start as _ }
+ }
+
+ /// Returns the end address of the virtual memory area.
+ pub fn end(&self) -> usize {
+ // SAFETY: `self.vma` is valid by the type invariants.
+ unsafe { (*self.vma).vm_end as _ }
+ }
+
+ /// Maps a single page at the given address within the virtual memory area.
+ pub fn insert_page(&mut self, address: usize, page: &pages::Pages<0>) -> Result {
+ // SAFETY: The page is guaranteed to be order 0 by the type system. The range of
+ // `address` is already checked by `vm_insert_page`. `self.vma` and `page.pages` are
+ // guaranteed by their repective type invariants to be valid.
+ to_result(unsafe { bindings::vm_insert_page(self.vma, address as _, page.pages) })
+ }
+ }
+
+ /// Container for [`Area`] flags.
+ pub mod flags {
+ use crate::bindings;
+
+ /// No flags are set.
+ pub const NONE: usize = bindings::VM_NONE as _;
+
+ /// Mapping allows reads.
+ pub const READ: usize = bindings::VM_READ as _;
+
+ /// Mapping allows writes.
+ pub const WRITE: usize = bindings::VM_WRITE as _;
+
+ /// Mapping allows execution.
+ pub const EXEC: usize = bindings::VM_EXEC as _;
+
+ /// Mapping is shared.
+ pub const SHARED: usize = bindings::VM_SHARED as _;
+
+ /// Mapping may be updated to allow reads.
+ pub const MAYREAD: usize = bindings::VM_MAYREAD as _;
+
+ /// Mapping may be updated to allow writes.
+ pub const MAYWRITE: usize = bindings::VM_MAYWRITE as _;
+
+ /// Mapping may be updated to allow execution.
+ pub const MAYEXEC: usize = bindings::VM_MAYEXEC as _;
+
+ /// Mapping may be updated to be shared.
+ pub const MAYSHARE: usize = bindings::VM_MAYSHARE as _;
+
+ /// Do not copy this vma on fork.
+ pub const DONTCOPY: usize = bindings::VM_DONTCOPY as _;
+
+ /// Cannot expand with mremap().
+ pub const DONTEXPAND: usize = bindings::VM_DONTEXPAND as _;
+
+ /// Lock the pages covered when they are faulted in.
+ pub const LOCKONFAULT: usize = bindings::VM_LOCKONFAULT as _;
+
+ /// Is a VM accounted object.
+ pub const ACCOUNT: usize = bindings::VM_ACCOUNT as _;
+
+ /// should the VM suppress accounting.
+ pub const NORESERVE: usize = bindings::VM_NORESERVE as _;
+
+ /// Huge TLB Page VM.
+ pub const HUGETLB: usize = bindings::VM_HUGETLB as _;
+
+ /// Synchronous page faults.
+ pub const SYNC: usize = bindings::VM_SYNC as _;
+
+ /// Architecture-specific flag.
+ pub const ARCH_1: usize = bindings::VM_ARCH_1 as _;
+
+ /// Wipe VMA contents in child..
+ pub const WIPEONFORK: usize = bindings::VM_WIPEONFORK as _;
+
+ /// Do not include in the core dump.
+ pub const DONTDUMP: usize = bindings::VM_DONTDUMP as _;
+
+ /// Not soft dirty clean area.
+ pub const SOFTDIRTY: usize = bindings::VM_SOFTDIRTY as _;
+
+ /// Can contain "struct page" and pure PFN pages.
+ pub const MIXEDMAP: usize = bindings::VM_MIXEDMAP as _;
+
+ /// MADV_HUGEPAGE marked this vma.
+ pub const HUGEPAGE: usize = bindings::VM_HUGEPAGE as _;
+
+ /// MADV_NOHUGEPAGE marked this vma.
+ pub const NOHUGEPAGE: usize = bindings::VM_NOHUGEPAGE as _;
+
+ /// KSM may merge identical pages.
+ pub const MERGEABLE: usize = bindings::VM_MERGEABLE as _;
+ }
+}
diff --git a/rust/kernel/module_param.rs b/rust/kernel/module_param.rs
new file mode 100644
index 000000000000..6df38c78c65c
--- /dev/null
+++ b/rust/kernel/module_param.rs
@@ -0,0 +1,499 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Types for module parameters.
+//!
+//! C header: [`include/linux/moduleparam.h`](../../../include/linux/moduleparam.h)
+
+use crate::error::{code::*, from_kernel_result};
+use crate::str::{CStr, Formatter};
+use core::fmt::Write;
+
+/// Types that can be used for module parameters.
+///
+/// Note that displaying the type in `sysfs` will fail if
+/// [`alloc::string::ToString::to_string`] (as implemented through the
+/// [`core::fmt::Display`] trait) writes more than [`PAGE_SIZE`]
+/// bytes (including an additional null terminator).
+///
+/// [`PAGE_SIZE`]: `crate::PAGE_SIZE`
+pub trait ModuleParam: core::fmt::Display + core::marker::Sized {
+ /// The `ModuleParam` will be used by the kernel module through this type.
+ ///
+ /// This may differ from `Self` if, for example, `Self` needs to track
+ /// ownership without exposing it or allocate extra space for other possible
+ /// parameter values. See [`StringParam`] or [`ArrayParam`] for examples.
+ type Value: ?Sized;
+
+ /// Whether the parameter is allowed to be set without an argument.
+ ///
+ /// Setting this to `true` allows the parameter to be passed without an
+ /// argument (e.g. just `module.param` instead of `module.param=foo`).
+ const NOARG_ALLOWED: bool;
+
+ /// Convert a parameter argument into the parameter value.
+ ///
+ /// `None` should be returned when parsing of the argument fails.
+ /// `arg == None` indicates that the parameter was passed without an
+ /// argument. If `NOARG_ALLOWED` is set to `false` then `arg` is guaranteed
+ /// to always be `Some(_)`.
+ ///
+ /// Parameters passed at boot time will be set before [`kmalloc`] is
+ /// available (even if the module is loaded at a later time). However, in
+ /// this case, the argument buffer will be valid for the entire lifetime of
+ /// the kernel. So implementations of this method which need to allocate
+ /// should first check that the allocator is available (with
+ /// [`crate::bindings::slab_is_available`]) and when it is not available
+ /// provide an alternative implementation which doesn't allocate. In cases
+ /// where the allocator is not available it is safe to save references to
+ /// `arg` in `Self`, but in other cases a copy should be made.
+ ///
+ /// [`kmalloc`]: ../../../include/linux/slab.h
+ fn try_from_param_arg(arg: Option<&'static [u8]>) -> Option<Self>;
+
+ /// Get the current value of the parameter for use in the kernel module.
+ ///
+ /// This function should not be used directly. Instead use the wrapper
+ /// `read` which will be generated by [`macros::module`].
+ fn value(&self) -> &Self::Value;
+
+ /// Set the module parameter from a string.
+ ///
+ /// Used to set the parameter value when loading the module or when set
+ /// through `sysfs`.
+ ///
+ /// # Safety
+ ///
+ /// If `val` is non-null then it must point to a valid null-terminated
+ /// string. The `arg` field of `param` must be an instance of `Self`.
+ unsafe extern "C" fn set_param(
+ val: *const core::ffi::c_char,
+ param: *const crate::bindings::kernel_param,
+ ) -> core::ffi::c_int {
+ let arg = if val.is_null() {
+ None
+ } else {
+ Some(unsafe { CStr::from_char_ptr(val).as_bytes() })
+ };
+ match Self::try_from_param_arg(arg) {
+ Some(new_value) => {
+ let old_value = unsafe { (*param).__bindgen_anon_1.arg as *mut Self };
+ let _ = unsafe { core::ptr::replace(old_value, new_value) };
+ 0
+ }
+ None => EINVAL.to_kernel_errno(),
+ }
+ }
+
+ /// Write a string representation of the current parameter value to `buf`.
+ ///
+ /// Used for displaying the current parameter value in `sysfs`.
+ ///
+ /// # Safety
+ ///
+ /// `buf` must be a buffer of length at least `kernel::PAGE_SIZE` that is
+ /// writeable. The `arg` field of `param` must be an instance of `Self`.
+ unsafe extern "C" fn get_param(
+ buf: *mut core::ffi::c_char,
+ param: *const crate::bindings::kernel_param,
+ ) -> core::ffi::c_int {
+ from_kernel_result! {
+ // SAFETY: The C contracts guarantees that the buffer is at least `PAGE_SIZE` bytes.
+ let mut f = unsafe { Formatter::from_buffer(buf.cast(), crate::PAGE_SIZE) };
+ unsafe { write!(f, "{}\0", *((*param).__bindgen_anon_1.arg as *mut Self)) }?;
+ Ok(f.bytes_written().try_into()?)
+ }
+ }
+
+ /// Drop the parameter.
+ ///
+ /// Called when unloading a module.
+ ///
+ /// # Safety
+ ///
+ /// The `arg` field of `param` must be an instance of `Self`.
+ unsafe extern "C" fn free(arg: *mut core::ffi::c_void) {
+ unsafe { core::ptr::drop_in_place(arg as *mut Self) };
+ }
+}
+
+/// Trait for parsing integers.
+///
+/// Strings beginning with `0x`, `0o`, or `0b` are parsed as hex, octal, or
+/// binary respectively. Strings beginning with `0` otherwise are parsed as
+/// octal. Anything else is parsed as decimal. A leading `+` or `-` is also
+/// permitted. Any string parsed by [`kstrtol()`] or [`kstrtoul()`] will be
+/// successfully parsed.
+///
+/// [`kstrtol()`]: https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#c.kstrtol
+/// [`kstrtoul()`]: https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#c.kstrtoul
+trait ParseInt: Sized {
+ fn from_str_radix(src: &str, radix: u32) -> Result<Self, core::num::ParseIntError>;
+ fn checked_neg(self) -> Option<Self>;
+
+ fn from_str_unsigned(src: &str) -> Result<Self, core::num::ParseIntError> {
+ let (radix, digits) = if let Some(n) = src.strip_prefix("0x") {
+ (16, n)
+ } else if let Some(n) = src.strip_prefix("0X") {
+ (16, n)
+ } else if let Some(n) = src.strip_prefix("0o") {
+ (8, n)
+ } else if let Some(n) = src.strip_prefix("0O") {
+ (8, n)
+ } else if let Some(n) = src.strip_prefix("0b") {
+ (2, n)
+ } else if let Some(n) = src.strip_prefix("0B") {
+ (2, n)
+ } else if src.starts_with('0') {
+ (8, src)
+ } else {
+ (10, src)
+ };
+ Self::from_str_radix(digits, radix)
+ }
+
+ fn from_str(src: &str) -> Option<Self> {
+ match src.bytes().next() {
+ None => None,
+ Some(b'-') => Self::from_str_unsigned(&src[1..]).ok()?.checked_neg(),
+ Some(b'+') => Some(Self::from_str_unsigned(&src[1..]).ok()?),
+ Some(_) => Some(Self::from_str_unsigned(src).ok()?),
+ }
+ }
+}
+
+macro_rules! impl_parse_int {
+ ($ty:ident) => {
+ impl ParseInt for $ty {
+ fn from_str_radix(src: &str, radix: u32) -> Result<Self, core::num::ParseIntError> {
+ $ty::from_str_radix(src, radix)
+ }
+
+ fn checked_neg(self) -> Option<Self> {
+ self.checked_neg()
+ }
+ }
+ };
+}
+
+impl_parse_int!(i8);
+impl_parse_int!(u8);
+impl_parse_int!(i16);
+impl_parse_int!(u16);
+impl_parse_int!(i32);
+impl_parse_int!(u32);
+impl_parse_int!(i64);
+impl_parse_int!(u64);
+impl_parse_int!(isize);
+impl_parse_int!(usize);
+
+macro_rules! impl_module_param {
+ ($ty:ident) => {
+ impl ModuleParam for $ty {
+ type Value = $ty;
+
+ const NOARG_ALLOWED: bool = false;
+
+ fn try_from_param_arg(arg: Option<&'static [u8]>) -> Option<Self> {
+ let bytes = arg?;
+ let utf8 = core::str::from_utf8(bytes).ok()?;
+ <$ty as crate::module_param::ParseInt>::from_str(utf8)
+ }
+
+ fn value(&self) -> &Self::Value {
+ self
+ }
+ }
+ };
+}
+
+#[doc(hidden)]
+#[macro_export]
+/// Generate a static [`kernel_param_ops`](../../../include/linux/moduleparam.h) struct.
+///
+/// # Examples
+///
+/// ```ignore
+/// make_param_ops!(
+/// /// Documentation for new param ops.
+/// PARAM_OPS_MYTYPE, // Name for the static.
+/// MyType // A type which implements [`ModuleParam`].
+/// );
+/// ```
+macro_rules! make_param_ops {
+ ($ops:ident, $ty:ty) => {
+ $crate::make_param_ops!(
+ #[doc=""]
+ $ops,
+ $ty
+ );
+ };
+ ($(#[$meta:meta])* $ops:ident, $ty:ty) => {
+ $(#[$meta])*
+ ///
+ /// Static [`kernel_param_ops`](../../../include/linux/moduleparam.h)
+ /// struct generated by [`make_param_ops`].
+ pub static $ops: $crate::bindings::kernel_param_ops = $crate::bindings::kernel_param_ops {
+ flags: if <$ty as $crate::module_param::ModuleParam>::NOARG_ALLOWED {
+ $crate::bindings::KERNEL_PARAM_OPS_FL_NOARG
+ } else {
+ 0
+ },
+ set: Some(<$ty as $crate::module_param::ModuleParam>::set_param),
+ get: Some(<$ty as $crate::module_param::ModuleParam>::get_param),
+ free: Some(<$ty as $crate::module_param::ModuleParam>::free),
+ };
+ };
+}
+
+impl_module_param!(i8);
+impl_module_param!(u8);
+impl_module_param!(i16);
+impl_module_param!(u16);
+impl_module_param!(i32);
+impl_module_param!(u32);
+impl_module_param!(i64);
+impl_module_param!(u64);
+impl_module_param!(isize);
+impl_module_param!(usize);
+
+make_param_ops!(
+ /// Rust implementation of [`kernel_param_ops`](../../../include/linux/moduleparam.h)
+ /// for [`i8`].
+ PARAM_OPS_I8,
+ i8
+);
+make_param_ops!(
+ /// Rust implementation of [`kernel_param_ops`](../../../include/linux/moduleparam.h)
+ /// for [`u8`].
+ PARAM_OPS_U8,
+ u8
+);
+make_param_ops!(
+ /// Rust implementation of [`kernel_param_ops`](../../../include/linux/moduleparam.h)
+ /// for [`i16`].
+ PARAM_OPS_I16,
+ i16
+);
+make_param_ops!(
+ /// Rust implementation of [`kernel_param_ops`](../../../include/linux/moduleparam.h)
+ /// for [`u16`].
+ PARAM_OPS_U16,
+ u16
+);
+make_param_ops!(
+ /// Rust implementation of [`kernel_param_ops`](../../../include/linux/moduleparam.h)
+ /// for [`i32`].
+ PARAM_OPS_I32,
+ i32
+);
+make_param_ops!(
+ /// Rust implementation of [`kernel_param_ops`](../../../include/linux/moduleparam.h)
+ /// for [`u32`].
+ PARAM_OPS_U32,
+ u32
+);
+make_param_ops!(
+ /// Rust implementation of [`kernel_param_ops`](../../../include/linux/moduleparam.h)
+ /// for [`i64`].
+ PARAM_OPS_I64,
+ i64
+);
+make_param_ops!(
+ /// Rust implementation of [`kernel_param_ops`](../../../include/linux/moduleparam.h)
+ /// for [`u64`].
+ PARAM_OPS_U64,
+ u64
+);
+make_param_ops!(
+ /// Rust implementation of [`kernel_param_ops`](../../../include/linux/moduleparam.h)
+ /// for [`isize`].
+ PARAM_OPS_ISIZE,
+ isize
+);
+make_param_ops!(
+ /// Rust implementation of [`kernel_param_ops`](../../../include/linux/moduleparam.h)
+ /// for [`usize`].
+ PARAM_OPS_USIZE,
+ usize
+);
+
+impl ModuleParam for bool {
+ type Value = bool;
+
+ const NOARG_ALLOWED: bool = true;
+
+ fn try_from_param_arg(arg: Option<&'static [u8]>) -> Option<Self> {
+ match arg {
+ None => Some(true),
+ Some(b"y") | Some(b"Y") | Some(b"1") | Some(b"true") => Some(true),
+ Some(b"n") | Some(b"N") | Some(b"0") | Some(b"false") => Some(false),
+ _ => None,
+ }
+ }
+
+ fn value(&self) -> &Self::Value {
+ self
+ }
+}
+
+make_param_ops!(
+ /// Rust implementation of [`kernel_param_ops`](../../../include/linux/moduleparam.h)
+ /// for [`bool`].
+ PARAM_OPS_BOOL,
+ bool
+);
+
+/// An array of at __most__ `N` values.
+///
+/// # Invariant
+///
+/// The first `self.used` elements of `self.values` are initialized.
+pub struct ArrayParam<T, const N: usize> {
+ values: [core::mem::MaybeUninit<T>; N],
+ used: usize,
+}
+
+impl<T, const N: usize> ArrayParam<T, { N }> {
+ fn values(&self) -> &[T] {
+ // SAFETY: The invariant maintained by `ArrayParam` allows us to cast
+ // the first `self.used` elements to `T`.
+ unsafe {
+ &*(&self.values[0..self.used] as *const [core::mem::MaybeUninit<T>] as *const [T])
+ }
+ }
+}
+
+impl<T: Copy, const N: usize> ArrayParam<T, { N }> {
+ const fn new() -> Self {
+ // INVARIANT: The first `self.used` elements of `self.values` are
+ // initialized.
+ ArrayParam {
+ values: [core::mem::MaybeUninit::uninit(); N],
+ used: 0,
+ }
+ }
+
+ const fn push(&mut self, val: T) {
+ if self.used < N {
+ // INVARIANT: The first `self.used` elements of `self.values` are
+ // initialized.
+ self.values[self.used] = core::mem::MaybeUninit::new(val);
+ self.used += 1;
+ }
+ }
+
+ /// Create an instance of `ArrayParam` initialized with `vals`.
+ ///
+ /// This function is only meant to be used in the [`module::module`] macro.
+ pub const fn create(vals: &[T]) -> Self {
+ let mut result = ArrayParam::new();
+ let mut i = 0;
+ while i < vals.len() {
+ result.push(vals[i]);
+ i += 1;
+ }
+ result
+ }
+}
+
+impl<T: core::fmt::Display, const N: usize> core::fmt::Display for ArrayParam<T, { N }> {
+ fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
+ for val in self.values() {
+ write!(f, "{},", val)?;
+ }
+ Ok(())
+ }
+}
+
+impl<T: Copy + core::fmt::Display + ModuleParam, const N: usize> ModuleParam
+ for ArrayParam<T, { N }>
+{
+ type Value = [T];
+
+ const NOARG_ALLOWED: bool = false;
+
+ fn try_from_param_arg(arg: Option<&'static [u8]>) -> Option<Self> {
+ arg.and_then(|args| {
+ let mut result = Self::new();
+ for arg in args.split(|b| *b == b',') {
+ result.push(T::try_from_param_arg(Some(arg))?);
+ }
+ Some(result)
+ })
+ }
+
+ fn value(&self) -> &Self::Value {
+ self.values()
+ }
+}
+
+/// A C-style string parameter.
+///
+/// The Rust version of the [`charp`] parameter. This type is meant to be
+/// used by the [`macros::module`] macro, not handled directly. Instead use the
+/// `read` method generated by that macro.
+///
+/// [`charp`]: ../../../include/linux/moduleparam.h
+pub enum StringParam {
+ /// A borrowed parameter value.
+ ///
+ /// Either the default value (which is static in the module) or borrowed
+ /// from the original argument buffer used to set the value.
+ Ref(&'static [u8]),
+
+ /// A value that was allocated when the parameter was set.
+ ///
+ /// The value needs to be freed when the parameter is reset or the module is
+ /// unloaded.
+ Owned(alloc::vec::Vec<u8>),
+}
+
+impl StringParam {
+ fn bytes(&self) -> &[u8] {
+ match self {
+ StringParam::Ref(bytes) => *bytes,
+ StringParam::Owned(vec) => &vec[..],
+ }
+ }
+}
+
+impl core::fmt::Display for StringParam {
+ fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
+ let bytes = self.bytes();
+ match core::str::from_utf8(bytes) {
+ Ok(utf8) => write!(f, "{}", utf8),
+ Err(_) => write!(f, "{:?}", bytes),
+ }
+ }
+}
+
+impl ModuleParam for StringParam {
+ type Value = [u8];
+
+ const NOARG_ALLOWED: bool = false;
+
+ fn try_from_param_arg(arg: Option<&'static [u8]>) -> Option<Self> {
+ // SAFETY: It is always safe to call [`slab_is_available`](../../../include/linux/slab.h).
+ let slab_available = unsafe { crate::bindings::slab_is_available() };
+ arg.and_then(|arg| {
+ if slab_available {
+ let mut vec = alloc::vec::Vec::new();
+ vec.try_extend_from_slice(arg).ok()?;
+ Some(StringParam::Owned(vec))
+ } else {
+ Some(StringParam::Ref(arg))
+ }
+ })
+ }
+
+ fn value(&self) -> &Self::Value {
+ self.bytes()
+ }
+}
+
+make_param_ops!(
+ /// Rust implementation of [`kernel_param_ops`](../../../include/linux/moduleparam.h)
+ /// for [`StringParam`].
+ PARAM_OPS_STR,
+ StringParam
+);
diff --git a/rust/kernel/net.rs b/rust/kernel/net.rs
new file mode 100644
index 000000000000..0115f3a35cd0
--- /dev/null
+++ b/rust/kernel/net.rs
@@ -0,0 +1,392 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Networking core.
+//!
+//! C headers: [`include/net/net_namespace.h`](../../../../include/linux/net/net_namespace.h),
+//! [`include/linux/netdevice.h`](../../../../include/linux/netdevice.h),
+//! [`include/linux/skbuff.h`](../../../../include/linux/skbuff.h).
+
+use crate::{bindings, str::CStr, to_result, ARef, AlwaysRefCounted, Error, Result};
+use core::{cell::UnsafeCell, ptr::NonNull};
+
+#[cfg(CONFIG_NETFILTER)]
+pub mod filter;
+
+/// Wraps the kernel's `struct net_device`.
+#[repr(transparent)]
+pub struct Device(UnsafeCell<bindings::net_device>);
+
+// SAFETY: Instances of `Device` are created on the C side. They are always refcounted.
+unsafe impl AlwaysRefCounted for Device {
+ fn inc_ref(&self) {
+ // SAFETY: The existence of a shared reference means that the refcount is nonzero.
+ unsafe { bindings::dev_hold(self.0.get()) };
+ }
+
+ unsafe fn dec_ref(obj: core::ptr::NonNull<Self>) {
+ // SAFETY: The safety requirements guarantee that the refcount is nonzero.
+ unsafe { bindings::dev_put(obj.cast().as_ptr()) };
+ }
+}
+
+/// Wraps the kernel's `struct net`.
+#[repr(transparent)]
+pub struct Namespace(UnsafeCell<bindings::net>);
+
+impl Namespace {
+ /// Finds a network device with the given name in the namespace.
+ pub fn dev_get_by_name(&self, name: &CStr) -> Option<ARef<Device>> {
+ // SAFETY: The existence of a shared reference guarantees the refcount is nonzero.
+ let ptr =
+ NonNull::new(unsafe { bindings::dev_get_by_name(self.0.get(), name.as_char_ptr()) })?;
+ Some(unsafe { ARef::from_raw(ptr.cast()) })
+ }
+}
+
+// SAFETY: Instances of `Namespace` are created on the C side. They are always refcounted.
+unsafe impl AlwaysRefCounted for Namespace {
+ fn inc_ref(&self) {
+ // SAFETY: The existence of a shared reference means that the refcount is nonzero.
+ unsafe { bindings::get_net(self.0.get()) };
+ }
+
+ unsafe fn dec_ref(obj: core::ptr::NonNull<Self>) {
+ // SAFETY: The safety requirements guarantee that the refcount is nonzero.
+ unsafe { bindings::put_net(obj.cast().as_ptr()) };
+ }
+}
+
+/// Returns the network namespace for the `init` process.
+pub fn init_ns() -> &'static Namespace {
+ unsafe { &*core::ptr::addr_of!(bindings::init_net).cast() }
+}
+
+/// Wraps the kernel's `struct sk_buff`.
+#[repr(transparent)]
+pub struct SkBuff(UnsafeCell<bindings::sk_buff>);
+
+impl SkBuff {
+ /// Creates a reference to an [`SkBuff`] from a valid pointer.
+ ///
+ /// # Safety
+ ///
+ /// The caller must ensure that `ptr` is valid and remains valid for the lifetime of the
+ /// returned [`SkBuff`] instance.
+ pub unsafe fn from_ptr<'a>(ptr: *const bindings::sk_buff) -> &'a SkBuff {
+ // SAFETY: The safety requirements guarantee the validity of the dereference, while the
+ // `SkBuff` type being transparent makes the cast ok.
+ unsafe { &*ptr.cast() }
+ }
+
+ /// Returns the remaining data in the buffer's first segment.
+ pub fn head_data(&self) -> &[u8] {
+ // SAFETY: The existence of a shared reference means that the refcount is nonzero.
+ let headlen = unsafe { bindings::skb_headlen(self.0.get()) };
+ let len = headlen.try_into().unwrap_or(usize::MAX);
+ // SAFETY: The existence of a shared reference means `self.0` is valid.
+ let data = unsafe { core::ptr::addr_of!((*self.0.get()).data).read() };
+ // SAFETY: The `struct sk_buff` conventions guarantee that at least `skb_headlen(skb)` bytes
+ // are valid from `skb->data`.
+ unsafe { core::slice::from_raw_parts(data, len) }
+ }
+
+ /// Returns the total length of the data (in all segments) in the skb.
+ #[allow(clippy::len_without_is_empty)]
+ pub fn len(&self) -> u32 {
+ // SAFETY: The existence of a shared reference means `self.0` is valid.
+ unsafe { core::ptr::addr_of!((*self.0.get()).len).read() }
+ }
+}
+
+// SAFETY: Instances of `SkBuff` are created on the C side. They are always refcounted.
+unsafe impl AlwaysRefCounted for SkBuff {
+ fn inc_ref(&self) {
+ // SAFETY: The existence of a shared reference means that the refcount is nonzero.
+ unsafe { bindings::skb_get(self.0.get()) };
+ }
+
+ unsafe fn dec_ref(obj: core::ptr::NonNull<Self>) {
+ // SAFETY: The safety requirements guarantee that the refcount is nonzero.
+ unsafe {
+ bindings::kfree_skb_reason(
+ obj.cast().as_ptr(),
+ bindings::skb_drop_reason_SKB_DROP_REASON_NOT_SPECIFIED,
+ )
+ };
+ }
+}
+
+/// An IPv4 address.
+///
+/// This is equivalent to C's `in_addr`.
+#[repr(transparent)]
+pub struct Ipv4Addr(bindings::in_addr);
+
+impl Ipv4Addr {
+ /// A wildcard IPv4 address.
+ ///
+ /// Binding to this address means binding to all IPv4 addresses.
+ pub const ANY: Self = Self::new(0, 0, 0, 0);
+
+ /// The IPv4 loopback address.
+ pub const LOOPBACK: Self = Self::new(127, 0, 0, 1);
+
+ /// The IPv4 broadcast address.
+ pub const BROADCAST: Self = Self::new(255, 255, 255, 255);
+
+ /// Creates a new IPv4 address with the given components.
+ pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Self {
+ Self(bindings::in_addr {
+ s_addr: u32::from_be_bytes([a, b, c, d]).to_be(),
+ })
+ }
+}
+
+/// An IPv6 address.
+///
+/// This is equivalent to C's `in6_addr`.
+#[repr(transparent)]
+pub struct Ipv6Addr(bindings::in6_addr);
+
+impl Ipv6Addr {
+ /// A wildcard IPv6 address.
+ ///
+ /// Binding to this address means binding to all IPv6 addresses.
+ pub const ANY: Self = Self::new(0, 0, 0, 0, 0, 0, 0, 0);
+
+ /// The IPv6 loopback address.
+ pub const LOOPBACK: Self = Self::new(0, 0, 0, 0, 0, 0, 0, 1);
+
+ /// Creates a new IPv6 address with the given components.
+ #[allow(clippy::too_many_arguments)]
+ pub const fn new(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16, h: u16) -> Self {
+ Self(bindings::in6_addr {
+ in6_u: bindings::in6_addr__bindgen_ty_1 {
+ u6_addr16: [
+ a.to_be(),
+ b.to_be(),
+ c.to_be(),
+ d.to_be(),
+ e.to_be(),
+ f.to_be(),
+ g.to_be(),
+ h.to_be(),
+ ],
+ },
+ })
+ }
+}
+
+/// A socket address.
+///
+/// It's an enum with either an IPv4 or IPv6 socket address.
+pub enum SocketAddr {
+ /// An IPv4 socket address.
+ V4(SocketAddrV4),
+
+ /// An IPv6 socket address.
+ V6(SocketAddrV6),
+}
+
+/// An IPv4 socket address.
+///
+/// This is equivalent to C's `sockaddr_in`.
+#[repr(transparent)]
+pub struct SocketAddrV4(bindings::sockaddr_in);
+
+impl SocketAddrV4 {
+ /// Creates a new IPv4 socket address.
+ pub const fn new(addr: Ipv4Addr, port: u16) -> Self {
+ Self(bindings::sockaddr_in {
+ sin_family: bindings::AF_INET as _,
+ sin_port: port.to_be(),
+ sin_addr: addr.0,
+ __pad: [0; 8],
+ })
+ }
+}
+
+/// An IPv6 socket address.
+///
+/// This is equivalent to C's `sockaddr_in6`.
+#[repr(transparent)]
+pub struct SocketAddrV6(bindings::sockaddr_in6);
+
+impl SocketAddrV6 {
+ /// Creates a new IPv6 socket address.
+ pub const fn new(addr: Ipv6Addr, port: u16, flowinfo: u32, scopeid: u32) -> Self {
+ Self(bindings::sockaddr_in6 {
+ sin6_family: bindings::AF_INET6 as _,
+ sin6_port: port.to_be(),
+ sin6_addr: addr.0,
+ sin6_flowinfo: flowinfo,
+ sin6_scope_id: scopeid,
+ })
+ }
+}
+
+/// A socket listening on a TCP port.
+///
+/// # Invariants
+///
+/// The socket pointer is always non-null and valid.
+pub struct TcpListener {
+ pub(crate) sock: *mut bindings::socket,
+}
+
+// SAFETY: `TcpListener` is just a wrapper for a kernel socket, which can be used from any thread.
+unsafe impl Send for TcpListener {}
+
+// SAFETY: `TcpListener` is just a wrapper for a kernel socket, which can be used from any thread.
+unsafe impl Sync for TcpListener {}
+
+impl TcpListener {
+ /// Creates a new TCP listener.
+ ///
+ /// It is configured to listen on the given socket address for the given namespace.
+ pub fn try_new(ns: &Namespace, addr: &SocketAddr) -> Result<Self> {
+ let mut socket = core::ptr::null_mut();
+ let (pf, addr, addrlen) = match addr {
+ SocketAddr::V4(addr) => (
+ bindings::PF_INET,
+ addr as *const _ as _,
+ core::mem::size_of::<bindings::sockaddr_in>(),
+ ),
+ SocketAddr::V6(addr) => (
+ bindings::PF_INET6,
+ addr as *const _ as _,
+ core::mem::size_of::<bindings::sockaddr_in6>(),
+ ),
+ };
+
+ // SAFETY: The namespace is valid and the output socket pointer is valid for write.
+ to_result(unsafe {
+ bindings::sock_create_kern(
+ ns.0.get(),
+ pf as _,
+ bindings::sock_type_SOCK_STREAM as _,
+ bindings::IPPROTO_TCP as _,
+ &mut socket,
+ )
+ })?;
+
+ // INVARIANT: The socket was just created, so it is valid.
+ let listener = Self { sock: socket };
+
+ // SAFETY: The type invariant guarantees that the socket is valid, and `addr` and `addrlen`
+ // were initialised based on valid values provided in the address enum.
+ to_result(unsafe { bindings::kernel_bind(socket, addr, addrlen as _) })?;
+
+ // SAFETY: The socket is valid per the type invariant.
+ to_result(unsafe { bindings::kernel_listen(socket, bindings::SOMAXCONN as _) })?;
+
+ Ok(listener)
+ }
+
+ /// Accepts a new connection.
+ ///
+ /// On success, returns the newly-accepted socket stream.
+ ///
+ /// If no connection is available to be accepted, one of two behaviours will occur:
+ /// - If `block` is `false`, returns [`crate::error::code::EAGAIN`];
+ /// - If `block` is `true`, blocks until an error occurs or some connection can be accepted.
+ pub fn accept(&self, block: bool) -> Result<TcpStream> {
+ let mut new = core::ptr::null_mut();
+ let flags = if block { 0 } else { bindings::O_NONBLOCK };
+ // SAFETY: The type invariant guarantees that the socket is valid, and the output argument
+ // is also valid for write.
+ to_result(unsafe { bindings::kernel_accept(self.sock, &mut new, flags as _) })?;
+ Ok(TcpStream { sock: new })
+ }
+}
+
+impl Drop for TcpListener {
+ fn drop(&mut self) {
+ // SAFETY: The type invariant guarantees that the socket is valid.
+ unsafe { bindings::sock_release(self.sock) };
+ }
+}
+
+/// A connected TCP socket.
+///
+/// # Invariants
+///
+/// The socket pointer is always non-null and valid.
+pub struct TcpStream {
+ pub(crate) sock: *mut bindings::socket,
+}
+
+// SAFETY: `TcpStream` is just a wrapper for a kernel socket, which can be used from any thread.
+unsafe impl Send for TcpStream {}
+
+// SAFETY: `TcpStream` is just a wrapper for a kernel socket, which can be used from any thread.
+unsafe impl Sync for TcpStream {}
+
+impl TcpStream {
+ /// Reads data from a connected socket.
+ ///
+ /// On success, returns the number of bytes read, which will be zero if the connection is
+ /// closed.
+ ///
+ /// If no data is immediately available for reading, one of two behaviours will occur:
+ /// - If `block` is `false`, returns [`crate::error::code::EAGAIN`];
+ /// - If `block` is `true`, blocks until an error occurs, the connection is closed, or some
+ /// becomes readable.
+ pub fn read(&self, buf: &mut [u8], block: bool) -> Result<usize> {
+ let mut msg = bindings::msghdr::default();
+ let mut vec = bindings::kvec {
+ iov_base: buf.as_mut_ptr().cast(),
+ iov_len: buf.len(),
+ };
+ // SAFETY: The type invariant guarantees that the socket is valid, and `vec` was
+ // initialised with the output buffer.
+ let r = unsafe {
+ bindings::kernel_recvmsg(
+ self.sock,
+ &mut msg,
+ &mut vec,
+ 1,
+ vec.iov_len,
+ if block { 0 } else { bindings::MSG_DONTWAIT } as _,
+ )
+ };
+ if r < 0 {
+ Err(Error::from_kernel_errno(r))
+ } else {
+ Ok(r as _)
+ }
+ }
+
+ /// Writes data to the connected socket.
+ ///
+ /// On success, returns the number of bytes written.
+ ///
+ /// If the send buffer of the socket is full, one of two behaviours will occur:
+ /// - If `block` is `false`, returns [`crate::error::code::EAGAIN`];
+ /// - If `block` is `true`, blocks until an error occurs or some data is written.
+ pub fn write(&self, buf: &[u8], block: bool) -> Result<usize> {
+ let mut msg = bindings::msghdr {
+ msg_flags: if block { 0 } else { bindings::MSG_DONTWAIT },
+ ..bindings::msghdr::default()
+ };
+ let mut vec = bindings::kvec {
+ iov_base: buf.as_ptr() as *mut u8 as _,
+ iov_len: buf.len(),
+ };
+ // SAFETY: The type invariant guarantees that the socket is valid, and `vec` was
+ // initialised with the input buffer.
+ let r = unsafe { bindings::kernel_sendmsg(self.sock, &mut msg, &mut vec, 1, vec.iov_len) };
+ if r < 0 {
+ Err(Error::from_kernel_errno(r))
+ } else {
+ Ok(r as _)
+ }
+ }
+}
+
+impl Drop for TcpStream {
+ fn drop(&mut self) {
+ // SAFETY: The type invariant guarantees that the socket is valid.
+ unsafe { bindings::sock_release(self.sock) };
+ }
+}
diff --git a/rust/kernel/net/filter.rs b/rust/kernel/net/filter.rs
new file mode 100644
index 000000000000..a50422d53848
--- /dev/null
+++ b/rust/kernel/net/filter.rs
@@ -0,0 +1,447 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Networking filters.
+//!
+//! C header: [`include/linux/netfilter.h`](../../../../../include/linux/netfilter.h)
+
+use crate::{
+ bindings,
+ error::{code::*, to_result},
+ net,
+ types::PointerWrapper,
+ ARef, AlwaysRefCounted, Result, ScopeGuard,
+};
+use alloc::boxed::Box;
+use core::{
+ marker::{PhantomData, PhantomPinned},
+ pin::Pin,
+};
+
+/// A network filter.
+pub trait Filter {
+ /// The type of the context data stored on registration and made available to the
+ /// [`Filter::filter`] function.
+ type Data: PointerWrapper + Sync = ();
+
+ /// Filters the packet stored in the given buffer.
+ ///
+ /// It dictates to the netfilter core what the fate of the packet should be.
+ fn filter(
+ _data: <Self::Data as PointerWrapper>::Borrowed<'_>,
+ _skb: &net::SkBuff,
+ ) -> Disposition;
+}
+
+/// Specifies the action to be taken by the netfilter core.
+pub enum Disposition {
+ /// Drop the packet.
+ Drop,
+
+ /// Accept the packet.
+ Accept,
+
+ /// The packet was stolen by the filter and must be treated as if it didn't exist.
+ Stolen,
+
+ /// Queue the packet to the given user-space queue.
+ Queue {
+ /// The identifier of the queue to which the packet should be added.
+ queue_id: u16,
+
+ /// Specifies the behaviour if a queue with the given identifier doesn't exist: if `true`,
+ /// the packet is accepted, otherwise it is rejected.
+ accept_if_queue_non_existent: bool,
+ },
+}
+
+/// The filter hook families.
+pub enum Family {
+ /// IPv4 and IPv6 packets.
+ INet(inet::Hook),
+
+ /// IPv4 packets.
+ Ipv4(ipv4::Hook, ipv4::PriorityBase),
+
+ /// All packets through a device.
+ ///
+ /// When this family is used, a device _must_ be specified.
+ NetDev(netdev::Hook),
+
+ /// IPv6 packets.
+ Ipv6(ipv6::Hook, ipv6::PriorityBase),
+
+ /// Address resolution protocol (ARP) packets.
+ Arp(arp::Hook),
+}
+
+/// A registration of a networking filter.
+///
+/// # Examples
+///
+/// The following is an example of a function that attaches an inbound filter (that always accepts
+/// all packets after printing their lengths) on the specified device (in the `init` ns).
+///
+/// ```
+/// use kernel::net::{self, filter as netfilter};
+///
+/// struct MyFilter;
+/// impl netfilter::Filter for MyFilter {
+/// fn filter(_data: (), skb: &net::SkBuff) -> netfilter::Disposition {
+/// pr_info!("Packet of length {}\n", skb.len());
+/// netfilter::Disposition::Accept
+/// }
+/// }
+///
+/// fn register(name: &CStr) -> Result<Pin<Box<netfilter::Registration<MyFilter>>>> {
+/// let ns = net::init_ns();
+/// let dev = ns.dev_get_by_name(name).ok_or(ENOENT)?;
+/// netfilter::Registration::new_pinned(
+/// netfilter::Family::NetDev(netfilter::netdev::Hook::Ingress),
+/// 0,
+/// ns.into(),
+/// Some(dev),
+/// (),
+/// )
+/// }
+/// ```
+#[derive(Default)]
+pub struct Registration<T: Filter> {
+ hook: bindings::nf_hook_ops,
+ // When `ns` is `Some(_)`, the hook is registered.
+ ns: Option<ARef<net::Namespace>>,
+ dev: Option<ARef<net::Device>>,
+ _p: PhantomData<T>,
+ _pinned: PhantomPinned,
+}
+
+// SAFETY: `Registration` does not expose any of its state across threads.
+unsafe impl<T: Filter> Sync for Registration<T> {}
+
+impl<T: Filter> Registration<T> {
+ /// Creates a new [`Registration`] but does not register it yet.
+ ///
+ /// It is allowed to move.
+ pub fn new() -> Self {
+ Self {
+ hook: bindings::nf_hook_ops::default(),
+ dev: None,
+ ns: None,
+ _p: PhantomData,
+ _pinned: PhantomPinned,
+ }
+ }
+
+ /// Creates a new filter registration and registers it.
+ ///
+ /// Returns a pinned heap-allocated representation of the registration.
+ pub fn new_pinned(
+ family: Family,
+ priority: i32,
+ ns: ARef<net::Namespace>,
+ dev: Option<ARef<net::Device>>,
+ data: T::Data,
+ ) -> Result<Pin<Box<Self>>> {
+ let mut filter = Pin::from(Box::try_new(Self::new())?);
+ filter.as_mut().register(family, priority, ns, dev, data)?;
+ Ok(filter)
+ }
+
+ /// Registers a network filter.
+ ///
+ /// It must be pinned because the C portion of the kernel stores a pointer to it while it is
+ /// registered.
+ ///
+ /// The priority is relative to the family's base priority. For example, if the base priority
+ /// is `100` and `priority` is `-1`, the actual priority will be `99`. If a family doesn't
+ /// explicitly allow a base to be specified, `0` is assumed.
+ pub fn register(
+ self: Pin<&mut Self>,
+ family: Family,
+ priority: i32,
+ ns: ARef<net::Namespace>,
+ dev: Option<ARef<net::Device>>,
+ data: T::Data,
+ ) -> Result {
+ // SAFETY: We must ensure that we never move out of `this`.
+ let this = unsafe { self.get_unchecked_mut() };
+ if this.ns.is_some() {
+ // Already registered.
+ return Err(EINVAL);
+ }
+
+ let data_pointer = data.into_pointer();
+
+ // SAFETY: `data_pointer` comes from the call to `data.into_pointer()` above.
+ let guard = ScopeGuard::new(|| unsafe {
+ T::Data::from_pointer(data_pointer);
+ });
+
+ let mut pri_base = 0i32;
+ match family {
+ Family::INet(hook) => {
+ this.hook.pf = bindings::NFPROTO_INET as _;
+ this.hook.hooknum = hook as _;
+ }
+ Family::Ipv4(hook, pbase) => {
+ this.hook.pf = bindings::NFPROTO_IPV4 as _;
+ this.hook.hooknum = hook as _;
+ pri_base = pbase as _;
+ }
+ Family::Ipv6(hook, pbase) => {
+ this.hook.pf = bindings::NFPROTO_IPV6 as _;
+ this.hook.hooknum = hook as _;
+ pri_base = pbase as _;
+ }
+ Family::NetDev(hook) => {
+ this.hook.pf = bindings::NFPROTO_NETDEV as _;
+ this.hook.hooknum = hook as _;
+ }
+ Family::Arp(hook) => {
+ this.hook.pf = bindings::NFPROTO_ARP as _;
+ this.hook.hooknum = hook as _;
+ }
+ }
+
+ this.hook.priority = pri_base.saturating_add(priority);
+ this.hook.priv_ = data_pointer as _;
+ this.hook.hook = Some(Self::hook_callback);
+ crate::static_assert!(bindings::nf_hook_ops_type_NF_HOOK_OP_UNDEFINED == 0);
+
+ if let Some(ref device) = dev {
+ this.hook.dev = device.0.get();
+ }
+
+ // SAFETY: `ns` has a valid reference to the namespace, and `this.hook` was just
+ // initialised above, so they're both valid.
+ to_result(unsafe { bindings::nf_register_net_hook(ns.0.get(), &this.hook) })?;
+
+ this.dev = dev;
+ this.ns = Some(ns);
+ guard.dismiss();
+ Ok(())
+ }
+
+ unsafe extern "C" fn hook_callback(
+ priv_: *mut core::ffi::c_void,
+ skb: *mut bindings::sk_buff,
+ _state: *const bindings::nf_hook_state,
+ ) -> core::ffi::c_uint {
+ // SAFETY: `priv_` was initialised on registration by a value returned from
+ // `T::Data::into_pointer`, and it remains valid until the hook is unregistered.
+ let data = unsafe { T::Data::borrow(priv_) };
+
+ // SAFETY: The C contract guarantees that `skb` remains valid for the duration of this
+ // function call.
+ match T::filter(data, unsafe { net::SkBuff::from_ptr(skb) }) {
+ Disposition::Drop => bindings::NF_DROP,
+ Disposition::Accept => bindings::NF_ACCEPT,
+ Disposition::Stolen => {
+ // SAFETY: This function takes over ownership of `skb` when it returns `NF_STOLEN`,
+ // so we decrement the refcount here to avoid a leak.
+ unsafe { net::SkBuff::dec_ref(core::ptr::NonNull::new(skb).unwrap().cast()) };
+ bindings::NF_STOLEN
+ }
+ Disposition::Queue {
+ queue_id,
+ accept_if_queue_non_existent,
+ } => {
+ // SAFETY: Just an FFI call, no additional safety requirements.
+ let verdict = unsafe { bindings::NF_QUEUE_NR(queue_id as _) };
+ if accept_if_queue_non_existent {
+ verdict | bindings::NF_VERDICT_FLAG_QUEUE_BYPASS
+ } else {
+ verdict
+ }
+ }
+ }
+ }
+}
+
+impl<T: Filter> Drop for Registration<T> {
+ fn drop(&mut self) {
+ if let Some(ref ns) = self.ns {
+ // SAFETY: `self.ns` is `Some(_)` only when a previous call to `nf_register_net_hook`
+ // succeeded. And the arguments are the same.
+ unsafe { bindings::nf_unregister_net_hook(ns.0.get(), &self.hook) };
+
+ // `self.hook.priv_` was initialised during registration to a value returned from
+ // `T::Data::into_pointer`, so it is ok to convert back here.
+ unsafe { T::Data::from_pointer(self.hook.priv_) };
+ }
+ }
+}
+
+/// Definitions used when defining hooks for the [`Family::NetDev`] family.
+pub mod netdev {
+ use crate::bindings;
+
+ /// Hooks allowed in the [`super::Family::NetDev`] family.
+ #[repr(u32)]
+ pub enum Hook {
+ /// All inbound packets through the given device.
+ Ingress = bindings::nf_dev_hooks_NF_NETDEV_INGRESS,
+
+ /// All outbound packets through the given device.
+ Egress = bindings::nf_dev_hooks_NF_NETDEV_EGRESS,
+ }
+}
+
+/// Definitions used when defining hooks for the [`Family::Ipv4`] family.
+pub mod ipv4 {
+ use crate::bindings;
+
+ /// Hooks allowed in [`super::Family::Ipv4`] family.
+ pub type Hook = super::inet::Hook;
+
+ /// The base priority for [`super::Family::Ipv4`] hooks.
+ ///
+ /// The actual priority is the base priority plus the priority specified when registering.
+ #[repr(i32)]
+ pub enum PriorityBase {
+ /// Same as the `NF_IP_PRI_FIRST` C constant.
+ First = bindings::nf_ip_hook_priorities_NF_IP_PRI_FIRST,
+
+ /// Same as the `NF_IP_PRI_RAW_BEFORE_DEFRAG` C constant.
+ RawBeforeDefrag = bindings::nf_ip_hook_priorities_NF_IP_PRI_RAW_BEFORE_DEFRAG,
+
+ /// Same as the `NF_IP_PRI_CONNTRACK_DEFRAG` C constant.
+ ConnTrackDefrag = bindings::nf_ip_hook_priorities_NF_IP_PRI_CONNTRACK_DEFRAG,
+
+ /// Same as the `NF_IP_PRI_RAW` C constant.
+ Raw = bindings::nf_ip_hook_priorities_NF_IP_PRI_RAW,
+
+ /// Same as the `NF_IP_PRI_SELINUX_FIRST` C constant.
+ SeLinuxFirst = bindings::nf_ip_hook_priorities_NF_IP_PRI_SELINUX_FIRST,
+
+ /// Same as the `NF_IP_PRI_CONNTRACK` C constant.
+ ConnTrack = bindings::nf_ip_hook_priorities_NF_IP_PRI_CONNTRACK,
+
+ /// Same as the `NF_IP_PRI_MANGLE` C constant.
+ Mangle = bindings::nf_ip_hook_priorities_NF_IP_PRI_MANGLE,
+
+ /// Same as the `NF_IP_PRI_NAT_DST` C constant.
+ NatDst = bindings::nf_ip_hook_priorities_NF_IP_PRI_NAT_DST,
+
+ /// Same as the `NF_IP_PRI_FILTER` C constant.
+ Filter = bindings::nf_ip_hook_priorities_NF_IP_PRI_FILTER,
+
+ /// Same as the `NF_IP_PRI_SECURITY` C constant.
+ Security = bindings::nf_ip_hook_priorities_NF_IP_PRI_SECURITY,
+
+ /// Same as the `NF_IP_PRI_NAT_SRC` C constant.
+ NatSrc = bindings::nf_ip_hook_priorities_NF_IP_PRI_NAT_SRC,
+
+ /// Same as the `NF_IP_PRI_SELINUX_LAST` C constant.
+ SeLinuxLast = bindings::nf_ip_hook_priorities_NF_IP_PRI_SELINUX_LAST,
+
+ /// Same as the `NF_IP_PRI_CONNTRACK_HELPER` C constant.
+ ConnTrackHelper = bindings::nf_ip_hook_priorities_NF_IP_PRI_CONNTRACK_HELPER,
+
+ /// Same as the `NF_IP_PRI_LAST` and `NF_IP_PRI_CONNTRACK_CONFIRM` C constants.
+ Last = bindings::nf_ip_hook_priorities_NF_IP_PRI_LAST,
+ }
+}
+
+/// Definitions used when defining hooks for the [`Family::Ipv6`] family.
+pub mod ipv6 {
+ use crate::bindings;
+
+ /// Hooks allowed in [`super::Family::Ipv6`] family.
+ pub type Hook = super::inet::Hook;
+
+ /// The base priority for [`super::Family::Ipv6`] hooks.
+ ///
+ /// The actual priority is the base priority plus the priority specified when registering.
+ #[repr(i32)]
+ pub enum PriorityBase {
+ /// Same as the `NF_IP6_PRI_FIRST` C constant.
+ First = bindings::nf_ip6_hook_priorities_NF_IP6_PRI_FIRST,
+
+ /// Same as the `NF_IP6_PRI_RAW_BEFORE_DEFRAG` C constant.
+ RawBeforeDefrag = bindings::nf_ip6_hook_priorities_NF_IP6_PRI_RAW_BEFORE_DEFRAG,
+
+ /// Same as the `NF_IP6_PRI_CONNTRACK_DEFRAG` C constant.
+ ConnTrackDefrag = bindings::nf_ip6_hook_priorities_NF_IP6_PRI_CONNTRACK_DEFRAG,
+
+ /// Same as the `NF_IP6_PRI_RAW` C constant.
+ Raw = bindings::nf_ip6_hook_priorities_NF_IP6_PRI_RAW,
+
+ /// Same as the `NF_IP6_PRI_SELINUX_FIRST` C constant.
+ SeLinuxFirst = bindings::nf_ip6_hook_priorities_NF_IP6_PRI_SELINUX_FIRST,
+
+ /// Same as the `NF_IP6_PRI_CONNTRACK` C constant.
+ ConnTrack = bindings::nf_ip6_hook_priorities_NF_IP6_PRI_CONNTRACK,
+
+ /// Same as the `NF_IP6_PRI_MANGLE` C constant.
+ Mangle = bindings::nf_ip6_hook_priorities_NF_IP6_PRI_MANGLE,
+
+ /// Same as the `NF_IP6_PRI_NAT_DST` C constant.
+ NatDst = bindings::nf_ip6_hook_priorities_NF_IP6_PRI_NAT_DST,
+
+ /// Same as the `NF_IP6_PRI_FILTER` C constant.
+ Filter = bindings::nf_ip6_hook_priorities_NF_IP6_PRI_FILTER,
+
+ /// Same as the `NF_IP6_PRI_SECURITY` C constant.
+ Security = bindings::nf_ip6_hook_priorities_NF_IP6_PRI_SECURITY,
+
+ /// Same as the `NF_IP6_PRI_NAT_SRC` C constant.
+ NatSrc = bindings::nf_ip6_hook_priorities_NF_IP6_PRI_NAT_SRC,
+
+ /// Same as the `NF_IP6_PRI_SELINUX_LAST` C constant.
+ SeLinuxLast = bindings::nf_ip6_hook_priorities_NF_IP6_PRI_SELINUX_LAST,
+
+ /// Same as the `NF_IP6_PRI_CONNTRACK_HELPER` C constant.
+ ConnTrackHelper = bindings::nf_ip6_hook_priorities_NF_IP6_PRI_CONNTRACK_HELPER,
+
+ /// Same as the `NF_IP6_PRI_LAST` C constant.
+ Last = bindings::nf_ip6_hook_priorities_NF_IP6_PRI_LAST,
+ }
+}
+
+/// Definitions used when defining hooks for the [`Family::Arp`] family.
+pub mod arp {
+ use crate::bindings;
+
+ /// Hooks allowed in the [`super::Family::Arp`] family.
+ #[repr(u32)]
+ pub enum Hook {
+ /// Inbound ARP packets.
+ In = bindings::NF_ARP_IN,
+
+ /// Outbound ARP packets.
+ Out = bindings::NF_ARP_OUT,
+
+ /// Forwarded ARP packets.
+ Forward = bindings::NF_ARP_FORWARD,
+ }
+}
+
+/// Definitions used when defining hooks for the [`Family::INet`] family.
+pub mod inet {
+ use crate::bindings;
+
+ /// Hooks allowed in the [`super::Family::INet`], [`super::Family::Ipv4`], and
+ /// [`super::Family::Ipv6`] families.
+ #[repr(u32)]
+ pub enum Hook {
+ /// Inbound packets before routing decisions are made (i.e., before it's determined if the
+ /// packet is to be delivered locally or forwarded to another host).
+ PreRouting = bindings::nf_inet_hooks_NF_INET_PRE_ROUTING as _,
+
+ /// Inbound packets that are meant to be delivered locally.
+ LocalIn = bindings::nf_inet_hooks_NF_INET_LOCAL_IN as _,
+
+ /// Inbound packets that are meant to be forwarded to another host.
+ Forward = bindings::nf_inet_hooks_NF_INET_FORWARD as _,
+
+ /// Outbound packet created by the local networking stack.
+ LocalOut = bindings::nf_inet_hooks_NF_INET_LOCAL_OUT as _,
+
+ /// All outbound packets (i.e., generated locally or being forwarded to another host).
+ PostRouting = bindings::nf_inet_hooks_NF_INET_POST_ROUTING as _,
+
+ /// Equivalent to [`super::netdev::Hook::Ingress`], so a device must be specified. Packets
+ /// of all types (not just ipv4/ipv6) will be delivered to the filter.
+ Ingress = bindings::nf_inet_hooks_NF_INET_INGRESS as _,
+ }
+}
diff --git a/rust/kernel/of.rs b/rust/kernel/of.rs
new file mode 100644
index 000000000000..cdcd83244337
--- /dev/null
+++ b/rust/kernel/of.rs
@@ -0,0 +1,63 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Devicetree and Open Firmware abstractions.
+//!
+//! C header: [`include/linux/of_*.h`](../../../../include/linux/of_*.h)
+
+use crate::{bindings, driver, str::BStr};
+
+/// An open firmware device id.
+#[derive(Clone, Copy)]
+pub enum DeviceId {
+ /// An open firmware device id where only a compatible string is specified.
+ Compatible(&'static BStr),
+}
+
+/// Defines a const open firmware device id table that also carries per-entry data/context/info.
+///
+/// The name of the const is `OF_DEVICE_ID_TABLE`, which is what buses are expected to name their
+/// open firmware tables.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::define_of_id_table;
+/// use kernel::of;
+///
+/// define_of_id_table! {u32, [
+/// (of::DeviceId::Compatible(b"test-device1,test-device2"), Some(0xff)),
+/// (of::DeviceId::Compatible(b"test-device3"), None),
+/// ]};
+/// ```
+#[macro_export]
+macro_rules! define_of_id_table {
+ ($data_type:ty, $($t:tt)*) => {
+ $crate::define_id_table!(OF_DEVICE_ID_TABLE, $crate::of::DeviceId, $data_type, $($t)*);
+ };
+}
+
+// SAFETY: `ZERO` is all zeroed-out and `to_rawid` stores `offset` in `of_device_id::data`.
+unsafe impl const driver::RawDeviceId for DeviceId {
+ type RawType = bindings::of_device_id;
+ const ZERO: Self::RawType = bindings::of_device_id {
+ name: [0; 32],
+ type_: [0; 32],
+ compatible: [0; 128],
+ data: core::ptr::null(),
+ };
+
+ fn to_rawid(&self, offset: isize) -> Self::RawType {
+ let DeviceId::Compatible(compatible) = self;
+ let mut id = Self::ZERO;
+ let mut i = 0;
+ while i < compatible.len() {
+ // If `compatible` does not fit in `id.compatible`, an "index out of bounds" build time
+ // error will be triggered.
+ id.compatible[i] = compatible[i] as _;
+ i += 1;
+ }
+ id.compatible[i] = b'\0' as _;
+ id.data = offset as _;
+ id
+ }
+}
diff --git a/rust/kernel/pages.rs b/rust/kernel/pages.rs
new file mode 100644
index 000000000000..f2bb26810cd7
--- /dev/null
+++ b/rust/kernel/pages.rs
@@ -0,0 +1,144 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Kernel page allocation and management.
+//!
+//! TODO: This module is a work in progress.
+
+use crate::{
+ bindings, error::code::*, io_buffer::IoBufferReader, user_ptr::UserSlicePtrReader, Result,
+ PAGE_SIZE,
+};
+use core::{marker::PhantomData, ptr};
+
+/// A set of physical pages.
+///
+/// `Pages` holds a reference to a set of pages of order `ORDER`. Having the order as a generic
+/// const allows the struct to have the same size as a pointer.
+///
+/// # Invariants
+///
+/// The pointer `Pages::pages` is valid and points to 2^ORDER pages.
+pub struct Pages<const ORDER: u32> {
+ pub(crate) pages: *mut bindings::page,
+}
+
+impl<const ORDER: u32> Pages<ORDER> {
+ /// Allocates a new set of contiguous pages.
+ pub fn new() -> Result<Self> {
+ // TODO: Consider whether we want to allow callers to specify flags.
+ // SAFETY: This only allocates pages. We check that it succeeds in the next statement.
+ let pages = unsafe {
+ bindings::alloc_pages(
+ bindings::GFP_KERNEL | bindings::__GFP_ZERO | bindings::__GFP_HIGHMEM,
+ ORDER,
+ )
+ };
+ if pages.is_null() {
+ return Err(ENOMEM);
+ }
+ // INVARIANTS: We checked that the allocation above succeeded.
+ Ok(Self { pages })
+ }
+
+ /// Copies data from the given [`UserSlicePtrReader`] into the pages.
+ pub fn copy_into_page(
+ &self,
+ reader: &mut UserSlicePtrReader,
+ offset: usize,
+ len: usize,
+ ) -> Result {
+ // TODO: For now this only works on the first page.
+ let end = offset.checked_add(len).ok_or(EINVAL)?;
+ if end > PAGE_SIZE {
+ return Err(EINVAL);
+ }
+
+ let mapping = self.kmap(0).ok_or(EINVAL)?;
+
+ // SAFETY: We ensured that the buffer was valid with the check above.
+ unsafe { reader.read_raw((mapping.ptr as usize + offset) as _, len) }?;
+ Ok(())
+ }
+
+ /// Maps the pages and reads from them into the given buffer.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that the destination buffer is valid for the given length.
+ /// Additionally, if the raw buffer is intended to be recast, they must ensure that the data
+ /// can be safely cast; [`crate::io_buffer::ReadableFromBytes`] has more details about it.
+ pub unsafe fn read(&self, dest: *mut u8, offset: usize, len: usize) -> Result {
+ // TODO: For now this only works on the first page.
+ let end = offset.checked_add(len).ok_or(EINVAL)?;
+ if end > PAGE_SIZE {
+ return Err(EINVAL);
+ }
+
+ let mapping = self.kmap(0).ok_or(EINVAL)?;
+ unsafe { ptr::copy((mapping.ptr as *mut u8).add(offset), dest, len) };
+ Ok(())
+ }
+
+ /// Maps the pages and writes into them from the given buffer.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that the buffer is valid for the given length. Additionally, if the
+ /// page is (or will be) mapped by userspace, they must ensure that no kernel data is leaked
+ /// through padding if it was cast from another type; [`crate::io_buffer::WritableToBytes`] has
+ /// more details about it.
+ pub unsafe fn write(&self, src: *const u8, offset: usize, len: usize) -> Result {
+ // TODO: For now this only works on the first page.
+ let end = offset.checked_add(len).ok_or(EINVAL)?;
+ if end > PAGE_SIZE {
+ return Err(EINVAL);
+ }
+
+ let mapping = self.kmap(0).ok_or(EINVAL)?;
+ unsafe { ptr::copy(src, (mapping.ptr as *mut u8).add(offset), len) };
+ Ok(())
+ }
+
+ /// Maps the page at index `index`.
+ fn kmap(&self, index: usize) -> Option<PageMapping<'_>> {
+ if index >= 1usize << ORDER {
+ return None;
+ }
+
+ // SAFETY: We checked above that `index` is within range.
+ let page = unsafe { self.pages.add(index) };
+
+ // SAFETY: `page` is valid based on the checks above.
+ let ptr = unsafe { bindings::kmap(page) };
+ if ptr.is_null() {
+ return None;
+ }
+
+ Some(PageMapping {
+ page,
+ ptr,
+ _phantom: PhantomData,
+ })
+ }
+}
+
+impl<const ORDER: u32> Drop for Pages<ORDER> {
+ fn drop(&mut self) {
+ // SAFETY: By the type invariants, we know the pages are allocated with the given order.
+ unsafe { bindings::__free_pages(self.pages, ORDER) };
+ }
+}
+
+struct PageMapping<'a> {
+ page: *mut bindings::page,
+ ptr: *mut core::ffi::c_void,
+ _phantom: PhantomData<&'a i32>,
+}
+
+impl Drop for PageMapping<'_> {
+ fn drop(&mut self) {
+ // SAFETY: An instance of `PageMapping` is created only when `kmap` succeeded for the given
+ // page, so it is safe to unmap it here.
+ unsafe { bindings::kunmap(self.page) };
+ }
+}
diff --git a/rust/kernel/platform.rs b/rust/kernel/platform.rs
new file mode 100644
index 000000000000..d8cc0e0120aa
--- /dev/null
+++ b/rust/kernel/platform.rs
@@ -0,0 +1,223 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Platform devices and drivers.
+//!
+//! Also called `platdev`, `pdev`.
+//!
+//! C header: [`include/linux/platform_device.h`](../../../../include/linux/platform_device.h)
+
+use crate::{
+ bindings,
+ device::{self, RawDevice},
+ driver,
+ error::{from_kernel_result, Result},
+ of,
+ str::CStr,
+ to_result,
+ types::PointerWrapper,
+ ThisModule,
+};
+
+/// A registration of a platform driver.
+pub type Registration<T> = driver::Registration<Adapter<T>>;
+
+/// An adapter for the registration of platform drivers.
+pub struct Adapter<T: Driver>(T);
+
+impl<T: Driver> driver::DriverOps for Adapter<T> {
+ type RegType = bindings::platform_driver;
+
+ unsafe fn register(
+ reg: *mut bindings::platform_driver,
+ name: &'static CStr,
+ module: &'static ThisModule,
+ ) -> Result {
+ // SAFETY: By the safety requirements of this function (defined in the trait definition),
+ // `reg` is non-null and valid.
+ let pdrv = unsafe { &mut *reg };
+
+ pdrv.driver.name = name.as_char_ptr();
+ pdrv.probe = Some(Self::probe_callback);
+ pdrv.remove = Some(Self::remove_callback);
+ if let Some(t) = T::OF_DEVICE_ID_TABLE {
+ pdrv.driver.of_match_table = t.as_ref();
+ }
+ // SAFETY:
+ // - `pdrv` lives at least until the call to `platform_driver_unregister()` returns.
+ // - `name` pointer has static lifetime.
+ // - `module.0` lives at least as long as the module.
+ // - `probe()` and `remove()` are static functions.
+ // - `of_match_table` is either a raw pointer with static lifetime,
+ // as guaranteed by the [`driver::IdTable`] type, or null.
+ to_result(unsafe { bindings::__platform_driver_register(reg, module.0) })
+ }
+
+ unsafe fn unregister(reg: *mut bindings::platform_driver) {
+ // SAFETY: By the safety requirements of this function (defined in the trait definition),
+ // `reg` was passed (and updated) by a previous successful call to
+ // `platform_driver_register`.
+ unsafe { bindings::platform_driver_unregister(reg) };
+ }
+}
+
+impl<T: Driver> Adapter<T> {
+ fn get_id_info(dev: &Device) -> Option<&'static T::IdInfo> {
+ let table = T::OF_DEVICE_ID_TABLE?;
+
+ // SAFETY: `table` has static lifetime, so it is valid for read. `dev` is guaranteed to be
+ // valid while it's alive, so is the raw device returned by it.
+ let id = unsafe { bindings::of_match_device(table.as_ref(), dev.raw_device()) };
+ if id.is_null() {
+ return None;
+ }
+
+ // SAFETY: `id` is a pointer within the static table, so it's always valid.
+ let offset = unsafe { (*id).data };
+ if offset.is_null() {
+ return None;
+ }
+
+ // SAFETY: The offset comes from a previous call to `offset_from` in `IdArray::new`, which
+ // guarantees that the resulting pointer is within the table.
+ let ptr = unsafe {
+ id.cast::<u8>()
+ .offset(offset as _)
+ .cast::<Option<T::IdInfo>>()
+ };
+
+ // SAFETY: The id table has a static lifetime, so `ptr` is guaranteed to be valid for read.
+ unsafe { (&*ptr).as_ref() }
+ }
+
+ extern "C" fn probe_callback(pdev: *mut bindings::platform_device) -> core::ffi::c_int {
+ from_kernel_result! {
+ // SAFETY: `pdev` is valid by the contract with the C code. `dev` is alive only for the
+ // duration of this call, so it is guaranteed to remain alive for the lifetime of
+ // `pdev`.
+ let mut dev = unsafe { Device::from_ptr(pdev) };
+ let info = Self::get_id_info(&dev);
+ let data = T::probe(&mut dev, info)?;
+ // SAFETY: `pdev` is guaranteed to be a valid, non-null pointer.
+ unsafe { bindings::platform_set_drvdata(pdev, data.into_pointer() as _) };
+ Ok(0)
+ }
+ }
+
+ extern "C" fn remove_callback(pdev: *mut bindings::platform_device) -> core::ffi::c_int {
+ from_kernel_result! {
+ // SAFETY: `pdev` is guaranteed to be a valid, non-null pointer.
+ let ptr = unsafe { bindings::platform_get_drvdata(pdev) };
+ // SAFETY:
+ // - we allocated this pointer using `T::Data::into_pointer`,
+ // so it is safe to turn back into a `T::Data`.
+ // - the allocation happened in `probe`, no-one freed the memory,
+ // `remove` is the canonical kernel location to free driver data. so OK
+ // to convert the pointer back to a Rust structure here.
+ let data = unsafe { T::Data::from_pointer(ptr) };
+ let ret = T::remove(&data);
+ <T::Data as driver::DeviceRemoval>::device_remove(&data);
+ ret?;
+ Ok(0)
+ }
+ }
+}
+
+/// A platform driver.
+pub trait Driver {
+ /// Data stored on device by driver.
+ ///
+ /// Corresponds to the data set or retrieved via the kernel's
+ /// `platform_{set,get}_drvdata()` functions.
+ ///
+ /// Require that `Data` implements `PointerWrapper`. We guarantee to
+ /// never move the underlying wrapped data structure. This allows
+ type Data: PointerWrapper + Send + Sync + driver::DeviceRemoval = ();
+
+ /// The type holding information about each device id supported by the driver.
+ type IdInfo: 'static = ();
+
+ /// The table of device ids supported by the driver.
+ const OF_DEVICE_ID_TABLE: Option<driver::IdTable<'static, of::DeviceId, Self::IdInfo>> = None;
+
+ /// Platform driver probe.
+ ///
+ /// Called when a new platform device is added or discovered.
+ /// Implementers should attempt to initialize the device here.
+ fn probe(dev: &mut Device, id_info: Option<&Self::IdInfo>) -> Result<Self::Data>;
+
+ /// Platform driver remove.
+ ///
+ /// Called when a platform device is removed.
+ /// Implementers should prepare the device for complete removal here.
+ fn remove(_data: &Self::Data) -> Result {
+ Ok(())
+ }
+}
+
+/// A platform device.
+///
+/// # Invariants
+///
+/// The field `ptr` is non-null and valid for the lifetime of the object.
+pub struct Device {
+ ptr: *mut bindings::platform_device,
+}
+
+impl Device {
+ /// Creates a new device from the given pointer.
+ ///
+ /// # Safety
+ ///
+ /// `ptr` must be non-null and valid. It must remain valid for the lifetime of the returned
+ /// instance.
+ unsafe fn from_ptr(ptr: *mut bindings::platform_device) -> Self {
+ // INVARIANT: The safety requirements of the function ensure the lifetime invariant.
+ Self { ptr }
+ }
+
+ /// Returns id of the platform device.
+ pub fn id(&self) -> i32 {
+ // SAFETY: By the type invariants, we know that `self.ptr` is non-null and valid.
+ unsafe { (*self.ptr).id }
+ }
+}
+
+// SAFETY: The device returned by `raw_device` is the raw platform device.
+unsafe impl device::RawDevice for Device {
+ fn raw_device(&self) -> *mut bindings::device {
+ // SAFETY: By the type invariants, we know that `self.ptr` is non-null and valid.
+ unsafe { &mut (*self.ptr).dev }
+ }
+}
+
+/// Declares a kernel module that exposes a single platform driver.
+///
+/// # Examples
+///
+/// ```ignore
+/// # use kernel::{platform, define_of_id_table, module_platform_driver};
+/// #
+/// struct MyDriver;
+/// impl platform::Driver for MyDriver {
+/// // [...]
+/// # fn probe(_dev: &mut platform::Device, _id_info: Option<&Self::IdInfo>) -> Result {
+/// # Ok(())
+/// # }
+/// # define_of_id_table! {(), [
+/// # (of::DeviceId::Compatible(b"brcm,bcm2835-rng"), None),
+/// # ]}
+/// }
+///
+/// module_platform_driver! {
+/// type: MyDriver,
+/// name: b"module_name",
+/// author: b"Author name",
+/// license: b"GPL",
+/// }
+/// ```
+#[macro_export]
+macro_rules! module_platform_driver {
+ ($($f:tt)*) => {
+ $crate::module_driver!(<T>, $crate::platform::Adapter<T>, { $($f)* });
+ };
+}
diff --git a/rust/kernel/power.rs b/rust/kernel/power.rs
new file mode 100644
index 000000000000..ef788557b269
--- /dev/null
+++ b/rust/kernel/power.rs
@@ -0,0 +1,118 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Power management interfaces.
+//!
+//! C header: [`include/linux/pm.h`](../../../../include/linux/pm.h)
+
+#![allow(dead_code)]
+
+use crate::{bindings, error::from_kernel_result, types::PointerWrapper, Result};
+use core::marker::PhantomData;
+
+/// Corresponds to the kernel's `struct dev_pm_ops`.
+///
+/// It is meant to be implemented by drivers that support power-management operations.
+pub trait Operations {
+ /// The type of the context data stored by the driver on each device.
+ type Data: PointerWrapper + Sync + Send;
+
+ /// Called before the system goes into a sleep state.
+ fn suspend(_data: <Self::Data as PointerWrapper>::Borrowed<'_>) -> Result {
+ Ok(())
+ }
+
+ /// Called after the system comes back from a sleep state.
+ fn resume(_data: <Self::Data as PointerWrapper>::Borrowed<'_>) -> Result {
+ Ok(())
+ }
+
+ /// Called before creating a hibernation image.
+ fn freeze(_data: <Self::Data as PointerWrapper>::Borrowed<'_>) -> Result {
+ Ok(())
+ }
+
+ /// Called after the system is restored from a hibernation image.
+ fn restore(_data: <Self::Data as PointerWrapper>::Borrowed<'_>) -> Result {
+ Ok(())
+ }
+}
+
+macro_rules! pm_callback {
+ ($callback:ident, $method:ident) => {
+ unsafe extern "C" fn $callback<T: Operations>(
+ dev: *mut bindings::device,
+ ) -> core::ffi::c_int {
+ from_kernel_result! {
+ // SAFETY: `dev` is valid as it was passed in by the C portion.
+ let ptr = unsafe { bindings::dev_get_drvdata(dev) };
+ // SAFETY: By the safety requirements of `OpsTable::build`, we know that `ptr` came
+ // from a previous call to `T::Data::into_pointer`.
+ let data = unsafe { T::Data::borrow(ptr) };
+ T::$method(data)?;
+ Ok(0)
+ }
+ }
+ };
+}
+
+pm_callback!(suspend_callback, suspend);
+pm_callback!(resume_callback, resume);
+pm_callback!(freeze_callback, freeze);
+pm_callback!(restore_callback, restore);
+
+pub(crate) struct OpsTable<T: Operations>(PhantomData<*const T>);
+
+impl<T: Operations> OpsTable<T> {
+ const VTABLE: bindings::dev_pm_ops = bindings::dev_pm_ops {
+ prepare: None,
+ complete: None,
+ suspend: Some(suspend_callback::<T>),
+ resume: Some(resume_callback::<T>),
+ freeze: Some(freeze_callback::<T>),
+ thaw: None,
+ poweroff: None,
+ restore: Some(restore_callback::<T>),
+ suspend_late: None,
+ resume_early: None,
+ freeze_late: None,
+ thaw_early: None,
+ poweroff_late: None,
+ restore_early: None,
+ suspend_noirq: None,
+ resume_noirq: None,
+ freeze_noirq: None,
+ thaw_noirq: None,
+ poweroff_noirq: None,
+ restore_noirq: None,
+ runtime_suspend: None,
+ runtime_resume: None,
+ runtime_idle: None,
+ };
+
+ /// Builds an instance of `struct dev_pm_ops`.
+ ///
+ /// # Safety
+ ///
+ /// The caller must ensure that `dev_get_drvdata` will result in a value returned by
+ /// [`T::Data::into_pointer`].
+ pub(crate) const unsafe fn build() -> &'static bindings::dev_pm_ops {
+ &Self::VTABLE
+ }
+}
+
+/// Implements the [`Operations`] trait as no-ops.
+///
+/// This is useful when one doesn't want to provide the implementation of any power-manager related
+/// operation.
+pub struct NoOperations<T: PointerWrapper>(PhantomData<T>);
+
+impl<T: PointerWrapper + Send + Sync> Operations for NoOperations<T> {
+ type Data = T;
+}
+
+// SAFETY: `NoOperation` provides no functionality, it is safe to send a reference to it to
+// different threads.
+unsafe impl<T: PointerWrapper> Sync for NoOperations<T> {}
+
+// SAFETY: `NoOperation` provides no functionality, it is safe to send it to different threads.
+unsafe impl<T: PointerWrapper> Send for NoOperations<T> {}
diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs
new file mode 100644
index 000000000000..26f8af9e16ab
--- /dev/null
+++ b/rust/kernel/prelude.rs
@@ -0,0 +1,36 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! The `kernel` prelude.
+//!
+//! These are the most common items used by Rust code in the kernel,
+//! intended to be imported by all Rust code, for convenience.
+//!
+//! # Examples
+//!
+//! ```
+//! use kernel::prelude::*;
+//! ```
+
+pub use core::pin::Pin;
+
+pub use alloc::{boxed::Box, string::String, vec::Vec};
+
+pub use macros::{module, vtable};
+
+pub use super::build_assert;
+
+pub use super::{
+ dbg, dev_alert, dev_crit, dev_dbg, dev_emerg, dev_err, dev_info, dev_notice, dev_warn, fmt,
+ pr_alert, pr_crit, pr_debug, pr_emerg, pr_err, pr_info, pr_notice, pr_warn,
+};
+
+pub use super::{module_fs, module_misc_device};
+
+#[cfg(CONFIG_ARM_AMBA)]
+pub use super::module_amba_driver;
+
+pub use super::static_assert;
+
+pub use super::{error::code::*, Error, Result};
+
+pub use super::{str::CStr, ARef, ThisModule};
diff --git a/rust/kernel/print.rs b/rust/kernel/print.rs
new file mode 100644
index 000000000000..92541efc7e22
--- /dev/null
+++ b/rust/kernel/print.rs
@@ -0,0 +1,406 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Printing facilities.
+//!
+//! C header: [`include/linux/printk.h`](../../../../include/linux/printk.h)
+//!
+//! Reference: <https://www.kernel.org/doc/html/latest/core-api/printk-basics.html>
+
+use core::{
+ ffi::{c_char, c_void},
+ fmt,
+};
+
+use crate::str::RawFormatter;
+
+#[cfg(CONFIG_PRINTK)]
+use crate::bindings;
+
+// Called from `vsprintf` with format specifier `%pA`.
+#[no_mangle]
+unsafe fn rust_fmt_argument(buf: *mut c_char, end: *mut c_char, ptr: *const c_void) -> *mut c_char {
+ use fmt::Write;
+ // SAFETY: The C contract guarantees that `buf` is valid if it's less than `end`.
+ let mut w = unsafe { RawFormatter::from_ptrs(buf.cast(), end.cast()) };
+ let _ = w.write_fmt(unsafe { *(ptr as *const fmt::Arguments<'_>) });
+ w.pos().cast()
+}
+
+/// Format strings.
+///
+/// Public but hidden since it should only be used from public macros.
+#[doc(hidden)]
+pub mod format_strings {
+ use crate::bindings;
+
+ /// The length we copy from the `KERN_*` kernel prefixes.
+ const LENGTH_PREFIX: usize = 2;
+
+ /// The length of the fixed format strings.
+ pub const LENGTH: usize = 10;
+
+ /// Generates a fixed format string for the kernel's [`_printk`].
+ ///
+ /// The format string is always the same for a given level, i.e. for a
+ /// given `prefix`, which are the kernel's `KERN_*` constants.
+ ///
+ /// [`_printk`]: ../../../../include/linux/printk.h
+ const fn generate(is_cont: bool, prefix: &[u8; 3]) -> [u8; LENGTH] {
+ // Ensure the `KERN_*` macros are what we expect.
+ assert!(prefix[0] == b'\x01');
+ if is_cont {
+ assert!(prefix[1] == b'c');
+ } else {
+ assert!(prefix[1] >= b'0' && prefix[1] <= b'7');
+ }
+ assert!(prefix[2] == b'\x00');
+
+ let suffix: &[u8; LENGTH - LENGTH_PREFIX] = if is_cont {
+ b"%pA\0\0\0\0\0"
+ } else {
+ b"%s: %pA\0"
+ };
+
+ [
+ prefix[0], prefix[1], suffix[0], suffix[1], suffix[2], suffix[3], suffix[4], suffix[5],
+ suffix[6], suffix[7],
+ ]
+ }
+
+ // Generate the format strings at compile-time.
+ //
+ // This avoids the compiler generating the contents on the fly in the stack.
+ //
+ // Furthermore, `static` instead of `const` is used to share the strings
+ // for all the kernel.
+ pub static EMERG: [u8; LENGTH] = generate(false, bindings::KERN_EMERG);
+ pub static ALERT: [u8; LENGTH] = generate(false, bindings::KERN_ALERT);
+ pub static CRIT: [u8; LENGTH] = generate(false, bindings::KERN_CRIT);
+ pub static ERR: [u8; LENGTH] = generate(false, bindings::KERN_ERR);
+ pub static WARNING: [u8; LENGTH] = generate(false, bindings::KERN_WARNING);
+ pub static NOTICE: [u8; LENGTH] = generate(false, bindings::KERN_NOTICE);
+ pub static INFO: [u8; LENGTH] = generate(false, bindings::KERN_INFO);
+ pub static DEBUG: [u8; LENGTH] = generate(false, bindings::KERN_DEBUG);
+ pub static CONT: [u8; LENGTH] = generate(true, bindings::KERN_CONT);
+}
+
+/// Prints a message via the kernel's [`_printk`].
+///
+/// Public but hidden since it should only be used from public macros.
+///
+/// # Safety
+///
+/// The format string must be one of the ones in [`format_strings`], and
+/// the module name must be null-terminated.
+///
+/// [`_printk`]: ../../../../include/linux/_printk.h
+#[doc(hidden)]
+#[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))]
+pub unsafe fn call_printk(
+ format_string: &[u8; format_strings::LENGTH],
+ module_name: &[u8],
+ args: fmt::Arguments<'_>,
+) {
+ // `_printk` does not seem to fail in any path.
+ #[cfg(CONFIG_PRINTK)]
+ unsafe {
+ bindings::_printk(
+ format_string.as_ptr() as _,
+ module_name.as_ptr(),
+ &args as *const _ as *const c_void,
+ );
+ }
+}
+
+/// Prints a message via the kernel's [`_printk`] for the `CONT` level.
+///
+/// Public but hidden since it should only be used from public macros.
+///
+/// [`_printk`]: ../../../../include/linux/printk.h
+#[doc(hidden)]
+#[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))]
+pub fn call_printk_cont(args: fmt::Arguments<'_>) {
+ // `_printk` does not seem to fail in any path.
+ //
+ // SAFETY: The format string is fixed.
+ #[cfg(CONFIG_PRINTK)]
+ unsafe {
+ bindings::_printk(
+ format_strings::CONT.as_ptr() as _,
+ &args as *const _ as *const c_void,
+ );
+ }
+}
+
+/// Performs formatting and forwards the string to [`call_printk`].
+///
+/// Public but hidden since it should only be used from public macros.
+#[doc(hidden)]
+#[cfg(not(testlib))]
+#[macro_export]
+#[allow(clippy::crate_in_macro_def)]
+macro_rules! print_macro (
+ // The non-continuation cases (most of them, e.g. `INFO`).
+ ($format_string:path, false, $($arg:tt)+) => (
+ // SAFETY: This hidden macro should only be called by the documented
+ // printing macros which ensure the format string is one of the fixed
+ // ones. All `__LOG_PREFIX`s are null-terminated as they are generated
+ // by the `module!` proc macro or fixed values defined in a kernel
+ // crate.
+ unsafe {
+ $crate::print::call_printk(
+ &$format_string,
+ crate::__LOG_PREFIX,
+ format_args!($($arg)+),
+ );
+ }
+ );
+
+ // The `CONT` case.
+ ($format_string:path, true, $($arg:tt)+) => (
+ $crate::print::call_printk_cont(
+ format_args!($($arg)+),
+ );
+ );
+);
+
+/// Stub for doctests
+#[cfg(testlib)]
+#[macro_export]
+macro_rules! print_macro (
+ ($format_string:path, $e:expr, $($arg:tt)+) => (
+ ()
+ );
+);
+
+// We could use a macro to generate these macros. However, doing so ends
+// up being a bit ugly: it requires the dollar token trick to escape `$` as
+// well as playing with the `doc` attribute. Furthermore, they cannot be easily
+// imported in the prelude due to [1]. So, for the moment, we just write them
+// manually, like in the C side; while keeping most of the logic in another
+// macro, i.e. [`print_macro`].
+//
+// [1]: https://github.com/rust-lang/rust/issues/52234
+
+/// Prints an emergency-level message (level 0).
+///
+/// Use this level if the system is unusable.
+///
+/// Equivalent to the kernel's [`pr_emerg`] macro.
+///
+/// Mimics the interface of [`std::print!`]. See [`core::fmt`] and
+/// [`alloc::format!`] for information about the formatting syntax.
+///
+/// [`pr_emerg`]: https://www.kernel.org/doc/html/latest/core-api/printk-basics.html#c.pr_emerg
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+///
+/// # Examples
+///
+/// ```
+/// pr_emerg!("hello {}\n", "there");
+/// ```
+#[macro_export]
+macro_rules! pr_emerg (
+ ($($arg:tt)*) => (
+ $crate::print_macro!($crate::print::format_strings::EMERG, false, $($arg)*)
+ )
+);
+
+/// Prints an alert-level message (level 1).
+///
+/// Use this level if action must be taken immediately.
+///
+/// Equivalent to the kernel's [`pr_alert`] macro.
+///
+/// Mimics the interface of [`std::print!`]. See [`core::fmt`] and
+/// [`alloc::format!`] for information about the formatting syntax.
+///
+/// [`pr_alert`]: https://www.kernel.org/doc/html/latest/core-api/printk-basics.html#c.pr_alert
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+///
+/// # Examples
+///
+/// ```
+/// pr_alert!("hello {}\n", "there");
+/// ```
+#[macro_export]
+macro_rules! pr_alert (
+ ($($arg:tt)*) => (
+ $crate::print_macro!($crate::print::format_strings::ALERT, false, $($arg)*)
+ )
+);
+
+/// Prints a critical-level message (level 2).
+///
+/// Use this level for critical conditions.
+///
+/// Equivalent to the kernel's [`pr_crit`] macro.
+///
+/// Mimics the interface of [`std::print!`]. See [`core::fmt`] and
+/// [`alloc::format!`] for information about the formatting syntax.
+///
+/// [`pr_crit`]: https://www.kernel.org/doc/html/latest/core-api/printk-basics.html#c.pr_crit
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+///
+/// # Examples
+///
+/// ```
+/// pr_crit!("hello {}\n", "there");
+/// ```
+#[macro_export]
+macro_rules! pr_crit (
+ ($($arg:tt)*) => (
+ $crate::print_macro!($crate::print::format_strings::CRIT, false, $($arg)*)
+ )
+);
+
+/// Prints an error-level message (level 3).
+///
+/// Use this level for error conditions.
+///
+/// Equivalent to the kernel's [`pr_err`] macro.
+///
+/// Mimics the interface of [`std::print!`]. See [`core::fmt`] and
+/// [`alloc::format!`] for information about the formatting syntax.
+///
+/// [`pr_err`]: https://www.kernel.org/doc/html/latest/core-api/printk-basics.html#c.pr_err
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+///
+/// # Examples
+///
+/// ```
+/// pr_err!("hello {}\n", "there");
+/// ```
+#[macro_export]
+macro_rules! pr_err (
+ ($($arg:tt)*) => (
+ $crate::print_macro!($crate::print::format_strings::ERR, false, $($arg)*)
+ )
+);
+
+/// Prints a warning-level message (level 4).
+///
+/// Use this level for warning conditions.
+///
+/// Equivalent to the kernel's [`pr_warn`] macro.
+///
+/// Mimics the interface of [`std::print!`]. See [`core::fmt`] and
+/// [`alloc::format!`] for information about the formatting syntax.
+///
+/// [`pr_warn`]: https://www.kernel.org/doc/html/latest/core-api/printk-basics.html#c.pr_warn
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+///
+/// # Examples
+///
+/// ```
+/// pr_warn!("hello {}\n", "there");
+/// ```
+#[macro_export]
+macro_rules! pr_warn (
+ ($($arg:tt)*) => (
+ $crate::print_macro!($crate::print::format_strings::WARNING, false, $($arg)*)
+ )
+);
+
+/// Prints a notice-level message (level 5).
+///
+/// Use this level for normal but significant conditions.
+///
+/// Equivalent to the kernel's [`pr_notice`] macro.
+///
+/// Mimics the interface of [`std::print!`]. See [`core::fmt`] and
+/// [`alloc::format!`] for information about the formatting syntax.
+///
+/// [`pr_notice`]: https://www.kernel.org/doc/html/latest/core-api/printk-basics.html#c.pr_notice
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+///
+/// # Examples
+///
+/// ```
+/// pr_notice!("hello {}\n", "there");
+/// ```
+#[macro_export]
+macro_rules! pr_notice (
+ ($($arg:tt)*) => (
+ $crate::print_macro!($crate::print::format_strings::NOTICE, false, $($arg)*)
+ )
+);
+
+/// Prints an info-level message (level 6).
+///
+/// Use this level for informational messages.
+///
+/// Equivalent to the kernel's [`pr_info`] macro.
+///
+/// Mimics the interface of [`std::print!`]. See [`core::fmt`] and
+/// [`alloc::format!`] for information about the formatting syntax.
+///
+/// [`pr_info`]: https://www.kernel.org/doc/html/latest/core-api/printk-basics.html#c.pr_info
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+///
+/// # Examples
+///
+/// ```
+/// pr_info!("hello {}\n", "there");
+/// ```
+#[macro_export]
+#[doc(alias = "print")]
+macro_rules! pr_info (
+ ($($arg:tt)*) => (
+ $crate::print_macro!($crate::print::format_strings::INFO, false, $($arg)*)
+ )
+);
+
+/// Prints a debug-level message (level 7).
+///
+/// Use this level for debug messages.
+///
+/// Equivalent to the kernel's [`pr_debug`] macro, except that it doesn't support dynamic debug
+/// yet.
+///
+/// Mimics the interface of [`std::print!`]. See [`core::fmt`] and
+/// [`alloc::format!`] for information about the formatting syntax.
+///
+/// [`pr_debug`]: https://www.kernel.org/doc/html/latest/core-api/printk-basics.html#c.pr_debug
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+///
+/// # Examples
+///
+/// ```
+/// pr_debug!("hello {}\n", "there");
+/// ```
+#[macro_export]
+#[doc(alias = "print")]
+macro_rules! pr_debug (
+ ($($arg:tt)*) => (
+ if cfg!(debug_assertions) {
+ $crate::print_macro!($crate::print::format_strings::DEBUG, false, $($arg)*)
+ }
+ )
+);
+
+/// Continues a previous log message in the same line.
+///
+/// Use only when continuing a previous `pr_*!` macro (e.g. [`pr_info!`]).
+///
+/// Equivalent to the kernel's [`pr_cont`] macro.
+///
+/// Mimics the interface of [`std::print!`]. See [`core::fmt`] and
+/// [`alloc::format!`] for information about the formatting syntax.
+///
+/// [`pr_cont`]: https://www.kernel.org/doc/html/latest/core-api/printk-basics.html#c.pr_cont
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::pr_cont;
+/// pr_info!("hello");
+/// pr_cont!(" {}\n", "there");
+/// ```
+#[macro_export]
+macro_rules! pr_cont (
+ ($($arg:tt)*) => (
+ $crate::print_macro!($crate::print::format_strings::CONT, true, $($arg)*)
+ )
+);
diff --git a/rust/kernel/random.rs b/rust/kernel/random.rs
new file mode 100644
index 000000000000..c30dd675d6a0
--- /dev/null
+++ b/rust/kernel/random.rs
@@ -0,0 +1,42 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Random numbers.
+//!
+//! C header: [`include/linux/random.h`](../../../../include/linux/random.h)
+
+use crate::{bindings, error::code::*, Error, Result};
+
+/// Fills a byte slice with random bytes generated from the kernel's CSPRNG.
+///
+/// Ensures that the CSPRNG has been seeded before generating any random bytes,
+/// and will block until it is ready.
+pub fn getrandom(dest: &mut [u8]) -> Result {
+ let res = unsafe { bindings::wait_for_random_bytes() };
+ if res != 0 {
+ return Err(Error::from_kernel_errno(res));
+ }
+
+ unsafe {
+ bindings::get_random_bytes(dest.as_mut_ptr() as *mut core::ffi::c_void, dest.len());
+ }
+ Ok(())
+}
+
+/// Fills a byte slice with random bytes generated from the kernel's CSPRNG.
+///
+/// If the CSPRNG is not yet seeded, returns an `Err(EAGAIN)` immediately.
+pub fn getrandom_nonblock(dest: &mut [u8]) -> Result {
+ if !unsafe { bindings::rng_is_initialized() } {
+ return Err(EAGAIN);
+ }
+ getrandom(dest)
+}
+
+/// Contributes the contents of a byte slice to the kernel's entropy pool.
+///
+/// Does *not* credit the kernel entropy counter though.
+pub fn add_randomness(data: &[u8]) {
+ unsafe {
+ bindings::add_device_randomness(data.as_ptr() as *const core::ffi::c_void, data.len());
+ }
+}
diff --git a/rust/kernel/raw_list.rs b/rust/kernel/raw_list.rs
new file mode 100644
index 000000000000..267b21709c29
--- /dev/null
+++ b/rust/kernel/raw_list.rs
@@ -0,0 +1,361 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Raw lists.
+//!
+//! TODO: This module is a work in progress.
+
+use core::{
+ cell::UnsafeCell,
+ ptr,
+ ptr::NonNull,
+ sync::atomic::{AtomicBool, Ordering},
+};
+
+/// A descriptor of list elements.
+///
+/// It describes the type of list elements and provides a function to determine how to get the
+/// links to be used on a list.
+///
+/// A type that may be in multiple lists simultaneously needs to implement one of these for each
+/// simultaneous list.
+pub trait GetLinks {
+ /// The type of the entries in the list.
+ type EntryType: ?Sized;
+
+ /// Returns the links to be used when linking an entry within a list.
+ fn get_links(data: &Self::EntryType) -> &Links<Self::EntryType>;
+}
+
+/// The links used to link an object on a linked list.
+///
+/// Instances of this type are usually embedded in structures and returned in calls to
+/// [`GetLinks::get_links`].
+pub struct Links<T: ?Sized> {
+ inserted: AtomicBool,
+ entry: UnsafeCell<ListEntry<T>>,
+}
+
+impl<T: ?Sized> Links<T> {
+ /// Constructs a new [`Links`] instance that isn't inserted on any lists yet.
+ pub fn new() -> Self {
+ Self {
+ inserted: AtomicBool::new(false),
+ entry: UnsafeCell::new(ListEntry::new()),
+ }
+ }
+
+ fn acquire_for_insertion(&self) -> bool {
+ self.inserted
+ .compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed)
+ .is_ok()
+ }
+
+ fn release_after_removal(&self) {
+ self.inserted.store(false, Ordering::Release);
+ }
+}
+
+impl<T: ?Sized> Default for Links<T> {
+ fn default() -> Self {
+ Self::new()
+ }
+}
+
+struct ListEntry<T: ?Sized> {
+ next: Option<NonNull<T>>,
+ prev: Option<NonNull<T>>,
+}
+
+impl<T: ?Sized> ListEntry<T> {
+ fn new() -> Self {
+ Self {
+ next: None,
+ prev: None,
+ }
+ }
+}
+
+/// A linked list.
+///
+/// # Invariants
+///
+/// The links of objects added to a list are owned by the list.
+pub(crate) struct RawList<G: GetLinks> {
+ head: Option<NonNull<G::EntryType>>,
+}
+
+impl<G: GetLinks> RawList<G> {
+ pub(crate) fn new() -> Self {
+ Self { head: None }
+ }
+
+ pub(crate) fn is_empty(&self) -> bool {
+ self.head.is_none()
+ }
+
+ fn insert_after_priv(
+ &mut self,
+ existing: &G::EntryType,
+ new_entry: &mut ListEntry<G::EntryType>,
+ new_ptr: Option<NonNull<G::EntryType>>,
+ ) {
+ {
+ // SAFETY: It's safe to get the previous entry of `existing` because the list cannot
+ // change.
+ let existing_links = unsafe { &mut *G::get_links(existing).entry.get() };
+ new_entry.next = existing_links.next;
+ existing_links.next = new_ptr;
+ }
+
+ new_entry.prev = Some(NonNull::from(existing));
+
+ // SAFETY: It's safe to get the next entry of `existing` because the list cannot change.
+ let next_links =
+ unsafe { &mut *G::get_links(new_entry.next.unwrap().as_ref()).entry.get() };
+ next_links.prev = new_ptr;
+ }
+
+ /// Inserts the given object after `existing`.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that `existing` points to a valid entry that is on the list.
+ pub(crate) unsafe fn insert_after(
+ &mut self,
+ existing: &G::EntryType,
+ new: &G::EntryType,
+ ) -> bool {
+ let links = G::get_links(new);
+ if !links.acquire_for_insertion() {
+ // Nothing to do if already inserted.
+ return false;
+ }
+
+ // SAFETY: The links are now owned by the list, so it is safe to get a mutable reference.
+ let new_entry = unsafe { &mut *links.entry.get() };
+ self.insert_after_priv(existing, new_entry, Some(NonNull::from(new)));
+ true
+ }
+
+ fn push_back_internal(&mut self, new: &G::EntryType) -> bool {
+ let links = G::get_links(new);
+ if !links.acquire_for_insertion() {
+ // Nothing to do if already inserted.
+ return false;
+ }
+
+ // SAFETY: The links are now owned by the list, so it is safe to get a mutable reference.
+ let new_entry = unsafe { &mut *links.entry.get() };
+ let new_ptr = Some(NonNull::from(new));
+ match self.back() {
+ // SAFETY: `back` is valid as the list cannot change.
+ Some(back) => self.insert_after_priv(unsafe { back.as_ref() }, new_entry, new_ptr),
+ None => {
+ self.head = new_ptr;
+ new_entry.next = new_ptr;
+ new_entry.prev = new_ptr;
+ }
+ }
+ true
+ }
+
+ pub(crate) unsafe fn push_back(&mut self, new: &G::EntryType) -> bool {
+ self.push_back_internal(new)
+ }
+
+ fn remove_internal(&mut self, data: &G::EntryType) -> bool {
+ let links = G::get_links(data);
+
+ // SAFETY: The links are now owned by the list, so it is safe to get a mutable reference.
+ let entry = unsafe { &mut *links.entry.get() };
+ let next = if let Some(next) = entry.next {
+ next
+ } else {
+ // Nothing to do if the entry is not on the list.
+ return false;
+ };
+
+ if ptr::eq(data, next.as_ptr()) {
+ // We're removing the only element.
+ self.head = None
+ } else {
+ // Update the head if we're removing it.
+ if let Some(raw_head) = self.head {
+ if ptr::eq(data, raw_head.as_ptr()) {
+ self.head = Some(next);
+ }
+ }
+
+ // SAFETY: It's safe to get the previous entry because the list cannot change.
+ unsafe { &mut *G::get_links(entry.prev.unwrap().as_ref()).entry.get() }.next =
+ entry.next;
+
+ // SAFETY: It's safe to get the next entry because the list cannot change.
+ unsafe { &mut *G::get_links(next.as_ref()).entry.get() }.prev = entry.prev;
+ }
+
+ // Reset the links of the element we're removing so that we know it's not on any list.
+ entry.next = None;
+ entry.prev = None;
+ links.release_after_removal();
+ true
+ }
+
+ /// Removes the given entry.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that `data` is either on this list or in no list. It being on another
+ /// list leads to memory unsafety.
+ pub(crate) unsafe fn remove(&mut self, data: &G::EntryType) -> bool {
+ self.remove_internal(data)
+ }
+
+ fn pop_front_internal(&mut self) -> Option<NonNull<G::EntryType>> {
+ let head = self.head?;
+ // SAFETY: The head is on the list as we just got it from there and it cannot change.
+ unsafe { self.remove(head.as_ref()) };
+ Some(head)
+ }
+
+ pub(crate) fn pop_front(&mut self) -> Option<NonNull<G::EntryType>> {
+ self.pop_front_internal()
+ }
+
+ pub(crate) fn front(&self) -> Option<NonNull<G::EntryType>> {
+ self.head
+ }
+
+ pub(crate) fn back(&self) -> Option<NonNull<G::EntryType>> {
+ // SAFETY: The links of head are owned by the list, so it is safe to get a reference.
+ unsafe { &*G::get_links(self.head?.as_ref()).entry.get() }.prev
+ }
+
+ pub(crate) fn cursor_front(&self) -> Cursor<'_, G> {
+ Cursor::new(self, self.front())
+ }
+
+ pub(crate) fn cursor_front_mut(&mut self) -> CursorMut<'_, G> {
+ CursorMut::new(self, self.front())
+ }
+}
+
+struct CommonCursor<G: GetLinks> {
+ cur: Option<NonNull<G::EntryType>>,
+}
+
+impl<G: GetLinks> CommonCursor<G> {
+ fn new(cur: Option<NonNull<G::EntryType>>) -> Self {
+ Self { cur }
+ }
+
+ fn move_next(&mut self, list: &RawList<G>) {
+ match self.cur.take() {
+ None => self.cur = list.head,
+ Some(cur) => {
+ if let Some(head) = list.head {
+ // SAFETY: We have a shared ref to the linked list, so the links can't change.
+ let links = unsafe { &*G::get_links(cur.as_ref()).entry.get() };
+ if links.next.unwrap() != head {
+ self.cur = links.next;
+ }
+ }
+ }
+ }
+ }
+
+ fn move_prev(&mut self, list: &RawList<G>) {
+ match list.head {
+ None => self.cur = None,
+ Some(head) => {
+ let next = match self.cur.take() {
+ None => head,
+ Some(cur) => {
+ if cur == head {
+ return;
+ }
+ cur
+ }
+ };
+ // SAFETY: There's a shared ref to the list, so the links can't change.
+ let links = unsafe { &*G::get_links(next.as_ref()).entry.get() };
+ self.cur = links.prev;
+ }
+ }
+ }
+}
+
+/// A list cursor that allows traversing a linked list and inspecting elements.
+pub struct Cursor<'a, G: GetLinks> {
+ cursor: CommonCursor<G>,
+ list: &'a RawList<G>,
+}
+
+impl<'a, G: GetLinks> Cursor<'a, G> {
+ fn new(list: &'a RawList<G>, cur: Option<NonNull<G::EntryType>>) -> Self {
+ Self {
+ list,
+ cursor: CommonCursor::new(cur),
+ }
+ }
+
+ /// Returns the element the cursor is currently positioned on.
+ pub fn current(&self) -> Option<&'a G::EntryType> {
+ let cur = self.cursor.cur?;
+ // SAFETY: Objects must be kept alive while on the list.
+ Some(unsafe { &*cur.as_ptr() })
+ }
+
+ /// Moves the cursor to the next element.
+ pub fn move_next(&mut self) {
+ self.cursor.move_next(self.list);
+ }
+}
+
+pub(crate) struct CursorMut<'a, G: GetLinks> {
+ cursor: CommonCursor<G>,
+ list: &'a mut RawList<G>,
+}
+
+impl<'a, G: GetLinks> CursorMut<'a, G> {
+ fn new(list: &'a mut RawList<G>, cur: Option<NonNull<G::EntryType>>) -> Self {
+ Self {
+ list,
+ cursor: CommonCursor::new(cur),
+ }
+ }
+
+ pub(crate) fn current(&mut self) -> Option<&mut G::EntryType> {
+ let cur = self.cursor.cur?;
+ // SAFETY: Objects must be kept alive while on the list.
+ Some(unsafe { &mut *cur.as_ptr() })
+ }
+
+ /// Removes the entry the cursor is pointing to and advances the cursor to the next entry. It
+ /// returns a raw pointer to the removed element (if one is removed).
+ pub(crate) fn remove_current(&mut self) -> Option<NonNull<G::EntryType>> {
+ let entry = self.cursor.cur?;
+ self.cursor.move_next(self.list);
+ // SAFETY: The entry is on the list as we just got it from there and it cannot change.
+ unsafe { self.list.remove(entry.as_ref()) };
+ Some(entry)
+ }
+
+ pub(crate) fn peek_next(&mut self) -> Option<&mut G::EntryType> {
+ let mut new = CommonCursor::new(self.cursor.cur);
+ new.move_next(self.list);
+ // SAFETY: Objects must be kept alive while on the list.
+ Some(unsafe { &mut *new.cur?.as_ptr() })
+ }
+
+ pub(crate) fn peek_prev(&mut self) -> Option<&mut G::EntryType> {
+ let mut new = CommonCursor::new(self.cursor.cur);
+ new.move_prev(self.list);
+ // SAFETY: Objects must be kept alive while on the list.
+ Some(unsafe { &mut *new.cur?.as_ptr() })
+ }
+
+ pub(crate) fn move_next(&mut self) {
+ self.cursor.move_next(self.list);
+ }
+}
diff --git a/rust/kernel/rbtree.rs b/rust/kernel/rbtree.rs
new file mode 100644
index 000000000000..a30739cc6839
--- /dev/null
+++ b/rust/kernel/rbtree.rs
@@ -0,0 +1,563 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Red-black trees.
+//!
+//! C header: [`include/linux/rbtree.h`](../../../../include/linux/rbtree.h)
+//!
+//! Reference: <https://www.kernel.org/doc/html/latest/core-api/rbtree.html>
+
+use crate::{bindings, Result};
+use alloc::boxed::Box;
+use core::{
+ cmp::{Ord, Ordering},
+ iter::{IntoIterator, Iterator},
+ marker::PhantomData,
+ mem::MaybeUninit,
+ ptr::{addr_of_mut, NonNull},
+};
+
+struct Node<K, V> {
+ links: bindings::rb_node,
+ key: K,
+ value: V,
+}
+
+/// A red-black tree with owned nodes.
+///
+/// It is backed by the kernel C red-black trees.
+///
+/// # Invariants
+///
+/// Non-null parent/children pointers stored in instances of the `rb_node` C struct are always
+/// valid, and pointing to a field of our internal representation of a node.
+///
+/// # Examples
+///
+/// In the example below we do several operations on a tree. We note that insertions may fail if
+/// the system is out of memory.
+///
+/// ```
+/// use kernel::rbtree::RBTree;
+///
+/// # fn test() -> Result {
+/// // Create a new tree.
+/// let mut tree = RBTree::new();
+///
+/// // Insert three elements.
+/// tree.try_insert(20, 200)?;
+/// tree.try_insert(10, 100)?;
+/// tree.try_insert(30, 300)?;
+///
+/// // Check the nodes we just inserted.
+/// {
+/// let mut iter = tree.iter();
+/// assert_eq!(iter.next().unwrap(), (&10, &100));
+/// assert_eq!(iter.next().unwrap(), (&20, &200));
+/// assert_eq!(iter.next().unwrap(), (&30, &300));
+/// assert!(iter.next().is_none());
+/// }
+///
+/// // Print all elements.
+/// for (key, value) in &tree {
+/// pr_info!("{} = {}\n", key, value);
+/// }
+///
+/// // Replace one of the elements.
+/// tree.try_insert(10, 1000)?;
+///
+/// // Check that the tree reflects the replacement.
+/// {
+/// let mut iter = tree.iter();
+/// assert_eq!(iter.next().unwrap(), (&10, &1000));
+/// assert_eq!(iter.next().unwrap(), (&20, &200));
+/// assert_eq!(iter.next().unwrap(), (&30, &300));
+/// assert!(iter.next().is_none());
+/// }
+///
+/// // Change the value of one of the elements.
+/// *tree.get_mut(&30).unwrap() = 3000;
+///
+/// // Check that the tree reflects the update.
+/// {
+/// let mut iter = tree.iter();
+/// assert_eq!(iter.next().unwrap(), (&10, &1000));
+/// assert_eq!(iter.next().unwrap(), (&20, &200));
+/// assert_eq!(iter.next().unwrap(), (&30, &3000));
+/// assert!(iter.next().is_none());
+/// }
+///
+/// // Remove an element.
+/// tree.remove(&10);
+///
+/// // Check that the tree reflects the removal.
+/// {
+/// let mut iter = tree.iter();
+/// assert_eq!(iter.next().unwrap(), (&20, &200));
+/// assert_eq!(iter.next().unwrap(), (&30, &3000));
+/// assert!(iter.next().is_none());
+/// }
+///
+/// // Update all values.
+/// for value in tree.values_mut() {
+/// *value *= 10;
+/// }
+///
+/// // Check that the tree reflects the changes to values.
+/// {
+/// let mut iter = tree.iter();
+/// assert_eq!(iter.next().unwrap(), (&20, &2000));
+/// assert_eq!(iter.next().unwrap(), (&30, &30000));
+/// assert!(iter.next().is_none());
+/// }
+///
+/// # Ok(())
+/// # }
+/// #
+/// # assert_eq!(test(), Ok(()));
+/// ```
+///
+/// In the example below, we first allocate a node, acquire a spinlock, then insert the node into
+/// the tree. This is useful when the insertion context does not allow sleeping, for example, when
+/// holding a spinlock.
+///
+/// ```
+/// use kernel::{rbtree::RBTree, sync::SpinLock};
+///
+/// fn insert_test(tree: &SpinLock<RBTree<u32, u32>>) -> Result {
+/// // Pre-allocate node. This may fail (as it allocates memory).
+/// let node = RBTree::try_allocate_node(10, 100)?;
+///
+/// // Insert node while holding the lock. It is guaranteed to succeed with no allocation
+/// // attempts.
+/// let mut guard = tree.lock();
+/// guard.insert(node);
+/// Ok(())
+/// }
+/// ```
+///
+/// In the example below, we reuse an existing node allocation from an element we removed.
+///
+/// ```
+/// use kernel::rbtree::RBTree;
+///
+/// # fn test() -> Result {
+/// // Create a new tree.
+/// let mut tree = RBTree::new();
+///
+/// // Insert three elements.
+/// tree.try_insert(20, 200)?;
+/// tree.try_insert(10, 100)?;
+/// tree.try_insert(30, 300)?;
+///
+/// // Check the nodes we just inserted.
+/// {
+/// let mut iter = tree.iter();
+/// assert_eq!(iter.next().unwrap(), (&10, &100));
+/// assert_eq!(iter.next().unwrap(), (&20, &200));
+/// assert_eq!(iter.next().unwrap(), (&30, &300));
+/// assert!(iter.next().is_none());
+/// }
+///
+/// // Remove a node, getting back ownership of it.
+/// let existing = tree.remove_node(&30).unwrap();
+///
+/// // Check that the tree reflects the removal.
+/// {
+/// let mut iter = tree.iter();
+/// assert_eq!(iter.next().unwrap(), (&10, &100));
+/// assert_eq!(iter.next().unwrap(), (&20, &200));
+/// assert!(iter.next().is_none());
+/// }
+///
+/// // Turn the node into a reservation so that we can reuse it with a different key/value.
+/// let reservation = existing.into_reservation();
+///
+/// // Insert a new node into the tree, reusing the previous allocation. This is guaranteed to
+/// // succeed (no memory allocations).
+/// tree.insert(reservation.into_node(15, 150));
+///
+/// // Check that the tree reflect the new insertion.
+/// {
+/// let mut iter = tree.iter();
+/// assert_eq!(iter.next().unwrap(), (&10, &100));
+/// assert_eq!(iter.next().unwrap(), (&15, &150));
+/// assert_eq!(iter.next().unwrap(), (&20, &200));
+/// assert!(iter.next().is_none());
+/// }
+///
+/// # Ok(())
+/// # }
+/// #
+/// # assert_eq!(test(), Ok(()));
+/// ```
+pub struct RBTree<K, V> {
+ root: bindings::rb_root,
+ _p: PhantomData<Node<K, V>>,
+}
+
+impl<K, V> RBTree<K, V> {
+ /// Creates a new and empty tree.
+ pub fn new() -> Self {
+ Self {
+ // INVARIANT: There are no nodes in the tree, so the invariant holds vacuously.
+ root: bindings::rb_root::default(),
+ _p: PhantomData,
+ }
+ }
+
+ /// Tries to insert a new value into the tree.
+ ///
+ /// It overwrites a node if one already exists with the same key and returns it (containing the
+ /// key/value pair). Returns [`None`] if a node with the same key didn't already exist.
+ ///
+ /// Returns an error if it cannot allocate memory for the new node.
+ pub fn try_insert(&mut self, key: K, value: V) -> Result<Option<RBTreeNode<K, V>>>
+ where
+ K: Ord,
+ {
+ Ok(self.insert(Self::try_allocate_node(key, value)?))
+ }
+
+ /// Allocates memory for a node to be eventually initialised and inserted into the tree via a
+ /// call to [`RBTree::insert`].
+ pub fn try_reserve_node() -> Result<RBTreeNodeReservation<K, V>> {
+ Ok(RBTreeNodeReservation {
+ node: Box::try_new(MaybeUninit::uninit())?,
+ })
+ }
+
+ /// Allocates and initialiases a node that can be inserted into the tree via
+ /// [`RBTree::insert`].
+ pub fn try_allocate_node(key: K, value: V) -> Result<RBTreeNode<K, V>> {
+ Ok(Self::try_reserve_node()?.into_node(key, value))
+ }
+
+ /// Inserts a new node into the tree.
+ ///
+ /// It overwrites a node if one already exists with the same key and returns it (containing the
+ /// key/value pair). Returns [`None`] if a node with the same key didn't already exist.
+ ///
+ /// This function always succeeds.
+ pub fn insert(&mut self, node: RBTreeNode<K, V>) -> Option<RBTreeNode<K, V>>
+ where
+ K: Ord,
+ {
+ let RBTreeNode { node } = node;
+ let node = Box::into_raw(node);
+ // SAFETY: `node` is valid at least until we call `Box::from_raw`, which only happens when
+ // the node is removed or replaced.
+ let node_links = unsafe { addr_of_mut!((*node).links) };
+ let mut new_link: &mut *mut bindings::rb_node = &mut self.root.rb_node;
+ let mut parent = core::ptr::null_mut();
+ while !new_link.is_null() {
+ let this = crate::container_of!(*new_link, Node<K, V>, links);
+
+ parent = *new_link;
+
+ // SAFETY: `this` is a non-null node so it is valid by the type invariants. `node` is
+ // valid until the node is removed.
+ match unsafe { (*node).key.cmp(&(*this).key) } {
+ // SAFETY: `parent` is a non-null node so it is valid by the type invariants.
+ Ordering::Less => new_link = unsafe { &mut (*parent).rb_left },
+ // SAFETY: `parent` is a non-null node so it is valid by the type invariants.
+ Ordering::Greater => new_link = unsafe { &mut (*parent).rb_right },
+ Ordering::Equal => {
+ // INVARIANT: We are replacing an existing node with a new one, which is valid.
+ // It remains valid because we "forgot" it with `Box::into_raw`.
+ // SAFETY: All pointers are non-null and valid (parent, despite the name, really
+ // is the node we're replacing).
+ unsafe { bindings::rb_replace_node(parent, node_links, &mut self.root) };
+
+ // INVARIANT: The node is being returned and the caller may free it, however,
+ // it was removed from the tree. So the invariants still hold.
+ return Some(RBTreeNode {
+ // SAFETY: `this` was a node in the tree, so it is valid.
+ node: unsafe { Box::from_raw(this as _) },
+ });
+ }
+ }
+ }
+
+ // INVARIANT: We are linking in a new node, which is valid. It remains valid because we
+ // "forgot" it with `Box::into_raw`.
+ // SAFETY: All pointers are non-null and valid (`*new_link` is null, but `new_link` is a
+ // mutable reference).
+ unsafe { bindings::rb_link_node(node_links, parent, new_link) };
+
+ // SAFETY: All pointers are valid. `node` has just been inserted into the tree.
+ unsafe { bindings::rb_insert_color(node_links, &mut self.root) };
+ None
+ }
+
+ /// Returns a node with the given key, if one exists.
+ fn find(&self, key: &K) -> Option<NonNull<Node<K, V>>>
+ where
+ K: Ord,
+ {
+ let mut node = self.root.rb_node;
+ while !node.is_null() {
+ let this = crate::container_of!(node, Node<K, V>, links);
+ // SAFETY: `this` is a non-null node so it is valid by the type invariants.
+ node = match key.cmp(unsafe { &(*this).key }) {
+ // SAFETY: `node` is a non-null node so it is valid by the type invariants.
+ Ordering::Less => unsafe { (*node).rb_left },
+ // SAFETY: `node` is a non-null node so it is valid by the type invariants.
+ Ordering::Greater => unsafe { (*node).rb_right },
+ Ordering::Equal => return NonNull::new(this as _),
+ }
+ }
+ None
+ }
+
+ /// Returns a reference to the value corresponding to the key.
+ pub fn get(&self, key: &K) -> Option<&V>
+ where
+ K: Ord,
+ {
+ // SAFETY: The `find` return value is a node in the tree, so it is valid.
+ self.find(key).map(|node| unsafe { &node.as_ref().value })
+ }
+
+ /// Returns a mutable reference to the value corresponding to the key.
+ pub fn get_mut(&mut self, key: &K) -> Option<&mut V>
+ where
+ K: Ord,
+ {
+ // SAFETY: The `find` return value is a node in the tree, so it is valid.
+ self.find(key)
+ .map(|mut node| unsafe { &mut node.as_mut().value })
+ }
+
+ /// Removes the node with the given key from the tree.
+ ///
+ /// It returns the node that was removed if one exists, or [`None`] otherwise.
+ pub fn remove_node(&mut self, key: &K) -> Option<RBTreeNode<K, V>>
+ where
+ K: Ord,
+ {
+ let mut node = self.find(key)?;
+
+ // SAFETY: The `find` return value is a node in the tree, so it is valid.
+ unsafe { bindings::rb_erase(&mut node.as_mut().links, &mut self.root) };
+
+ // INVARIANT: The node is being returned and the caller may free it, however, it was
+ // removed from the tree. So the invariants still hold.
+ Some(RBTreeNode {
+ // SAFETY: The `find` return value was a node in the tree, so it is valid.
+ node: unsafe { Box::from_raw(node.as_ptr()) },
+ })
+ }
+
+ /// Removes the node with the given key from the tree.
+ ///
+ /// It returns the value that was removed if one exists, or [`None`] otherwise.
+ pub fn remove(&mut self, key: &K) -> Option<V>
+ where
+ K: Ord,
+ {
+ let node = self.remove_node(key)?;
+ let RBTreeNode { node } = node;
+ let Node {
+ links: _,
+ key: _,
+ value,
+ } = *node;
+ Some(value)
+ }
+
+ /// Returns an iterator over the tree nodes, sorted by key.
+ pub fn iter(&self) -> RBTreeIterator<'_, K, V> {
+ RBTreeIterator {
+ _tree: PhantomData,
+ // SAFETY: `root` is valid as it's embedded in `self` and we have a valid `self`.
+ next: unsafe { bindings::rb_first(&self.root) },
+ }
+ }
+
+ /// Returns a mutable iterator over the tree nodes, sorted by key.
+ pub fn iter_mut(&mut self) -> RBTreeIteratorMut<'_, K, V> {
+ RBTreeIteratorMut {
+ _tree: PhantomData,
+ // SAFETY: `root` is valid as it's embedded in `self` and we have a valid `self`.
+ next: unsafe { bindings::rb_first(&self.root) },
+ }
+ }
+
+ /// Returns an iterator over the keys of the nodes in the tree, in sorted order.
+ pub fn keys(&self) -> impl Iterator<Item = &'_ K> {
+ self.iter().map(|(k, _)| k)
+ }
+
+ /// Returns an iterator over the values of the nodes in the tree, sorted by key.
+ pub fn values(&self) -> impl Iterator<Item = &'_ V> {
+ self.iter().map(|(_, v)| v)
+ }
+
+ /// Returns a mutable iterator over the values of the nodes in the tree, sorted by key.
+ pub fn values_mut(&mut self) -> impl Iterator<Item = &'_ mut V> {
+ self.iter_mut().map(|(_, v)| v)
+ }
+}
+
+impl<K, V> Default for RBTree<K, V> {
+ fn default() -> Self {
+ Self::new()
+ }
+}
+
+impl<K, V> Drop for RBTree<K, V> {
+ fn drop(&mut self) {
+ // SAFETY: `root` is valid as it's embedded in `self` and we have a valid `self`.
+ let mut next = unsafe { bindings::rb_first_postorder(&self.root) };
+
+ // INVARIANT: The loop invariant is that all tree nodes from `next` in postorder are valid.
+ while !next.is_null() {
+ let this = crate::container_of!(next, Node<K, V>, links);
+
+ // Find out what the next node is before disposing of the current one.
+ // SAFETY: `next` and all nodes in postorder are still valid.
+ next = unsafe { bindings::rb_next_postorder(next) };
+
+ // INVARIANT: This is the destructor, so we break the type invariant during clean-up,
+ // but it is not observable. The loop invariant is still maintained.
+ // SAFETY: `this` is valid per the loop invariant.
+ unsafe { Box::from_raw(this as *mut Node<K, V>) };
+ }
+ }
+}
+
+impl<'a, K, V> IntoIterator for &'a RBTree<K, V> {
+ type Item = (&'a K, &'a V);
+ type IntoIter = RBTreeIterator<'a, K, V>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ self.iter()
+ }
+}
+
+/// An iterator over the nodes of a [`RBTree`].
+///
+/// Instances are created by calling [`RBTree::iter`].
+pub struct RBTreeIterator<'a, K, V> {
+ _tree: PhantomData<&'a RBTree<K, V>>,
+ next: *mut bindings::rb_node,
+}
+
+impl<'a, K, V> Iterator for RBTreeIterator<'a, K, V> {
+ type Item = (&'a K, &'a V);
+
+ fn next(&mut self) -> Option<Self::Item> {
+ if self.next.is_null() {
+ return None;
+ }
+
+ let cur = crate::container_of!(self.next, Node<K, V>, links);
+
+ // SAFETY: The reference to the tree used to create the iterator outlives the iterator, so
+ // the tree cannot change. By the tree invariant, all nodes are valid.
+ self.next = unsafe { bindings::rb_next(self.next) };
+
+ // SAFETY: By the same reasoning above, it is safe to dereference the node. Additionally,
+ // it is ok to return a reference to members because the iterator must outlive it.
+ Some(unsafe { (&(*cur).key, &(*cur).value) })
+ }
+}
+
+impl<'a, K, V> IntoIterator for &'a mut RBTree<K, V> {
+ type Item = (&'a K, &'a mut V);
+ type IntoIter = RBTreeIteratorMut<'a, K, V>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ self.iter_mut()
+ }
+}
+
+/// A mutable iterator over the nodes of a [`RBTree`].
+///
+/// Instances are created by calling [`RBTree::iter_mut`].
+pub struct RBTreeIteratorMut<'a, K, V> {
+ _tree: PhantomData<&'a RBTree<K, V>>,
+ next: *mut bindings::rb_node,
+}
+
+impl<'a, K, V> Iterator for RBTreeIteratorMut<'a, K, V> {
+ type Item = (&'a K, &'a mut V);
+
+ fn next(&mut self) -> Option<Self::Item> {
+ if self.next.is_null() {
+ return None;
+ }
+
+ let cur = crate::container_of!(self.next, Node<K, V>, links) as *mut Node<K, V>;
+
+ // SAFETY: The reference to the tree used to create the iterator outlives the iterator, so
+ // the tree cannot change (except for the value of previous nodes, but those don't affect
+ // the iteration process). By the tree invariant, all nodes are valid.
+ self.next = unsafe { bindings::rb_next(self.next) };
+
+ // SAFETY: By the same reasoning above, it is safe to dereference the node. Additionally,
+ // it is ok to return a reference to members because the iterator must outlive it.
+ Some(unsafe { (&(*cur).key, &mut (*cur).value) })
+ }
+}
+
+/// A memory reservation for a red-black tree node.
+///
+/// It contains the memory needed to hold a node that can be inserted into a red-black tree. One
+/// can be obtained by directly allocating it ([`RBTree::try_reserve_node`]) or by "uninitialising"
+/// ([`RBTreeNode::into_reservation`]) an actual node (usually returned by some operation like
+/// removal from a tree).
+pub struct RBTreeNodeReservation<K, V> {
+ node: Box<MaybeUninit<Node<K, V>>>,
+}
+
+impl<K, V> RBTreeNodeReservation<K, V> {
+ /// Initialises a node reservation.
+ ///
+ /// It then becomes an [`RBTreeNode`] that can be inserted into a tree.
+ pub fn into_node(mut self, key: K, value: V) -> RBTreeNode<K, V> {
+ let node_ptr = self.node.as_mut_ptr();
+ // SAFETY: `node_ptr` is valid, and so are its fields.
+ unsafe { addr_of_mut!((*node_ptr).links).write(bindings::rb_node::default()) };
+ // SAFETY: `node_ptr` is valid, and so are its fields.
+ unsafe { addr_of_mut!((*node_ptr).key).write(key) };
+ // SAFETY: `node_ptr` is valid, and so are its fields.
+ unsafe { addr_of_mut!((*node_ptr).value).write(value) };
+ let raw = Box::into_raw(self.node);
+ RBTreeNode {
+ // SAFETY: The pointer came from a `MaybeUninit<Node>` whose fields have all been
+ // initialised. Additionally, it has the same layout as `Node`.
+ node: unsafe { Box::from_raw(raw as _) },
+ }
+ }
+}
+
+/// A red-black tree node.
+///
+/// The node is fully initialised (with key and value) and can be inserted into a tree without any
+/// extra allocations or failure paths.
+pub struct RBTreeNode<K, V> {
+ node: Box<Node<K, V>>,
+}
+
+impl<K, V> RBTreeNode<K, V> {
+ /// "Uninitialises" a node.
+ ///
+ /// It then becomes a reservation that can be re-initialised into a different node (i.e., with
+ /// a different key and/or value).
+ ///
+ /// The existing key and value are dropped in-place as part of this operation, that is, memory
+ /// may be freed (but only for the key/value; memory for the node itself is kept for reuse).
+ pub fn into_reservation(self) -> RBTreeNodeReservation<K, V> {
+ let raw = Box::into_raw(self.node);
+ let mut ret = RBTreeNodeReservation {
+ // SAFETY: The pointer came from a valid `Node`, which has the same layout as
+ // `MaybeUninit<Node>`.
+ node: unsafe { Box::from_raw(raw as _) },
+ };
+ // SAFETY: Although the type is `MaybeUninit<Node>`, we know it has been initialised
+ // because it came from a `Node`. So it is safe to drop it.
+ unsafe { core::ptr::drop_in_place(ret.node.as_mut_ptr()) };
+ ret
+ }
+}
diff --git a/rust/kernel/revocable.rs b/rust/kernel/revocable.rs
new file mode 100644
index 000000000000..1093c4d26026
--- /dev/null
+++ b/rust/kernel/revocable.rs
@@ -0,0 +1,425 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Revocable objects.
+//!
+//! The [`Revocable`] type wraps other types and allows access to them to be revoked. The existence
+//! of a [`RevocableGuard`] ensures that objects remain valid.
+
+use crate::{bindings, sync::rcu};
+use core::{
+ cell::UnsafeCell,
+ marker::PhantomData,
+ mem::MaybeUninit,
+ ops::Deref,
+ ptr::drop_in_place,
+ sync::atomic::{fence, AtomicBool, AtomicU32, Ordering},
+};
+
+/// An object that can become inaccessible at runtime.
+///
+/// Once access is revoked and all concurrent users complete (i.e., all existing instances of
+/// [`RevocableGuard`] are dropped), the wrapped object is also dropped.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::revocable::Revocable;
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// fn add_two(v: &Revocable<Example>) -> Option<u32> {
+/// let guard = v.try_access()?;
+/// Some(guard.a + guard.b)
+/// }
+///
+/// let v = Revocable::new(Example { a: 10, b: 20 });
+/// assert_eq!(add_two(&v), Some(30));
+/// v.revoke();
+/// assert_eq!(add_two(&v), None);
+/// ```
+///
+/// Sample example as above, but explicitly using the rcu read side lock.
+///
+/// ```
+/// # use kernel::revocable::Revocable;
+/// use kernel::sync::rcu;
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// fn add_two(v: &Revocable<Example>) -> Option<u32> {
+/// let guard = rcu::read_lock();
+/// let e = v.try_access_with_guard(&guard)?;
+/// Some(e.a + e.b)
+/// }
+///
+/// let v = Revocable::new(Example { a: 10, b: 20 });
+/// assert_eq!(add_two(&v), Some(30));
+/// v.revoke();
+/// assert_eq!(add_two(&v), None);
+/// ```
+pub struct Revocable<T> {
+ is_available: AtomicBool,
+ data: MaybeUninit<UnsafeCell<T>>,
+}
+
+// SAFETY: `Revocable` is `Send` if the wrapped object is also `Send`. This is because while the
+// functionality exposed by `Revocable` can be accessed from any thread/CPU, it is possible that
+// this isn't supported by the wrapped object.
+unsafe impl<T: Send> Send for Revocable<T> {}
+
+// SAFETY: `Revocable` is `Sync` if the wrapped object is both `Send` and `Sync`. We require `Send`
+// from the wrapped object as well because of `Revocable::revoke`, which can trigger the `Drop`
+// implementation of the wrapped object from an arbitrary thread.
+unsafe impl<T: Sync + Send> Sync for Revocable<T> {}
+
+impl<T> Revocable<T> {
+ /// Creates a new revocable instance of the given data.
+ pub const fn new(data: T) -> Self {
+ Self {
+ is_available: AtomicBool::new(true),
+ data: MaybeUninit::new(UnsafeCell::new(data)),
+ }
+ }
+
+ /// Tries to access the \[revocable\] wrapped object.
+ ///
+ /// Returns `None` if the object has been revoked and is therefore no longer accessible.
+ ///
+ /// Returns a guard that gives access to the object otherwise; the object is guaranteed to
+ /// remain accessible while the guard is alive. In such cases, callers are not allowed to sleep
+ /// because another CPU may be waiting to complete the revocation of this object.
+ pub fn try_access(&self) -> Option<RevocableGuard<'_, T>> {
+ let guard = rcu::read_lock();
+ if self.is_available.load(Ordering::Relaxed) {
+ // SAFETY: Since `self.is_available` is true, data is initialised and has to remain
+ // valid because the RCU read side lock prevents it from being dropped.
+ Some(unsafe { RevocableGuard::new(self.data.assume_init_ref().get(), guard) })
+ } else {
+ None
+ }
+ }
+
+ /// Tries to access the \[revocable\] wrapped object.
+ ///
+ /// Returns `None` if the object has been revoked and is therefore no longer accessible.
+ ///
+ /// Returns a shared reference to the object otherwise; the object is guaranteed to
+ /// remain accessible while the rcu read side guard is alive. In such cases, callers are not
+ /// allowed to sleep because another CPU may be waiting to complete the revocation of this
+ /// object.
+ pub fn try_access_with_guard<'a>(&'a self, _guard: &'a rcu::Guard) -> Option<&'a T> {
+ if self.is_available.load(Ordering::Relaxed) {
+ // SAFETY: Since `self.is_available` is true, data is initialised and has to remain
+ // valid because the RCU read side lock prevents it from being dropped.
+ Some(unsafe { &*self.data.assume_init_ref().get() })
+ } else {
+ None
+ }
+ }
+
+ /// Revokes access to and drops the wrapped object.
+ ///
+ /// Access to the object is revoked immediately to new callers of [`Revocable::try_access`]. If
+ /// there are concurrent users of the object (i.e., ones that called [`Revocable::try_access`]
+ /// beforehand and still haven't dropped the returned guard), this function waits for the
+ /// concurrent access to complete before dropping the wrapped object.
+ pub fn revoke(&self) {
+ if self
+ .is_available
+ .compare_exchange(true, false, Ordering::Relaxed, Ordering::Relaxed)
+ .is_ok()
+ {
+ // SAFETY: Just an FFI call, there are no further requirements.
+ unsafe { bindings::synchronize_rcu() };
+
+ // SAFETY: We know `self.data` is valid because only one CPU can succeed the
+ // `compare_exchange` above that takes `is_available` from `true` to `false`.
+ unsafe { drop_in_place(self.data.assume_init_ref().get()) };
+ }
+ }
+}
+
+impl<T> Drop for Revocable<T> {
+ fn drop(&mut self) {
+ // Drop only if the data hasn't been revoked yet (in which case it has already been
+ // dropped).
+ if *self.is_available.get_mut() {
+ // SAFETY: We know `self.data` is valid because no other CPU has changed
+ // `is_available` to `false` yet, and no other CPU can do it anymore because this CPU
+ // holds the only reference (mutable) to `self` now.
+ unsafe { drop_in_place(self.data.assume_init_ref().get()) };
+ }
+ }
+}
+
+/// A guard that allows access to a revocable object and keeps it alive.
+///
+/// CPUs may not sleep while holding on to [`RevocableGuard`] because it's in atomic context
+/// holding the RCU read-side lock.
+///
+/// # Invariants
+///
+/// The RCU read-side lock is held while the guard is alive.
+pub struct RevocableGuard<'a, T> {
+ data_ref: *const T,
+ _rcu_guard: rcu::Guard,
+ _p: PhantomData<&'a ()>,
+}
+
+impl<T> RevocableGuard<'_, T> {
+ fn new(data_ref: *const T, rcu_guard: rcu::Guard) -> Self {
+ Self {
+ data_ref,
+ _rcu_guard: rcu_guard,
+ _p: PhantomData,
+ }
+ }
+}
+
+impl<T> Deref for RevocableGuard<'_, T> {
+ type Target = T;
+
+ fn deref(&self) -> &Self::Target {
+ // SAFETY: By the type invariants, we hold the rcu read-side lock, so the object is
+ // guaranteed to remain valid.
+ unsafe { &*self.data_ref }
+ }
+}
+
+/// An object that can become inaccessible at runtime.
+///
+/// Once access is revoked and all concurrent users complete (i.e., all existing instances of
+/// [`AsyncRevocableGuard`] are dropped), the wrapped object is also dropped.
+///
+/// Unlike [`Revocable`], [`AsyncRevocable`] does not wait for concurrent users of the wrapped
+/// object to finish before [`AsyncRevocable::revoke`] completes -- thus the async qualifier. This
+/// has the advantage of not requiring RCU locks or waits of any kind.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::revocable::AsyncRevocable;
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// fn add_two(v: &AsyncRevocable<Example>) -> Option<u32> {
+/// let guard = v.try_access()?;
+/// Some(guard.a + guard.b)
+/// }
+///
+/// let v = AsyncRevocable::new(Example { a: 10, b: 20 });
+/// assert_eq!(add_two(&v), Some(30));
+/// v.revoke();
+/// assert_eq!(add_two(&v), None);
+/// ```
+///
+/// Example where revocation happens while there is a user:
+///
+/// ```
+/// # use kernel::revocable::AsyncRevocable;
+/// use core::sync::atomic::{AtomicBool, Ordering};
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// static DROPPED: AtomicBool = AtomicBool::new(false);
+///
+/// impl Drop for Example {
+/// fn drop(&mut self) {
+/// DROPPED.store(true, Ordering::Relaxed);
+/// }
+/// }
+///
+/// fn add_two(v: &AsyncRevocable<Example>) -> Option<u32> {
+/// let guard = v.try_access()?;
+/// Some(guard.a + guard.b)
+/// }
+///
+/// let v = AsyncRevocable::new(Example { a: 10, b: 20 });
+/// assert_eq!(add_two(&v), Some(30));
+///
+/// let guard = v.try_access().unwrap();
+/// assert!(!v.is_revoked());
+/// assert!(!DROPPED.load(Ordering::Relaxed));
+/// v.revoke();
+/// assert!(!DROPPED.load(Ordering::Relaxed));
+/// assert!(v.is_revoked());
+/// assert!(v.try_access().is_none());
+/// assert_eq!(guard.a + guard.b, 30);
+/// drop(guard);
+/// assert!(DROPPED.load(Ordering::Relaxed));
+/// ```
+pub struct AsyncRevocable<T> {
+ usage_count: AtomicU32,
+ data: MaybeUninit<UnsafeCell<T>>,
+}
+
+// SAFETY: `AsyncRevocable` is `Send` if the wrapped object is also `Send`. This is because while
+// the functionality exposed by `AsyncRevocable` can be accessed from any thread/CPU, it is
+// possible that this isn't supported by the wrapped object.
+unsafe impl<T: Send> Send for AsyncRevocable<T> {}
+
+// SAFETY: `AsyncRevocable` is `Sync` if the wrapped object is both `Send` and `Sync`. We require
+// `Send` from the wrapped object as well because of `AsyncRevocable::revoke`, which can trigger
+// the `Drop` implementation of the wrapped object from an arbitrary thread.
+unsafe impl<T: Sync + Send> Sync for AsyncRevocable<T> {}
+
+const REVOKED: u32 = 0x80000000;
+const COUNT_MASK: u32 = !REVOKED;
+const SATURATED_COUNT: u32 = REVOKED - 1;
+
+impl<T> AsyncRevocable<T> {
+ /// Creates a new asynchronously revocable instance of the given data.
+ pub fn new(data: T) -> Self {
+ Self {
+ usage_count: AtomicU32::new(0),
+ data: MaybeUninit::new(UnsafeCell::new(data)),
+ }
+ }
+
+ /// Tries to access the \[revocable\] wrapped object.
+ ///
+ /// Returns `None` if the object has been revoked and is therefore no longer accessible.
+ ///
+ /// Returns a guard that gives access to the object otherwise; the object is guaranteed to
+ /// remain accessible while the guard is alive.
+ pub fn try_access(&self) -> Option<AsyncRevocableGuard<'_, T>> {
+ loop {
+ let count = self.usage_count.load(Ordering::Relaxed);
+
+ // Fail attempt to access if the object is already revoked.
+ if count & REVOKED != 0 {
+ return None;
+ }
+
+ // No need to increment if the count is saturated.
+ if count == SATURATED_COUNT
+ || self
+ .usage_count
+ .compare_exchange(count, count + 1, Ordering::Relaxed, Ordering::Relaxed)
+ .is_ok()
+ {
+ return Some(AsyncRevocableGuard { revocable: self });
+ }
+ }
+ }
+
+ /// Revokes access to the protected object.
+ ///
+ /// Returns `true` if access has been revoked, or `false` when the object has already been
+ /// revoked by a previous call to [`AsyncRevocable::revoke`].
+ ///
+ /// This call is non-blocking, that is, no new users of the revocable object will be allowed,
+ /// but potential current users are able to continue to use it and the thread won't wait for
+ /// them to finish. In such cases, the object will be dropped when the last user completes.
+ pub fn revoke(&self) -> bool {
+ // Set the `REVOKED` bit.
+ //
+ // The acquire barrier matches up with the release when decrementing the usage count.
+ let prev = self.usage_count.fetch_or(REVOKED, Ordering::Acquire);
+ if prev & REVOKED != 0 {
+ // Another thread already revoked this object.
+ return false;
+ }
+
+ if prev == 0 {
+ // SAFETY: This thread just revoked the object and the usage count is zero, so the
+ // object is valid and there will be no future users.
+ unsafe { drop_in_place(UnsafeCell::raw_get(self.data.as_ptr())) };
+ }
+
+ true
+ }
+
+ /// Returns whether access to the object has been revoked.
+ pub fn is_revoked(&self) -> bool {
+ self.usage_count.load(Ordering::Relaxed) & REVOKED != 0
+ }
+}
+
+impl<T> Drop for AsyncRevocable<T> {
+ fn drop(&mut self) {
+ let count = *self.usage_count.get_mut();
+ if count != REVOKED {
+ // The object hasn't been dropped yet, so we do it now.
+
+ // This matches with the release when decrementing the usage count.
+ fence(Ordering::Acquire);
+
+ // SAFETY: Since `count` is does not indicate a count of 0 and the REVOKED bit set, the
+ // object is still valid.
+ unsafe { drop_in_place(UnsafeCell::raw_get(self.data.as_ptr())) };
+ }
+ }
+}
+
+/// A guard that allows access to a revocable object and keeps it alive.
+///
+/// # Invariants
+///
+/// The owner owns an increment on the usage count (which may have saturated it), which keeps the
+/// revocable object alive.
+pub struct AsyncRevocableGuard<'a, T> {
+ revocable: &'a AsyncRevocable<T>,
+}
+
+impl<T> Deref for AsyncRevocableGuard<'_, T> {
+ type Target = T;
+
+ fn deref(&self) -> &Self::Target {
+ // SAFETY: The type invariants guarantee that the caller owns an increment.
+ unsafe { &*self.revocable.data.assume_init_ref().get() }
+ }
+}
+
+impl<T> Drop for AsyncRevocableGuard<'_, T> {
+ fn drop(&mut self) {
+ loop {
+ let count = self.revocable.usage_count.load(Ordering::Relaxed);
+ let actual_count = count & COUNT_MASK;
+ if actual_count == SATURATED_COUNT {
+ // The count is saturated, so we won't decrement (nor do we drop the object).
+ return;
+ }
+
+ if actual_count == 0 {
+ // Trying to underflow the count.
+ panic!("actual_count is zero");
+ }
+
+ // On success, we use release ordering, which matches with the acquire in one of the
+ // places where we drop the object, namely: below, in `AsyncRevocable::revoke`, or in
+ // `AsyncRevocable::drop`.
+ if self
+ .revocable
+ .usage_count
+ .compare_exchange(count, count - 1, Ordering::Release, Ordering::Relaxed)
+ .is_ok()
+ {
+ if count == 1 | REVOKED {
+ // `count` is now zero and it is revoked, so free it now.
+
+ // This matches with the release above (which may have happened in other
+ // threads concurrently).
+ fence(Ordering::Acquire);
+
+ // SAFETY: Since `count` was 1, the object is still alive.
+ unsafe { drop_in_place(UnsafeCell::raw_get(self.revocable.data.as_ptr())) };
+ }
+
+ return;
+ }
+ }
+ }
+}
diff --git a/rust/kernel/security.rs b/rust/kernel/security.rs
new file mode 100644
index 000000000000..0a33363289d3
--- /dev/null
+++ b/rust/kernel/security.rs
@@ -0,0 +1,38 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Linux Security Modules (LSM).
+//!
+//! C header: [`include/linux/security.h`](../../../../include/linux/security.h).
+
+use crate::{bindings, cred::Credential, file::File, to_result, Result};
+
+/// Calls the security modules to determine if the given task can become the manager of a binder
+/// context.
+pub fn binder_set_context_mgr(mgr: &Credential) -> Result {
+ // SAFETY: `mrg.0` is valid because the shared reference guarantees a nonzero refcount.
+ to_result(unsafe { bindings::security_binder_set_context_mgr(mgr.0.get()) })
+}
+
+/// Calls the security modules to determine if binder transactions are allowed from task `from` to
+/// task `to`.
+pub fn binder_transaction(from: &Credential, to: &Credential) -> Result {
+ // SAFETY: `from` and `to` are valid because the shared references guarantee nonzero refcounts.
+ to_result(unsafe { bindings::security_binder_transaction(from.0.get(), to.0.get()) })
+}
+
+/// Calls the security modules to determine if task `from` is allowed to send binder objects
+/// (owned by itself or other processes) to task `to` through a binder transaction.
+pub fn binder_transfer_binder(from: &Credential, to: &Credential) -> Result {
+ // SAFETY: `from` and `to` are valid because the shared references guarantee nonzero refcounts.
+ to_result(unsafe { bindings::security_binder_transfer_binder(from.0.get(), to.0.get()) })
+}
+
+/// Calls the security modules to determine if task `from` is allowed to send the given file to
+/// task `to` (which would get its own file descriptor) through a binder transaction.
+pub fn binder_transfer_file(from: &Credential, to: &Credential, file: &File) -> Result {
+ // SAFETY: `from`, `to` and `file` are valid because the shared references guarantee nonzero
+ // refcounts.
+ to_result(unsafe {
+ bindings::security_binder_transfer_file(from.0.get(), to.0.get(), file.0.get())
+ })
+}
diff --git a/rust/kernel/static_assert.rs b/rust/kernel/static_assert.rs
new file mode 100644
index 000000000000..3115ee0ba8e9
--- /dev/null
+++ b/rust/kernel/static_assert.rs
@@ -0,0 +1,34 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Static assert.
+
+/// Static assert (i.e. compile-time assert).
+///
+/// Similar to C11 [`_Static_assert`] and C++11 [`static_assert`].
+///
+/// The feature may be added to Rust in the future: see [RFC 2790].
+///
+/// [`_Static_assert`]: https://en.cppreference.com/w/c/language/_Static_assert
+/// [`static_assert`]: https://en.cppreference.com/w/cpp/language/static_assert
+/// [RFC 2790]: https://github.com/rust-lang/rfcs/issues/2790
+///
+/// # Examples
+///
+/// ```
+/// static_assert!(42 > 24);
+/// static_assert!(core::mem::size_of::<u8>() == 1);
+///
+/// const X: &[u8] = b"bar";
+/// static_assert!(X[1] == b'a');
+///
+/// const fn f(x: i32) -> i32 {
+/// x + 2
+/// }
+/// static_assert!(f(40) == 42);
+/// ```
+#[macro_export]
+macro_rules! static_assert {
+ ($condition:expr) => {
+ const _: () = core::assert!($condition);
+ };
+}
diff --git a/rust/kernel/std_vendor.rs b/rust/kernel/std_vendor.rs
new file mode 100644
index 000000000000..ffbaca0c4cb7
--- /dev/null
+++ b/rust/kernel/std_vendor.rs
@@ -0,0 +1,161 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
+//! The contents of this file come from the Rust standard library, hosted in
+//! the <https://github.com/rust-lang/rust> repository, licensed under
+//! "Apache-2.0 OR MIT" and adapted for kernel use. For copyright details,
+//! see <https://github.com/rust-lang/rust/blob/master/COPYRIGHT>.
+
+/// [`std::dbg`], but using [`pr_info`] instead of [`eprintln`].
+///
+/// Prints and returns the value of a given expression for quick and dirty
+/// debugging.
+///
+/// An example:
+///
+/// ```rust
+/// let a = 2;
+/// # #[allow(clippy::dbg_macro)]
+/// let b = dbg!(a * 2) + 1;
+/// // ^-- prints: [src/main.rs:2] a * 2 = 4
+/// assert_eq!(b, 5);
+/// ```
+///
+/// The macro works by using the `Debug` implementation of the type of
+/// the given expression to print the value with [`printk`] along with the
+/// source location of the macro invocation as well as the source code
+/// of the expression.
+///
+/// Invoking the macro on an expression moves and takes ownership of it
+/// before returning the evaluated expression unchanged. If the type
+/// of the expression does not implement `Copy` and you don't want
+/// to give up ownership, you can instead borrow with `dbg!(&expr)`
+/// for some expression `expr`.
+///
+/// The `dbg!` macro works exactly the same in release builds.
+/// This is useful when debugging issues that only occur in release
+/// builds or when debugging in release mode is significantly faster.
+///
+/// Note that the macro is intended as a debugging tool and therefore you
+/// should avoid having uses of it in version control for long periods
+/// (other than in tests and similar).
+///
+/// # Stability
+///
+/// The exact output printed by this macro should not be relied upon
+/// and is subject to future changes.
+///
+/// # Further examples
+///
+/// With a method call:
+///
+/// ```rust
+/// # #[allow(clippy::dbg_macro)]
+/// fn foo(n: usize) {
+/// if dbg!(n.checked_sub(4)).is_some() {
+/// // ...
+/// }
+/// }
+///
+/// foo(3)
+/// ```
+///
+/// This prints to the kernel log:
+///
+/// ```text,ignore
+/// [src/main.rs:4] n.checked_sub(4) = None
+/// ```
+///
+/// Naive factorial implementation:
+///
+/// ```rust
+/// # #[allow(clippy::dbg_macro)]
+/// # {
+/// fn factorial(n: u32) -> u32 {
+/// if dbg!(n <= 1) {
+/// dbg!(1)
+/// } else {
+/// dbg!(n * factorial(n - 1))
+/// }
+/// }
+///
+/// dbg!(factorial(4));
+/// # }
+/// ```
+///
+/// This prints to the kernel log:
+///
+/// ```text,ignore
+/// [src/main.rs:3] n <= 1 = false
+/// [src/main.rs:3] n <= 1 = false
+/// [src/main.rs:3] n <= 1 = false
+/// [src/main.rs:3] n <= 1 = true
+/// [src/main.rs:4] 1 = 1
+/// [src/main.rs:5] n * factorial(n - 1) = 2
+/// [src/main.rs:5] n * factorial(n - 1) = 6
+/// [src/main.rs:5] n * factorial(n - 1) = 24
+/// [src/main.rs:11] factorial(4) = 24
+/// ```
+///
+/// The `dbg!(..)` macro moves the input:
+///
+// TODO: Could be `compile_fail` when supported.
+/// ```ignore
+/// /// A wrapper around `usize` which importantly is not Copyable.
+/// #[derive(Debug)]
+/// struct NoCopy(usize);
+///
+/// let a = NoCopy(42);
+/// let _ = dbg!(a); // <-- `a` is moved here.
+/// let _ = dbg!(a); // <-- `a` is moved again; error!
+/// ```
+///
+/// You can also use `dbg!()` without a value to just print the
+/// file and line whenever it's reached.
+///
+/// Finally, if you want to `dbg!(..)` multiple values, it will treat them as
+/// a tuple (and return it, too):
+///
+/// ```
+/// # #[allow(clippy::dbg_macro)]
+/// assert_eq!(dbg!(1usize, 2u32), (1, 2));
+/// ```
+///
+/// However, a single argument with a trailing comma will still not be treated
+/// as a tuple, following the convention of ignoring trailing commas in macro
+/// invocations. You can use a 1-tuple directly if you need one:
+///
+/// ```
+/// # #[allow(clippy::dbg_macro)]
+/// # {
+/// assert_eq!(1, dbg!(1u32,)); // trailing comma ignored
+/// assert_eq!((1,), dbg!((1u32,))); // 1-tuple
+/// # }
+/// ```
+///
+/// [`std::dbg`]: https://doc.rust-lang.org/std/macro.dbg.html
+/// [`eprintln`]: https://doc.rust-lang.org/std/macro.eprintln.html
+/// [`printk`]: https://www.kernel.org/doc/html/latest/core-api/printk-basics.html
+#[macro_export]
+macro_rules! dbg {
+ // NOTE: We cannot use `concat!` to make a static string as a format argument
+ // of `pr_info!` because `file!` could contain a `{` or
+ // `$val` expression could be a block (`{ .. }`), in which case the `pr_info!`
+ // will be malformed.
+ () => {
+ $crate::pr_info!("[{}:{}]\n", ::core::file!(), ::core::line!())
+ };
+ ($val:expr $(,)?) => {
+ // Use of `match` here is intentional because it affects the lifetimes
+ // of temporaries - https://stackoverflow.com/a/48732525/1063961
+ match $val {
+ tmp => {
+ $crate::pr_info!("[{}:{}] {} = {:#?}\n",
+ ::core::file!(), ::core::line!(), ::core::stringify!($val), &tmp);
+ tmp
+ }
+ }
+ };
+ ($($val:expr),+ $(,)?) => {
+ ($($crate::dbg!($val)),+,)
+ };
+}
diff --git a/rust/kernel/str.rs b/rust/kernel/str.rs
new file mode 100644
index 000000000000..874003e39cba
--- /dev/null
+++ b/rust/kernel/str.rs
@@ -0,0 +1,597 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! String representations.
+
+use alloc::vec::Vec;
+use core::fmt::{self, Write};
+use core::ops::{self, Deref, Index};
+
+use crate::{bindings, error::code::*, Error};
+
+/// Byte string without UTF-8 validity guarantee.
+///
+/// `BStr` is simply an alias to `[u8]`, but has a more evident semantical meaning.
+pub type BStr = [u8];
+
+/// Creates a new [`BStr`] from a string literal.
+///
+/// `b_str!` converts the supplied string literal to byte string, so non-ASCII
+/// characters can be included.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::b_str;
+/// # use kernel::str::BStr;
+/// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
+/// ```
+#[macro_export]
+macro_rules! b_str {
+ ($str:literal) => {{
+ const S: &'static str = $str;
+ const C: &'static $crate::str::BStr = S.as_bytes();
+ C
+ }};
+}
+
+/// Possible errors when using conversion functions in [`CStr`].
+#[derive(Debug, Clone, Copy)]
+pub enum CStrConvertError {
+ /// Supplied bytes contain an interior `NUL`.
+ InteriorNul,
+
+ /// Supplied bytes are not terminated by `NUL`.
+ NotNulTerminated,
+}
+
+impl From<CStrConvertError> for Error {
+ #[inline]
+ fn from(_: CStrConvertError) -> Error {
+ EINVAL
+ }
+}
+
+/// A string that is guaranteed to have exactly one `NUL` byte, which is at the
+/// end.
+///
+/// Used for interoperability with kernel APIs that take C strings.
+#[repr(transparent)]
+pub struct CStr([u8]);
+
+impl CStr {
+ /// Returns the length of this string excluding `NUL`.
+ #[inline]
+ pub const fn len(&self) -> usize {
+ self.len_with_nul() - 1
+ }
+
+ /// Returns the length of this string with `NUL`.
+ #[inline]
+ pub const fn len_with_nul(&self) -> usize {
+ // SAFETY: This is one of the invariant of `CStr`.
+ // We add a `unreachable_unchecked` here to hint the optimizer that
+ // the value returned from this function is non-zero.
+ if self.0.is_empty() {
+ unsafe { core::hint::unreachable_unchecked() };
+ }
+ self.0.len()
+ }
+
+ /// Returns `true` if the string only includes `NUL`.
+ #[inline]
+ pub const fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ /// Wraps a raw C string pointer.
+ ///
+ /// # Safety
+ ///
+ /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
+ /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
+ /// must not be mutated.
+ #[inline]
+ pub unsafe fn from_char_ptr<'a>(ptr: *const core::ffi::c_char) -> &'a Self {
+ // SAFETY: The safety precondition guarantees `ptr` is a valid pointer
+ // to a `NUL`-terminated C string.
+ let len = unsafe { bindings::strlen(ptr) } + 1;
+ // SAFETY: Lifetime guaranteed by the safety precondition.
+ let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len as _) };
+ // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`.
+ // As we have added 1 to `len`, the last byte is known to be `NUL`.
+ unsafe { Self::from_bytes_with_nul_unchecked(bytes) }
+ }
+
+ /// Creates a [`CStr`] from a `[u8]`.
+ ///
+ /// The provided slice must be `NUL`-terminated, does not contain any
+ /// interior `NUL` bytes.
+ pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> {
+ if bytes.is_empty() {
+ return Err(CStrConvertError::NotNulTerminated);
+ }
+ if bytes[bytes.len() - 1] != 0 {
+ return Err(CStrConvertError::NotNulTerminated);
+ }
+ let mut i = 0;
+ // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking,
+ // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`.
+ while i + 1 < bytes.len() {
+ if bytes[i] == 0 {
+ return Err(CStrConvertError::InteriorNul);
+ }
+ i += 1;
+ }
+ // SAFETY: We just checked that all properties hold.
+ Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
+ }
+
+ /// Creates a [`CStr`] from a `[u8]`, panic if input is not valid.
+ ///
+ /// This function is only meant to be used by `c_str!` macro, so
+ /// crates using `c_str!` macro don't have to enable `const_panic` feature.
+ #[doc(hidden)]
+ pub const fn from_bytes_with_nul_unwrap(bytes: &[u8]) -> &Self {
+ match Self::from_bytes_with_nul(bytes) {
+ Ok(v) => v,
+ Err(_) => panic!("string contains interior NUL"),
+ }
+ }
+
+ /// Creates a [`CStr`] from a `[u8]` without performing any additional
+ /// checks.
+ ///
+ /// # Safety
+ ///
+ /// `bytes` *must* end with a `NUL` byte, and should only have a single
+ /// `NUL` byte (or the string will be truncated).
+ #[inline]
+ pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
+ // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
+ unsafe { core::mem::transmute(bytes) }
+ }
+
+ /// Returns a C pointer to the string.
+ #[inline]
+ pub const fn as_char_ptr(&self) -> *const core::ffi::c_char {
+ self.0.as_ptr() as _
+ }
+
+ /// Convert the string to a byte slice without the trailing 0 byte.
+ #[inline]
+ pub fn as_bytes(&self) -> &[u8] {
+ &self.0[..self.len()]
+ }
+
+ /// Convert the string to a byte slice containing the trailing 0 byte.
+ #[inline]
+ pub const fn as_bytes_with_nul(&self) -> &[u8] {
+ &self.0
+ }
+
+ /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8.
+ ///
+ /// If the contents of the [`CStr`] are valid UTF-8 data, this
+ /// function will return the corresponding [`&str`] slice. Otherwise,
+ /// it will return an error with details of where UTF-8 validation failed.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use kernel::str::CStr;
+ /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap();
+ /// assert_eq!(cstr.to_str(), Ok("foo"));
+ /// ```
+ #[inline]
+ pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> {
+ core::str::from_utf8(self.as_bytes())
+ }
+
+ /// Unsafely convert this [`CStr`] into a [`&str`], without checking for
+ /// valid UTF-8.
+ ///
+ /// # Safety
+ ///
+ /// The contents must be valid UTF-8.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use kernel::c_str;
+ /// # use kernel::str::CStr;
+ /// // SAFETY: String literals are guaranteed to be valid UTF-8
+ /// // by the Rust compiler.
+ /// let bar = c_str!("ツ");
+ /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ");
+ /// ```
+ #[inline]
+ pub unsafe fn as_str_unchecked(&self) -> &str {
+ unsafe { core::str::from_utf8_unchecked(self.as_bytes()) }
+ }
+}
+
+impl fmt::Display for CStr {
+ /// Formats printable ASCII characters, escaping the rest.
+ ///
+ /// ```
+ /// # use kernel::c_str;
+ /// # use kernel::str::CStr;
+ /// # use kernel::str::CString;
+ /// let penguin = c_str!("🐧");
+ /// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap();
+ /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
+ ///
+ /// let ascii = c_str!("so \"cool\"");
+ /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap();
+ /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes());
+ /// ```
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ for &c in self.as_bytes() {
+ if (0x20..0x7f).contains(&c) {
+ // Printable character.
+ f.write_char(c as char)?;
+ } else {
+ write!(f, "\\x{:02x}", c)?;
+ }
+ }
+ Ok(())
+ }
+}
+
+impl fmt::Debug for CStr {
+ /// Formats printable ASCII characters with a double quote on either end, escaping the rest.
+ ///
+ /// ```
+ /// # use kernel::c_str;
+ /// # use kernel::str::CStr;
+ /// # use kernel::str::CString;
+ /// let penguin = c_str!("🐧");
+ /// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap();
+ /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes());
+ ///
+ /// // Embedded double quotes are escaped.
+ /// let ascii = c_str!("so \"cool\"");
+ /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap();
+ /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes());
+ /// ```
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.write_str("\"")?;
+ for &c in self.as_bytes() {
+ match c {
+ // Printable characters.
+ b'\"' => f.write_str("\\\"")?,
+ 0x20..=0x7e => f.write_char(c as char)?,
+ _ => write!(f, "\\x{:02x}", c)?,
+ }
+ }
+ f.write_str("\"")
+ }
+}
+
+impl AsRef<BStr> for CStr {
+ #[inline]
+ fn as_ref(&self) -> &BStr {
+ self.as_bytes()
+ }
+}
+
+impl Deref for CStr {
+ type Target = BStr;
+
+ #[inline]
+ fn deref(&self) -> &Self::Target {
+ self.as_bytes()
+ }
+}
+
+impl Index<ops::RangeFrom<usize>> for CStr {
+ type Output = CStr;
+
+ #[inline]
+ fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output {
+ // Delegate bounds checking to slice.
+ // Assign to _ to mute clippy's unnecessary operation warning.
+ let _ = &self.as_bytes()[index.start..];
+ // SAFETY: We just checked the bounds.
+ unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) }
+ }
+}
+
+impl Index<ops::RangeFull> for CStr {
+ type Output = CStr;
+
+ #[inline]
+ fn index(&self, _index: ops::RangeFull) -> &Self::Output {
+ self
+ }
+}
+
+mod private {
+ use core::ops;
+
+ // Marker trait for index types that can be forward to `BStr`.
+ pub trait CStrIndex {}
+
+ impl CStrIndex for usize {}
+ impl CStrIndex for ops::Range<usize> {}
+ impl CStrIndex for ops::RangeInclusive<usize> {}
+ impl CStrIndex for ops::RangeToInclusive<usize> {}
+}
+
+impl<Idx> Index<Idx> for CStr
+where
+ Idx: private::CStrIndex,
+ BStr: Index<Idx>,
+{
+ type Output = <BStr as Index<Idx>>::Output;
+
+ #[inline]
+ fn index(&self, index: Idx) -> &Self::Output {
+ &self.as_bytes()[index]
+ }
+}
+
+/// Creates a new [`CStr`] from a string literal.
+///
+/// The string literal should not contain any `NUL` bytes.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::c_str;
+/// # use kernel::str::CStr;
+/// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
+/// ```
+#[macro_export]
+macro_rules! c_str {
+ ($str:expr) => {{
+ const S: &str = concat!($str, "\0");
+ const C: &$crate::str::CStr = $crate::str::CStr::from_bytes_with_nul_unwrap(S.as_bytes());
+ C
+ }};
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ #[test]
+ fn test_cstr_to_str() {
+ let good_bytes = b"\xf0\x9f\xa6\x80\0";
+ let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
+ let checked_str = checked_cstr.to_str().unwrap();
+ assert_eq!(checked_str, "🦀");
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_cstr_to_str_panic() {
+ let bad_bytes = b"\xc3\x28\0";
+ let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap();
+ checked_cstr.to_str().unwrap();
+ }
+
+ #[test]
+ fn test_cstr_as_str_unchecked() {
+ let good_bytes = b"\xf0\x9f\x90\xA7\0";
+ let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
+ let unchecked_str = unsafe { checked_cstr.as_str_unchecked() };
+ assert_eq!(unchecked_str, "🐧");
+ }
+}
+
+/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
+///
+/// It does not fail if callers write past the end of the buffer so that they can calculate the
+/// size required to fit everything.
+///
+/// # Invariants
+///
+/// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
+/// is less than `end`.
+pub(crate) struct RawFormatter {
+ // Use `usize` to use `saturating_*` functions.
+ beg: usize,
+ pos: usize,
+ end: usize,
+}
+
+impl RawFormatter {
+ /// Creates a new instance of [`RawFormatter`] with an empty buffer.
+ fn new() -> Self {
+ // INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
+ Self {
+ beg: 0,
+ pos: 0,
+ end: 0,
+ }
+ }
+
+ /// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
+ ///
+ /// # Safety
+ ///
+ /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
+ /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
+ pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
+ // INVARIANT: The safety requierments guarantee the type invariants.
+ Self {
+ beg: pos as _,
+ pos: pos as _,
+ end: end as _,
+ }
+ }
+
+ /// Creates a new instance of [`RawFormatter`] with the given buffer.
+ ///
+ /// # Safety
+ ///
+ /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
+ /// for the lifetime of the returned [`RawFormatter`].
+ pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
+ let pos = buf as usize;
+ // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements
+ // guarantees that the memory region is valid for writes.
+ Self {
+ pos,
+ beg: pos,
+ end: pos.saturating_add(len),
+ }
+ }
+
+ /// Returns the current insert position.
+ ///
+ /// N.B. It may point to invalid memory.
+ pub(crate) fn pos(&self) -> *mut u8 {
+ self.pos as _
+ }
+
+ /// Return the number of bytes written to the formatter.
+ pub(crate) fn bytes_written(&self) -> usize {
+ self.pos - self.beg
+ }
+}
+
+impl fmt::Write for RawFormatter {
+ fn write_str(&mut self, s: &str) -> fmt::Result {
+ // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
+ // don't want it to wrap around to 0.
+ let pos_new = self.pos.saturating_add(s.len());
+
+ // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
+ let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
+
+ if len_to_copy > 0 {
+ // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
+ // yet, so it is valid for write per the type invariants.
+ unsafe {
+ core::ptr::copy_nonoverlapping(
+ s.as_bytes().as_ptr(),
+ self.pos as *mut u8,
+ len_to_copy,
+ )
+ };
+ }
+
+ self.pos = pos_new;
+ Ok(())
+ }
+}
+
+/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
+///
+/// Fails if callers attempt to write more than will fit in the buffer.
+pub(crate) struct Formatter(RawFormatter);
+
+impl Formatter {
+ /// Creates a new instance of [`Formatter`] with the given buffer.
+ ///
+ /// # Safety
+ ///
+ /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
+ /// for the lifetime of the returned [`Formatter`].
+ pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
+ // SAFETY: The safety requirements of this function satisfy those of the callee.
+ Self(unsafe { RawFormatter::from_buffer(buf, len) })
+ }
+}
+
+impl Deref for Formatter {
+ type Target = RawFormatter;
+
+ fn deref(&self) -> &Self::Target {
+ &self.0
+ }
+}
+
+impl fmt::Write for Formatter {
+ fn write_str(&mut self, s: &str) -> fmt::Result {
+ self.0.write_str(s)?;
+
+ // Fail the request if we go past the end of the buffer.
+ if self.0.pos > self.0.end {
+ Err(fmt::Error)
+ } else {
+ Ok(())
+ }
+ }
+}
+
+/// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
+///
+/// Used for interoperability with kernel APIs that take C strings.
+///
+/// # Invariants
+///
+/// The string is always `NUL`-terminated and contains no other `NUL` bytes.
+///
+/// # Examples
+///
+/// ```
+/// use kernel::str::CString;
+///
+/// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20)).unwrap();
+/// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes());
+///
+/// let tmp = "testing";
+/// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123)).unwrap();
+/// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes());
+///
+/// // This fails because it has an embedded `NUL` byte.
+/// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
+/// assert_eq!(s.is_ok(), false);
+/// ```
+pub struct CString {
+ buf: Vec<u8>,
+}
+
+impl CString {
+ /// Creates an instance of [`CString`] from the given formatted arguments.
+ pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
+ // Calculate the size needed (formatted string plus `NUL` terminator).
+ let mut f = RawFormatter::new();
+ f.write_fmt(args)?;
+ f.write_str("\0")?;
+ let size = f.bytes_written();
+
+ // Allocate a vector with the required number of bytes, and write to it.
+ let mut buf = Vec::try_with_capacity(size)?;
+ // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
+ let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
+ f.write_fmt(args)?;
+ f.write_str("\0")?;
+
+ // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
+ // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
+ unsafe { buf.set_len(f.bytes_written()) };
+
+ // Check that there are no `NUL` bytes before the end.
+ // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
+ // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
+ // so `f.bytes_written() - 1` doesn't underflow.
+ let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, (f.bytes_written() - 1) as _) };
+ if !ptr.is_null() {
+ return Err(EINVAL);
+ }
+
+ // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
+ // exist in the buffer.
+ Ok(Self { buf })
+ }
+}
+
+impl Deref for CString {
+ type Target = CStr;
+
+ fn deref(&self) -> &Self::Target {
+ // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
+ // other `NUL` bytes exist.
+ unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
+ }
+}
+
+/// A convenience alias for [`core::format_args`].
+#[macro_export]
+macro_rules! fmt {
+ ($($f:tt)*) => ( core::format_args!($($f)*) )
+}
diff --git a/rust/kernel/sync.rs b/rust/kernel/sync.rs
index dbf705d573e6..255a4928a47a 100644
--- a/rust/kernel/sync.rs
+++ b/rust/kernel/sync.rs
@@ -22,7 +22,7 @@
//! ```
use crate::{bindings, str::CStr};
-use core::pin::Pin;
+use core::{cell::UnsafeCell, mem::MaybeUninit, pin::Pin};
mod arc;
mod condvar;
@@ -30,13 +30,14 @@ mod guard;
mod locked_by;
mod mutex;
mod nowait;
+pub mod rcu;
mod revocable;
mod rwsem;
mod seqlock;
pub mod smutex;
mod spinlock;
-pub use arc::{Ref, RefBorrow, UniqueRef};
+pub use arc::{new_refcount, Ref, RefBorrow, StaticRef, UniqueRef};
pub use condvar::CondVar;
pub use guard::{Guard, Lock, LockFactory, LockInfo, LockIniter, ReadLock, WriteLock};
pub use locked_by::LockedBy;
@@ -47,6 +48,25 @@ pub use rwsem::{RevocableRwSemaphore, RevocableRwSemaphoreGuard, RwSemaphore};
pub use seqlock::{SeqLock, SeqLockReadGuard};
pub use spinlock::{RawSpinLock, SpinLock};
+/// Represents a lockdep class. It's a wrapper around C's `lock_class_key`.
+#[repr(transparent)]
+pub struct LockClassKey(UnsafeCell<MaybeUninit<bindings::lock_class_key>>);
+
+// SAFETY: This is a wrapper around a lock class key, so it is safe to use references to it from
+// any thread.
+unsafe impl Sync for LockClassKey {}
+
+impl LockClassKey {
+ /// Creates a new lock class key.
+ pub const fn new() -> Self {
+ Self(UnsafeCell::new(MaybeUninit::uninit()))
+ }
+
+ pub(crate) fn get(&self) -> *mut bindings::lock_class_key {
+ self.0.get().cast()
+ }
+}
+
/// Safely initialises an object that has an `init` function that takes a name and a lock class as
/// arguments, examples of these are [`Mutex`] and [`SpinLock`]. Each of them also provides a more
/// specialised name that uses this macro.
@@ -54,18 +74,11 @@ pub use spinlock::{RawSpinLock, SpinLock};
#[macro_export]
macro_rules! init_with_lockdep {
($obj:expr, $name:expr) => {{
- static mut CLASS1: core::mem::MaybeUninit<$crate::bindings::lock_class_key> =
- core::mem::MaybeUninit::uninit();
- static mut CLASS2: core::mem::MaybeUninit<$crate::bindings::lock_class_key> =
- core::mem::MaybeUninit::uninit();
+ static CLASS1: $crate::sync::LockClassKey = $crate::sync::LockClassKey::new();
+ static CLASS2: $crate::sync::LockClassKey = $crate::sync::LockClassKey::new();
let obj = $obj;
let name = $crate::c_str!($name);
- // SAFETY: `CLASS1` and `CLASS2` are never used by Rust code directly; the C portion of the
- // kernel may change it though.
- #[allow(unused_unsafe)]
- unsafe {
- $crate::sync::NeedsLockClass::init(obj, name, CLASS1.as_mut_ptr(), CLASS2.as_mut_ptr())
- };
+ $crate::sync::NeedsLockClass::init(obj, name, &CLASS1, &CLASS2)
}};
}
@@ -78,16 +91,11 @@ pub trait NeedsLockClass {
///
/// Callers are encouraged to use the [`init_with_lockdep`] macro as it automatically creates a
/// new lock class on each usage.
- ///
- /// # Safety
- ///
- /// `key1` and `key2` must point to valid memory locations and remain valid until `self` is
- /// dropped.
- unsafe fn init(
+ fn init(
self: Pin<&mut Self>,
name: &'static CStr,
- key1: *mut bindings::lock_class_key,
- key2: *mut bindings::lock_class_key,
+ key1: &'static LockClassKey,
+ key2: &'static LockClassKey,
);
}
diff --git a/rust/kernel/sysctl.rs b/rust/kernel/sysctl.rs
new file mode 100644
index 000000000000..8f742d60037d
--- /dev/null
+++ b/rust/kernel/sysctl.rs
@@ -0,0 +1,199 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! System control.
+//!
+//! C header: [`include/linux/sysctl.h`](../../../../include/linux/sysctl.h)
+//!
+//! Reference: <https://www.kernel.org/doc/Documentation/sysctl/README>
+
+use alloc::boxed::Box;
+use alloc::vec::Vec;
+use core::mem;
+use core::ptr;
+use core::sync::atomic;
+
+use crate::{
+ bindings,
+ error::code::*,
+ io_buffer::IoBufferWriter,
+ str::CStr,
+ types,
+ user_ptr::{UserSlicePtr, UserSlicePtrWriter},
+ Result,
+};
+
+/// Sysctl storage.
+pub trait SysctlStorage: Sync {
+ /// Writes a byte slice.
+ fn store_value(&self, data: &[u8]) -> (usize, Result);
+
+ /// Reads via a [`UserSlicePtrWriter`].
+ fn read_value(&self, data: &mut UserSlicePtrWriter) -> (usize, Result);
+}
+
+fn trim_whitespace(mut data: &[u8]) -> &[u8] {
+ while !data.is_empty() && (data[0] == b' ' || data[0] == b'\t' || data[0] == b'\n') {
+ data = &data[1..];
+ }
+ while !data.is_empty()
+ && (data[data.len() - 1] == b' '
+ || data[data.len() - 1] == b'\t'
+ || data[data.len() - 1] == b'\n')
+ {
+ data = &data[..data.len() - 1];
+ }
+ data
+}
+
+impl<T> SysctlStorage for &T
+where
+ T: SysctlStorage,
+{
+ fn store_value(&self, data: &[u8]) -> (usize, Result) {
+ (*self).store_value(data)
+ }
+
+ fn read_value(&self, data: &mut UserSlicePtrWriter) -> (usize, Result) {
+ (*self).read_value(data)
+ }
+}
+
+impl SysctlStorage for atomic::AtomicBool {
+ fn store_value(&self, data: &[u8]) -> (usize, Result) {
+ let result = match trim_whitespace(data) {
+ b"0" => {
+ self.store(false, atomic::Ordering::Relaxed);
+ Ok(())
+ }
+ b"1" => {
+ self.store(true, atomic::Ordering::Relaxed);
+ Ok(())
+ }
+ _ => Err(EINVAL),
+ };
+ (data.len(), result)
+ }
+
+ fn read_value(&self, data: &mut UserSlicePtrWriter) -> (usize, Result) {
+ let value = if self.load(atomic::Ordering::Relaxed) {
+ b"1\n"
+ } else {
+ b"0\n"
+ };
+ (value.len(), data.write_slice(value))
+ }
+}
+
+/// Holds a single `sysctl` entry (and its table).
+pub struct Sysctl<T: SysctlStorage> {
+ inner: Box<T>,
+ // Responsible for keeping the `ctl_table` alive.
+ _table: Box<[bindings::ctl_table]>,
+ header: *mut bindings::ctl_table_header,
+}
+
+// SAFETY: The only public method we have is `get()`, which returns `&T`, and
+// `T: Sync`. Any new methods must adhere to this requirement.
+unsafe impl<T: SysctlStorage> Sync for Sysctl<T> {}
+
+unsafe extern "C" fn proc_handler<T: SysctlStorage>(
+ ctl: *mut bindings::ctl_table,
+ write: core::ffi::c_int,
+ buffer: *mut core::ffi::c_void,
+ len: *mut usize,
+ ppos: *mut bindings::loff_t,
+) -> core::ffi::c_int {
+ // If we are reading from some offset other than the beginning of the file,
+ // return an empty read to signal EOF.
+ if unsafe { *ppos } != 0 && write == 0 {
+ unsafe { *len = 0 };
+ return 0;
+ }
+
+ let data = unsafe { UserSlicePtr::new(buffer, *len) };
+ let storage = unsafe { &*((*ctl).data as *const T) };
+ let (bytes_processed, result) = if write != 0 {
+ let data = match data.read_all() {
+ Ok(r) => r,
+ Err(e) => return e.to_kernel_errno(),
+ };
+ storage.store_value(&data)
+ } else {
+ let mut writer = data.writer();
+ storage.read_value(&mut writer)
+ };
+ unsafe { *len = bytes_processed };
+ unsafe { *ppos += *len as bindings::loff_t };
+ match result {
+ Ok(()) => 0,
+ Err(e) => e.to_kernel_errno(),
+ }
+}
+
+impl<T: SysctlStorage> Sysctl<T> {
+ /// Registers a single entry in `sysctl`.
+ pub fn register(
+ path: &'static CStr,
+ name: &'static CStr,
+ storage: T,
+ mode: types::Mode,
+ ) -> Result<Sysctl<T>> {
+ if name.contains(&b'/') {
+ return Err(EINVAL);
+ }
+
+ let storage = Box::try_new(storage)?;
+ let mut table = Vec::try_with_capacity(2)?;
+ table.try_push(bindings::ctl_table {
+ procname: name.as_char_ptr(),
+ mode: mode.as_int(),
+ data: &*storage as *const T as *mut core::ffi::c_void,
+ proc_handler: Some(proc_handler::<T>),
+
+ maxlen: 0,
+ child: ptr::null_mut(),
+ poll: ptr::null_mut(),
+ extra1: ptr::null_mut(),
+ extra2: ptr::null_mut(),
+ })?;
+ table.try_push(unsafe { mem::zeroed() })?;
+ let mut table = table.try_into_boxed_slice()?;
+
+ let result = unsafe { bindings::register_sysctl(path.as_char_ptr(), table.as_mut_ptr()) };
+ if result.is_null() {
+ return Err(ENOMEM);
+ }
+
+ Ok(Sysctl {
+ inner: storage,
+ _table: table,
+ header: result,
+ })
+ }
+
+ /// Gets the storage.
+ pub fn get(&self) -> &T {
+ &self.inner
+ }
+}
+
+impl<T: SysctlStorage> Drop for Sysctl<T> {
+ fn drop(&mut self) {
+ unsafe {
+ bindings::unregister_sysctl_table(self.header);
+ }
+ self.header = ptr::null_mut();
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ #[test]
+ fn test_trim_whitespace() {
+ assert_eq!(trim_whitespace(b"foo "), b"foo");
+ assert_eq!(trim_whitespace(b" foo"), b"foo");
+ assert_eq!(trim_whitespace(b" foo "), b"foo");
+ }
+}
diff --git a/rust/kernel/task.rs b/rust/kernel/task.rs
new file mode 100644
index 000000000000..67040b532816
--- /dev/null
+++ b/rust/kernel/task.rs
@@ -0,0 +1,239 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Tasks (threads and processes).
+//!
+//! C header: [`include/linux/sched.h`](../../../../include/linux/sched.h).
+
+use crate::{
+ bindings, c_str, error::from_kernel_err_ptr, types::PointerWrapper, ARef, AlwaysRefCounted,
+ Result, ScopeGuard,
+};
+use alloc::boxed::Box;
+use core::{cell::UnsafeCell, fmt, marker::PhantomData, ops::Deref, ptr};
+
+/// Wraps the kernel's `struct task_struct`.
+///
+/// # Invariants
+///
+/// Instances of this type are always ref-counted, that is, a call to `get_task_struct` ensures
+/// that the allocation remains valid at least until the matching call to `put_task_struct`.
+///
+/// # Examples
+///
+/// The following is an example of getting the PID of the current thread with zero additional cost
+/// when compared to the C version:
+///
+/// ```
+/// use kernel::task::Task;
+///
+/// let pid = Task::current().pid();
+/// ```
+///
+/// Getting the PID of the current process, also zero additional cost:
+///
+/// ```
+/// use kernel::task::Task;
+///
+/// let pid = Task::current().group_leader().pid();
+/// ```
+///
+/// Getting the current task and storing it in some struct. The reference count is automatically
+/// incremented when creating `State` and decremented when it is dropped:
+///
+/// ```
+/// use kernel::{task::Task, ARef};
+///
+/// struct State {
+/// creator: ARef<Task>,
+/// index: u32,
+/// }
+///
+/// impl State {
+/// fn new() -> Self {
+/// Self {
+/// creator: Task::current().into(),
+/// index: 0,
+/// }
+/// }
+/// }
+/// ```
+#[repr(transparent)]
+pub struct Task(pub(crate) UnsafeCell<bindings::task_struct>);
+
+// SAFETY: It's OK to access `Task` through references from other threads because we're either
+// accessing properties that don't change (e.g., `pid`, `group_leader`) or that are properly
+// synchronised by C code (e.g., `signal_pending`).
+unsafe impl Sync for Task {}
+
+/// The type of process identifiers (PIDs).
+type Pid = bindings::pid_t;
+
+impl Task {
+ /// Returns a task reference for the currently executing task/thread.
+ pub fn current<'a>() -> TaskRef<'a> {
+ // SAFETY: Just an FFI call.
+ let ptr = unsafe { bindings::get_current() };
+
+ TaskRef {
+ // SAFETY: If the current thread is still running, the current task is valid. Given
+ // that `TaskRef` is not `Send`, we know it cannot be transferred to another thread
+ // (where it could potentially outlive the caller).
+ task: unsafe { &*ptr.cast() },
+ _not_send: PhantomData,
+ }
+ }
+
+ /// Returns the group leader of the given task.
+ pub fn group_leader(&self) -> &Task {
+ // SAFETY: By the type invariant, we know that `self.0` is valid.
+ let ptr = unsafe { core::ptr::addr_of!((*self.0.get()).group_leader).read() };
+
+ // SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`,
+ // and given that a task has a reference to its group leader, we know it must be valid for
+ // the lifetime of the returned task reference.
+ unsafe { &*ptr.cast() }
+ }
+
+ /// Returns the PID of the given task.
+ pub fn pid(&self) -> Pid {
+ // SAFETY: By the type invariant, we know that `self.0` is valid.
+ unsafe { core::ptr::addr_of!((*self.0.get()).pid).read() }
+ }
+
+ /// Determines whether the given task has pending signals.
+ pub fn signal_pending(&self) -> bool {
+ // SAFETY: By the type invariant, we know that `self.0` is valid.
+ unsafe { bindings::signal_pending(self.0.get()) != 0 }
+ }
+
+ /// Starts a new kernel thread and runs it.
+ ///
+ /// # Examples
+ ///
+ /// Launches 10 threads and waits for them to complete.
+ ///
+ /// ```
+ /// use core::sync::atomic::{AtomicU32, Ordering};
+ /// use kernel::sync::{CondVar, Mutex};
+ /// use kernel::task::Task;
+ ///
+ /// kernel::init_static_sync! {
+ /// static COUNT: Mutex<u32> = 0;
+ /// static COUNT_IS_ZERO: CondVar;
+ /// }
+ ///
+ /// fn threadfn() {
+ /// pr_info!("Running from thread {}\n", Task::current().pid());
+ /// let mut guard = COUNT.lock();
+ /// *guard -= 1;
+ /// if *guard == 0 {
+ /// COUNT_IS_ZERO.notify_all();
+ /// }
+ /// }
+ ///
+ /// // Set count to 10 and spawn 10 threads.
+ /// *COUNT.lock() = 10;
+ /// for i in 0..10 {
+ /// Task::spawn(fmt!("test{i}"), threadfn).unwrap();
+ /// }
+ ///
+ /// // Wait for count to drop to zero.
+ /// let mut guard = COUNT.lock();
+ /// while (*guard != 0) {
+ /// COUNT_IS_ZERO.wait(&mut guard);
+ /// }
+ /// ```
+ pub fn spawn<T: FnOnce() + Send + 'static>(
+ name: fmt::Arguments<'_>,
+ func: T,
+ ) -> Result<ARef<Task>> {
+ unsafe extern "C" fn threadfn<T: FnOnce() + Send + 'static>(
+ arg: *mut core::ffi::c_void,
+ ) -> core::ffi::c_int {
+ // SAFETY: The thread argument is always a `Box<T>` because it is only called via the
+ // thread creation below.
+ let bfunc = unsafe { Box::<T>::from_pointer(arg) };
+ bfunc();
+ 0
+ }
+
+ let arg = Box::try_new(func)?.into_pointer();
+
+ // SAFETY: `arg` was just created with a call to `into_pointer` above.
+ let guard = ScopeGuard::new(|| unsafe {
+ Box::<T>::from_pointer(arg);
+ });
+
+ // SAFETY: The function pointer is always valid (as long as the module remains loaded).
+ // Ownership of `raw` is transferred to the new thread (if one is actually created), so it
+ // remains valid. Lastly, the C format string is a constant that require formatting as the
+ // one and only extra argument.
+ let ktask = from_kernel_err_ptr(unsafe {
+ bindings::kthread_create_on_node(
+ Some(threadfn::<T>),
+ arg as _,
+ bindings::NUMA_NO_NODE,
+ c_str!("%pA").as_char_ptr(),
+ &name as *const _ as *const core::ffi::c_void,
+ )
+ })?;
+
+ // SAFETY: Since the kthread creation succeeded and we haven't run it yet, we know the task
+ // is valid.
+ let task: ARef<_> = unsafe { &*(ktask as *const Task) }.into();
+
+ // Wakes up the thread, otherwise it won't run.
+ task.wake_up();
+
+ guard.dismiss();
+ Ok(task)
+ }
+
+ /// Wakes up the task.
+ pub fn wake_up(&self) {
+ // SAFETY: By the type invariant, we know that `self.0.get()` is non-null and valid.
+ // And `wake_up_process` is safe to be called for any valid task, even if the task is
+ // running.
+ unsafe { bindings::wake_up_process(self.0.get()) };
+ }
+}
+
+// SAFETY: The type invariants guarantee that `Task` is always ref-counted.
+unsafe impl AlwaysRefCounted for Task {
+ fn inc_ref(&self) {
+ // SAFETY: The existence of a shared reference means that the refcount is nonzero.
+ unsafe { bindings::get_task_struct(self.0.get()) };
+ }
+
+ unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
+ // SAFETY: The safety requirements guarantee that the refcount is nonzero.
+ unsafe { bindings::put_task_struct(obj.cast().as_ptr()) }
+ }
+}
+
+/// A wrapper for a shared reference to [`Task`] that isn't [`Send`].
+///
+/// We make this explicitly not [`Send`] so that we can use it to represent the current thread
+/// without having to increment/decrement the task's reference count.
+///
+/// # Invariants
+///
+/// The wrapped [`Task`] remains valid for the lifetime of the object.
+pub struct TaskRef<'a> {
+ task: &'a Task,
+ _not_send: PhantomData<*mut ()>,
+}
+
+impl Deref for TaskRef<'_> {
+ type Target = Task;
+
+ fn deref(&self) -> &Self::Target {
+ self.task
+ }
+}
+
+impl From<TaskRef<'_>> for ARef<Task> {
+ fn from(t: TaskRef<'_>) -> Self {
+ t.deref().into()
+ }
+}
diff --git a/rust/kernel/types.rs b/rust/kernel/types.rs
new file mode 100644
index 000000000000..b1f73aeece0b
--- /dev/null
+++ b/rust/kernel/types.rs
@@ -0,0 +1,705 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Kernel types.
+//!
+//! C header: [`include/linux/types.h`](../../../../include/linux/types.h)
+
+use crate::{
+ bindings,
+ sync::{Ref, RefBorrow},
+};
+use alloc::boxed::Box;
+use core::{
+ cell::UnsafeCell,
+ marker::PhantomData,
+ mem::MaybeUninit,
+ ops::{self, Deref, DerefMut},
+ pin::Pin,
+ ptr::NonNull,
+};
+
+/// Permissions.
+///
+/// C header: [`include/uapi/linux/stat.h`](../../../../include/uapi/linux/stat.h)
+///
+/// C header: [`include/linux/stat.h`](../../../../include/linux/stat.h)
+pub struct Mode(bindings::umode_t);
+
+impl Mode {
+ /// Creates a [`Mode`] from an integer.
+ pub fn from_int(m: u16) -> Mode {
+ Mode(m)
+ }
+
+ /// Returns the mode as an integer.
+ pub fn as_int(&self) -> u16 {
+ self.0
+ }
+}
+
+/// Used to convert an object into a raw pointer that represents it.
+///
+/// It can eventually be converted back into the object. This is used to store objects as pointers
+/// in kernel data structures, for example, an implementation of
+/// [`Operations`][crate::file::Operations] in `struct
+/// file::private_data`.
+pub trait PointerWrapper {
+ /// Type of values borrowed between calls to [`PointerWrapper::into_pointer`] and
+ /// [`PointerWrapper::from_pointer`].
+ type Borrowed<'a>;
+
+ /// Returns the raw pointer.
+ fn into_pointer(self) -> *const core::ffi::c_void;
+
+ /// Returns a borrowed value.
+ ///
+ /// # Safety
+ ///
+ /// `ptr` must have been returned by a previous call to [`PointerWrapper::into_pointer`].
+ /// Additionally, [`PointerWrapper::from_pointer`] can only be called after *all* values
+ /// returned by [`PointerWrapper::borrow`] have been dropped.
+ unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> Self::Borrowed<'a>;
+
+ /// Returns a mutably borrowed value.
+ ///
+ /// # Safety
+ ///
+ /// The passed pointer must come from a previous to [`PointerWrapper::into_pointer`], and no
+ /// other concurrent users of the pointer (except the ones derived from the returned value) run
+ /// at least until the returned [`ScopeGuard`] is dropped.
+ unsafe fn borrow_mut<T: PointerWrapper>(ptr: *const core::ffi::c_void) -> ScopeGuard<T, fn(T)> {
+ // SAFETY: The safety requirements ensure that `ptr` came from a previous call to
+ // `into_pointer`.
+ ScopeGuard::new_with_data(unsafe { T::from_pointer(ptr) }, |d| {
+ d.into_pointer();
+ })
+ }
+
+ /// Returns the instance back from the raw pointer.
+ ///
+ /// # Safety
+ ///
+ /// The passed pointer must come from a previous call to [`PointerWrapper::into_pointer()`].
+ unsafe fn from_pointer(ptr: *const core::ffi::c_void) -> Self;
+}
+
+impl<T: 'static> PointerWrapper for Box<T> {
+ type Borrowed<'a> = &'a T;
+
+ fn into_pointer(self) -> *const core::ffi::c_void {
+ Box::into_raw(self) as _
+ }
+
+ unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> &'a T {
+ // SAFETY: The safety requirements for this function ensure that the object is still alive,
+ // so it is safe to dereference the raw pointer.
+ // The safety requirements also ensure that the object remains alive for the lifetime of
+ // the returned value.
+ unsafe { &*ptr.cast() }
+ }
+
+ unsafe fn from_pointer(ptr: *const core::ffi::c_void) -> Self {
+ // SAFETY: The passed pointer comes from a previous call to [`Self::into_pointer()`].
+ unsafe { Box::from_raw(ptr as _) }
+ }
+}
+
+impl<T: 'static> PointerWrapper for Ref<T> {
+ type Borrowed<'a> = RefBorrow<'a, T>;
+
+ fn into_pointer(self) -> *const core::ffi::c_void {
+ Ref::into_usize(self) as _
+ }
+
+ unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> RefBorrow<'a, T> {
+ // SAFETY: The safety requirements for this function ensure that the underlying object
+ // remains valid for the lifetime of the returned value.
+ unsafe { Ref::borrow_usize(ptr as _) }
+ }
+
+ unsafe fn from_pointer(ptr: *const core::ffi::c_void) -> Self {
+ // SAFETY: The passed pointer comes from a previous call to [`Self::into_pointer()`].
+ unsafe { Ref::from_usize(ptr as _) }
+ }
+}
+
+impl<T: PointerWrapper + Deref> PointerWrapper for Pin<T> {
+ type Borrowed<'a> = T::Borrowed<'a>;
+
+ fn into_pointer(self) -> *const core::ffi::c_void {
+ // SAFETY: We continue to treat the pointer as pinned by returning just a pointer to it to
+ // the caller.
+ let inner = unsafe { Pin::into_inner_unchecked(self) };
+ inner.into_pointer()
+ }
+
+ unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> Self::Borrowed<'a> {
+ // SAFETY: The safety requirements for this function are the same as the ones for
+ // `T::borrow`.
+ unsafe { T::borrow(ptr) }
+ }
+
+ unsafe fn from_pointer(p: *const core::ffi::c_void) -> Self {
+ // SAFETY: The object was originally pinned.
+ // The passed pointer comes from a previous call to `inner::into_pointer()`.
+ unsafe { Pin::new_unchecked(T::from_pointer(p)) }
+ }
+}
+
+impl<T> PointerWrapper for *mut T {
+ type Borrowed<'a> = *mut T;
+
+ fn into_pointer(self) -> *const core::ffi::c_void {
+ self as _
+ }
+
+ unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> Self::Borrowed<'a> {
+ ptr as _
+ }
+
+ unsafe fn from_pointer(ptr: *const core::ffi::c_void) -> Self {
+ ptr as _
+ }
+}
+
+impl PointerWrapper for () {
+ type Borrowed<'a> = ();
+
+ fn into_pointer(self) -> *const core::ffi::c_void {
+ // We use 1 to be different from a null pointer.
+ 1usize as _
+ }
+
+ unsafe fn borrow<'a>(_: *const core::ffi::c_void) -> Self::Borrowed<'a> {}
+
+ unsafe fn from_pointer(_: *const core::ffi::c_void) -> Self {}
+}
+
+/// Runs a cleanup function/closure when dropped.
+///
+/// The [`ScopeGuard::dismiss`] function prevents the cleanup function from running.
+///
+/// # Examples
+///
+/// In the example below, we have multiple exit paths and we want to log regardless of which one is
+/// taken:
+/// ```
+/// # use kernel::ScopeGuard;
+/// fn example1(arg: bool) {
+/// let _log = ScopeGuard::new(|| pr_info!("example1 completed\n"));
+///
+/// if arg {
+/// return;
+/// }
+///
+/// pr_info!("Do something...\n");
+/// }
+///
+/// # example1(false);
+/// # example1(true);
+/// ```
+///
+/// In the example below, we want to log the same message on all early exits but a different one on
+/// the main exit path:
+/// ```
+/// # use kernel::ScopeGuard;
+/// fn example2(arg: bool) {
+/// let log = ScopeGuard::new(|| pr_info!("example2 returned early\n"));
+///
+/// if arg {
+/// return;
+/// }
+///
+/// // (Other early returns...)
+///
+/// log.dismiss();
+/// pr_info!("example2 no early return\n");
+/// }
+///
+/// # example2(false);
+/// # example2(true);
+/// ```
+///
+/// In the example below, we need a mutable object (the vector) to be accessible within the log
+/// function, so we wrap it in the [`ScopeGuard`]:
+/// ```
+/// # use kernel::ScopeGuard;
+/// fn example3(arg: bool) -> Result {
+/// let mut vec =
+/// ScopeGuard::new_with_data(Vec::new(), |v| pr_info!("vec had {} elements\n", v.len()));
+///
+/// vec.try_push(10u8)?;
+/// if arg {
+/// return Ok(());
+/// }
+/// vec.try_push(20u8)?;
+/// Ok(())
+/// }
+///
+/// # assert_eq!(example3(false), Ok(()));
+/// # assert_eq!(example3(true), Ok(()));
+/// ```
+///
+/// # Invariants
+///
+/// The value stored in the struct is nearly always `Some(_)`, except between
+/// [`ScopeGuard::dismiss`] and [`ScopeGuard::drop`]: in this case, it will be `None` as the value
+/// will have been returned to the caller. Since [`ScopeGuard::dismiss`] consumes the guard,
+/// callers won't be able to use it anymore.
+pub struct ScopeGuard<T, F: FnOnce(T)>(Option<(T, F)>);
+
+impl<T, F: FnOnce(T)> ScopeGuard<T, F> {
+ /// Creates a new guarded object wrapping the given data and with the given cleanup function.
+ pub fn new_with_data(data: T, cleanup_func: F) -> Self {
+ // INVARIANT: The struct is being initialised with `Some(_)`.
+ Self(Some((data, cleanup_func)))
+ }
+
+ /// Prevents the cleanup function from running and returns the guarded data.
+ pub fn dismiss(mut self) -> T {
+ // INVARIANT: This is the exception case in the invariant; it is not visible to callers
+ // because this function consumes `self`.
+ self.0.take().unwrap().0
+ }
+}
+
+impl ScopeGuard<(), Box<dyn FnOnce(())>> {
+ /// Creates a new guarded object with the given cleanup function.
+ pub fn new(cleanup: impl FnOnce()) -> ScopeGuard<(), impl FnOnce(())> {
+ ScopeGuard::new_with_data((), move |_| cleanup())
+ }
+}
+
+impl<T, F: FnOnce(T)> Deref for ScopeGuard<T, F> {
+ type Target = T;
+
+ fn deref(&self) -> &T {
+ // The type invariants guarantee that `unwrap` will succeed.
+ &self.0.as_ref().unwrap().0
+ }
+}
+
+impl<T, F: FnOnce(T)> DerefMut for ScopeGuard<T, F> {
+ fn deref_mut(&mut self) -> &mut T {
+ // The type invariants guarantee that `unwrap` will succeed.
+ &mut self.0.as_mut().unwrap().0
+ }
+}
+
+impl<T, F: FnOnce(T)> Drop for ScopeGuard<T, F> {
+ fn drop(&mut self) {
+ // Run the cleanup function if one is still present.
+ if let Some((data, cleanup)) = self.0.take() {
+ cleanup(data)
+ }
+ }
+}
+
+/// Stores an opaque value.
+///
+/// This is meant to be used with FFI objects that are never interpreted by Rust code.
+#[repr(transparent)]
+pub struct Opaque<T>(MaybeUninit<UnsafeCell<T>>);
+
+impl<T> Opaque<T> {
+ /// Creates a new opaque value.
+ pub const fn new(value: T) -> Self {
+ Self(MaybeUninit::new(UnsafeCell::new(value)))
+ }
+
+ /// Creates an uninitialised value.
+ pub const fn uninit() -> Self {
+ Self(MaybeUninit::uninit())
+ }
+
+ /// Returns a raw pointer to the opaque data.
+ pub fn get(&self) -> *mut T {
+ UnsafeCell::raw_get(self.0.as_ptr())
+ }
+}
+
+/// A bitmask.
+///
+/// It has a restriction that all bits must be the same, except one. For example, `0b1110111` and
+/// `0b1000` are acceptable masks.
+#[derive(Clone, Copy)]
+pub struct Bit<T> {
+ index: T,
+ inverted: bool,
+}
+
+/// Creates a bit mask with a single bit set.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::bit;
+/// let mut x = 0xfeu32;
+///
+/// assert_eq!(x & bit(0), 0);
+/// assert_eq!(x & bit(1), 2);
+/// assert_eq!(x & bit(2), 4);
+/// assert_eq!(x & bit(3), 8);
+///
+/// x |= bit(0);
+/// assert_eq!(x, 0xff);
+///
+/// x &= !bit(1);
+/// assert_eq!(x, 0xfd);
+///
+/// x &= !bit(7);
+/// assert_eq!(x, 0x7d);
+///
+/// let y: u64 = bit(34).into();
+/// assert_eq!(y, 0x400000000);
+///
+/// assert_eq!(y | bit(35), 0xc00000000);
+/// ```
+pub fn bit<T: Copy>(index: T) -> Bit<T> {
+ Bit {
+ index,
+ inverted: false,
+ }
+}
+
+impl<T: Copy> ops::Not for Bit<T> {
+ type Output = Self;
+ fn not(self) -> Self {
+ Self {
+ index: self.index,
+ inverted: !self.inverted,
+ }
+ }
+}
+
+/// Implemented by integer types that allow counting the number of trailing zeroes.
+pub trait TrailingZeros {
+ /// Returns the number of trailing zeroes in the binary representation of `self`.
+ fn trailing_zeros(&self) -> u32;
+}
+
+macro_rules! define_unsigned_number_traits {
+ ($type_name:ty) => {
+ impl TrailingZeros for $type_name {
+ fn trailing_zeros(&self) -> u32 {
+ <$type_name>::trailing_zeros(*self)
+ }
+ }
+
+ impl<T: Copy> core::convert::From<Bit<T>> for $type_name
+ where
+ Self: ops::Shl<T, Output = Self> + core::convert::From<u8> + ops::Not<Output = Self>,
+ {
+ fn from(v: Bit<T>) -> Self {
+ let c = Self::from(1u8) << v.index;
+ if v.inverted {
+ !c
+ } else {
+ c
+ }
+ }
+ }
+
+ impl<T: Copy> ops::BitAnd<Bit<T>> for $type_name
+ where
+ Self: ops::Shl<T, Output = Self> + core::convert::From<u8>,
+ {
+ type Output = Self;
+ fn bitand(self, rhs: Bit<T>) -> Self::Output {
+ self & Self::from(rhs)
+ }
+ }
+
+ impl<T: Copy> ops::BitOr<Bit<T>> for $type_name
+ where
+ Self: ops::Shl<T, Output = Self> + core::convert::From<u8>,
+ {
+ type Output = Self;
+ fn bitor(self, rhs: Bit<T>) -> Self::Output {
+ self | Self::from(rhs)
+ }
+ }
+
+ impl<T: Copy> ops::BitAndAssign<Bit<T>> for $type_name
+ where
+ Self: ops::Shl<T, Output = Self> + core::convert::From<u8>,
+ {
+ fn bitand_assign(&mut self, rhs: Bit<T>) {
+ *self &= Self::from(rhs)
+ }
+ }
+
+ impl<T: Copy> ops::BitOrAssign<Bit<T>> for $type_name
+ where
+ Self: ops::Shl<T, Output = Self> + core::convert::From<u8>,
+ {
+ fn bitor_assign(&mut self, rhs: Bit<T>) {
+ *self |= Self::from(rhs)
+ }
+ }
+ };
+}
+
+define_unsigned_number_traits!(u8);
+define_unsigned_number_traits!(u16);
+define_unsigned_number_traits!(u32);
+define_unsigned_number_traits!(u64);
+define_unsigned_number_traits!(usize);
+
+/// Returns an iterator over the set bits of `value`.
+///
+/// # Examples
+///
+/// ```
+/// use kernel::bits_iter;
+///
+/// let mut iter = bits_iter(5usize);
+/// assert_eq!(iter.next().unwrap(), 0);
+/// assert_eq!(iter.next().unwrap(), 2);
+/// assert!(iter.next().is_none());
+/// ```
+///
+/// ```
+/// use kernel::bits_iter;
+///
+/// fn print_bits(x: usize) {
+/// for bit in bits_iter(x) {
+/// pr_info!("{}\n", bit);
+/// }
+/// }
+///
+/// # print_bits(42);
+/// ```
+#[inline]
+pub fn bits_iter<T>(value: T) -> impl Iterator<Item = u32>
+where
+ T: core::cmp::PartialEq
+ + From<u8>
+ + ops::Shl<u32, Output = T>
+ + ops::Not<Output = T>
+ + ops::BitAndAssign
+ + TrailingZeros,
+{
+ struct BitIterator<U> {
+ value: U,
+ }
+
+ impl<U> Iterator for BitIterator<U>
+ where
+ U: core::cmp::PartialEq
+ + From<u8>
+ + ops::Shl<u32, Output = U>
+ + ops::Not<Output = U>
+ + ops::BitAndAssign
+ + TrailingZeros,
+ {
+ type Item = u32;
+
+ #[inline]
+ fn next(&mut self) -> Option<u32> {
+ if self.value == U::from(0u8) {
+ return None;
+ }
+ let ret = self.value.trailing_zeros();
+ self.value &= !(U::from(1u8) << ret);
+ Some(ret)
+ }
+ }
+
+ BitIterator { value }
+}
+
+/// A trait for boolean types.
+///
+/// This is meant to be used in type states to allow boolean constraints in implementation blocks.
+/// In the example below, the implementation containing `MyType::set_value` could _not_ be
+/// constrained to type states containing `Writable = true` if `Writable` were a constant instead
+/// of a type.
+///
+/// # Safety
+///
+/// No additional implementations of [`Bool`] should be provided, as [`True`] and [`False`] are
+/// already provided.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::{Bool, False, True};
+/// use core::marker::PhantomData;
+///
+/// // Type state specifies whether the type is writable.
+/// trait MyTypeState {
+/// type Writable: Bool;
+/// }
+///
+/// // In state S1, the type is writable.
+/// struct S1;
+/// impl MyTypeState for S1 {
+/// type Writable = True;
+/// }
+///
+/// // In state S2, the type is not writable.
+/// struct S2;
+/// impl MyTypeState for S2 {
+/// type Writable = False;
+/// }
+///
+/// struct MyType<T: MyTypeState> {
+/// value: u32,
+/// _p: PhantomData<T>,
+/// }
+///
+/// impl<T: MyTypeState> MyType<T> {
+/// fn new(value: u32) -> Self {
+/// Self {
+/// value,
+/// _p: PhantomData,
+/// }
+/// }
+/// }
+///
+/// // This implementation block only applies if the type state is writable.
+/// impl<T> MyType<T>
+/// where
+/// T: MyTypeState<Writable = True>,
+/// {
+/// fn set_value(&mut self, v: u32) {
+/// self.value = v;
+/// }
+/// }
+///
+/// let mut x = MyType::<S1>::new(10);
+/// let mut y = MyType::<S2>::new(20);
+///
+/// x.set_value(30);
+///
+/// // The code below fails to compile because `S2` is not writable.
+/// // y.set_value(40);
+/// ```
+pub unsafe trait Bool {}
+
+/// Represents the `true` value for types with [`Bool`] bound.
+pub struct True;
+
+// SAFETY: This is one of the only two implementations of `Bool`.
+unsafe impl Bool for True {}
+
+/// Represents the `false` value for types wth [`Bool`] bound.
+pub struct False;
+
+// SAFETY: This is one of the only two implementations of `Bool`.
+unsafe impl Bool for False {}
+
+/// Types that are _always_ reference counted.
+///
+/// It allows such types to define their own custom ref increment and decrement functions.
+/// Additionally, it allows users to convert from a shared reference `&T` to an owned reference
+/// [`ARef<T>`].
+///
+/// This is usually implemented by wrappers to existing structures on the C side of the code. For
+/// Rust code, the recommendation is to use [`Ref`] to create reference-counted instances of a
+/// type.
+///
+/// # Safety
+///
+/// Implementers must ensure that increments to the reference count keeps the object alive in
+/// memory at least until a matching decrement performed.
+///
+/// Implementers must also ensure that all instances are reference-counted. (Otherwise they
+/// won't be able to honour the requirement that [`AlwaysRefCounted::inc_ref`] keep the object
+/// alive.)
+pub unsafe trait AlwaysRefCounted {
+ /// Increments the reference count on the object.
+ fn inc_ref(&self);
+
+ /// Decrements the reference count on the object.
+ ///
+ /// Frees the object when the count reaches zero.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that there was a previous matching increment to the reference count,
+ /// and that the object is no longer used after its reference count is decremented (as it may
+ /// result in the object being freed), unless the caller owns another increment on the refcount
+ /// (e.g., it calls [`AlwaysRefCounted::inc_ref`] twice, then calls
+ /// [`AlwaysRefCounted::dec_ref`] once).
+ unsafe fn dec_ref(obj: NonNull<Self>);
+}
+
+/// An owned reference to an always-reference-counted object.
+///
+/// The object's reference count is automatically decremented when an instance of [`ARef`] is
+/// dropped. It is also automatically incremented when a new instance is created via
+/// [`ARef::clone`].
+///
+/// # Invariants
+///
+/// The pointer stored in `ptr` is non-null and valid for the lifetime of the [`ARef`] instance. In
+/// particular, the [`ARef`] instance owns an increment on underlying object's reference count.
+pub struct ARef<T: AlwaysRefCounted> {
+ ptr: NonNull<T>,
+ _p: PhantomData<T>,
+}
+
+impl<T: AlwaysRefCounted> ARef<T> {
+ /// Creates a new instance of [`ARef`].
+ ///
+ /// It takes over an increment of the reference count on the underlying object.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that the reference count was incremented at least once, and that they
+ /// are properly relinquishing one increment. That is, if there is only one increment, callers
+ /// must not use the underlying object anymore -- it is only safe to do so via the newly
+ /// created [`ARef`].
+ pub unsafe fn from_raw(ptr: NonNull<T>) -> Self {
+ // INVARIANT: The safety requirements guarantee that the new instance now owns the
+ // increment on the refcount.
+ Self {
+ ptr,
+ _p: PhantomData,
+ }
+ }
+}
+
+impl<T: AlwaysRefCounted> Clone for ARef<T> {
+ fn clone(&self) -> Self {
+ self.inc_ref();
+ // SAFETY: We just incremented the refcount above.
+ unsafe { Self::from_raw(self.ptr) }
+ }
+}
+
+impl<T: AlwaysRefCounted> Deref for ARef<T> {
+ type Target = T;
+
+ fn deref(&self) -> &Self::Target {
+ // SAFETY: The type invariants guarantee that the object is valid.
+ unsafe { self.ptr.as_ref() }
+ }
+}
+
+impl<T: AlwaysRefCounted> From<&T> for ARef<T> {
+ fn from(b: &T) -> Self {
+ b.inc_ref();
+ // SAFETY: We just incremented the refcount above.
+ unsafe { Self::from_raw(NonNull::from(b)) }
+ }
+}
+
+impl<T: AlwaysRefCounted> Drop for ARef<T> {
+ fn drop(&mut self) {
+ // SAFETY: The type invariants guarantee that the `ARef` owns the reference we're about to
+ // decrement.
+ unsafe { T::dec_ref(self.ptr) };
+ }
+}
+
+/// A sum type that always holds either a value of type `L` or `R`.
+pub enum Either<L, R> {
+ /// Constructs an instance of [`Either`] containing a value of type `L`.
+ Left(L),
+
+ /// Constructs an instance of [`Either`] containing a value of type `R`.
+ Right(R),
+}
diff --git a/rust/kernel/unsafe_list.rs b/rust/kernel/unsafe_list.rs
new file mode 100644
index 000000000000..df496667c033
--- /dev/null
+++ b/rust/kernel/unsafe_list.rs
@@ -0,0 +1,680 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Intrusive circular doubly-linked lists.
+//!
+//! We don't use the C version for two main reasons:
+//! - Next/prev pointers do not support `?Sized` types, so wouldn't be able to have a list of, for
+//! example, `dyn Trait`.
+//! - It would require the list head to be pinned (in addition to the list entries).
+
+use core::{cell::UnsafeCell, iter, marker::PhantomPinned, mem::MaybeUninit, ptr::NonNull};
+
+/// An intrusive circular doubly-linked list.
+///
+/// Membership of elements of the list must be tracked by the owner of the list.
+///
+/// While elements of the list must remain pinned while in the list, the list itself does not
+/// require pinning. In other words, users are allowed to move instances of [`List`].
+///
+/// # Invariants
+///
+/// The links of an entry are wrapped in [`UnsafeCell`] and they are acessible when the list itself
+/// is. For example, when a thread has a mutable reference to a list, it may also safely get
+/// mutable references to the links of the elements in the list.
+///
+/// The links of an entry are also wrapped in [`MaybeUninit`] and they are initialised when they
+/// are present in a list. Otherwise they are uninitialised.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::unsafe_list::{Adapter, Links, List};
+///
+/// struct Example {
+/// v: usize,
+/// links: Links<Example>,
+/// }
+///
+/// // SAFETY: This adapter is the only one that uses `Example::links`.
+/// unsafe impl Adapter for Example {
+/// type EntryType = Self;
+/// fn to_links(obj: &Self) -> &Links<Self> {
+/// &obj.links
+/// }
+/// }
+///
+/// let a = Example {
+/// v: 0,
+/// links: Links::new(),
+/// };
+/// let b = Example {
+/// v: 1,
+/// links: Links::new(),
+/// };
+///
+/// let mut list = List::<Example>::new();
+/// assert!(list.is_empty());
+///
+/// // SAFETY: `a` was declared above, it's not in any lists yet, is never moved, and outlives the
+/// // list.
+/// unsafe { list.push_back(&a) };
+///
+/// // SAFETY: `b` was declared above, it's not in any lists yet, is never moved, and outlives the
+/// // list.
+/// unsafe { list.push_back(&b) };
+///
+/// assert!(core::ptr::eq(&a, list.front().unwrap().as_ptr()));
+/// assert!(core::ptr::eq(&b, list.back().unwrap().as_ptr()));
+///
+/// for (i, e) in list.iter().enumerate() {
+/// assert_eq!(i, e.v);
+/// }
+///
+/// for e in &list {
+/// pr_info!("{}", e.v);
+/// }
+///
+/// // SAFETY: `b` was added to the list above and wasn't removed yet.
+/// unsafe { list.remove(&b) };
+///
+/// assert!(core::ptr::eq(&a, list.front().unwrap().as_ptr()));
+/// assert!(core::ptr::eq(&a, list.back().unwrap().as_ptr()));
+/// ```
+pub struct List<A: Adapter + ?Sized> {
+ first: Option<NonNull<A::EntryType>>,
+}
+
+// SAFETY: The list is itself can be safely sent to other threads but we restrict it to being `Send`
+// only when its entries are also `Send`.
+unsafe impl<A: Adapter + ?Sized> Send for List<A> where A::EntryType: Send {}
+
+// SAFETY: The list is itself usable from other threads via references but we restrict it to being
+// `Sync` only when its entries are also `Sync`.
+unsafe impl<A: Adapter + ?Sized> Sync for List<A> where A::EntryType: Sync {}
+
+impl<A: Adapter + ?Sized> List<A> {
+ /// Constructs a new empty list.
+ pub const fn new() -> Self {
+ Self { first: None }
+ }
+
+ /// Determines if the list is empty.
+ pub fn is_empty(&self) -> bool {
+ self.first.is_none()
+ }
+
+ /// Inserts the only entry to a list.
+ ///
+ /// This must only be called when the list is empty.
+ pub fn insert_only_entry(&mut self, obj: &A::EntryType) {
+ let obj_ptr = NonNull::from(obj);
+
+ // SAFETY: We have mutable access to the list, so we also have access to the entry
+ // we're about to insert (and it's not in any other lists per the function safety
+ // requirements).
+ let obj_inner = unsafe { &mut *A::to_links(obj).0.get() };
+
+ // INVARIANTS: All fields of the links of the newly-inserted object are initialised
+ // below.
+ obj_inner.write(LinksInner {
+ next: obj_ptr,
+ prev: obj_ptr,
+ _pin: PhantomPinned,
+ });
+ self.first = Some(obj_ptr);
+ }
+
+ /// Adds the given object to the end of the list.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that:
+ /// - The object is not currently in any lists.
+ /// - The object remains alive until it is removed from the list.
+ /// - The object is not moved until it is removed from the list.
+ pub unsafe fn push_back(&mut self, obj: &A::EntryType) {
+ if let Some(first) = self.first {
+ // SAFETY: The previous entry to the first one is necessarily present in the list (it
+ // may in fact be the first entry itself as this is a circular list). The safety
+ // requirements of this function regarding `obj` satisfy those of `insert_after`.
+ unsafe { self.insert_after(self.inner_ref(first).prev, obj) };
+ } else {
+ self.insert_only_entry(obj);
+ }
+ }
+
+ /// Adds the given object to the beginning of the list.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that:
+ /// - The object is not currently in any lists.
+ /// - The object remains alive until it is removed from the list.
+ /// - The object is not moved until it is removed from the list.
+ pub unsafe fn push_front(&mut self, obj: &A::EntryType) {
+ if let Some(first) = self.first {
+ // SAFETY: The safety requirements of this function regarding `obj` satisfy those of
+ // `insert_before`. Additionally, `first` is in the list.
+ unsafe { self.insert_before(first, obj) };
+ } else {
+ self.insert_only_entry(obj);
+ }
+ }
+
+ /// Removes the given object from the list.
+ ///
+ /// # Safety
+ ///
+ /// The object must be in the list. In other words, the object must have previously been
+ /// inserted into this list and not removed yet.
+ pub unsafe fn remove(&mut self, entry: &A::EntryType) {
+ // SAFETY: Per the function safety requirements, `entry` is in the list.
+ let inner = unsafe { self.inner_ref(NonNull::from(entry)) };
+ let next = inner.next;
+ let prev = inner.prev;
+
+ // SAFETY: We have mutable access to the list, so we also have access to the entry we're
+ // about to remove (which we know is in the list per the function safety requirements).
+ let inner = unsafe { &mut *A::to_links(entry).0.get() };
+
+ // SAFETY: Since the entry was in the list, it was initialised.
+ unsafe { inner.assume_init_drop() };
+
+ if core::ptr::eq(next.as_ptr(), entry) {
+ // Removing the only element.
+ self.first = None;
+ } else {
+ // SAFETY: `prev` is in the list because it is pointed at by the entry being removed.
+ unsafe { self.inner(prev).next = next };
+ // SAFETY: `next` is in the list because it is pointed at by the entry being removed.
+ unsafe { self.inner(next).prev = prev };
+
+ if core::ptr::eq(self.first.unwrap().as_ptr(), entry) {
+ // Update the pointer to the first element as we're removing it.
+ self.first = Some(next);
+ }
+ }
+ }
+
+ /// Adds the given object after another object already in the list.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that:
+ /// - The existing object is currently in the list.
+ /// - The new object is not currently in any lists.
+ /// - The new object remains alive until it is removed from the list.
+ /// - The new object is not moved until it is removed from the list.
+ pub unsafe fn insert_after(&mut self, existing: NonNull<A::EntryType>, new: &A::EntryType) {
+ // SAFETY: We have mutable access to the list, so we also have access to the entry we're
+ // about to insert (and it's not in any other lists per the function safety requirements).
+ let new_inner = unsafe { &mut *A::to_links(new).0.get() };
+
+ // SAFETY: Per the function safety requirements, `existing` is in the list.
+ let existing_inner = unsafe { self.inner(existing) };
+ let next = existing_inner.next;
+
+ // INVARIANTS: All fields of the links of the newly-inserted object are initialised below.
+ new_inner.write(LinksInner {
+ next,
+ prev: existing,
+ _pin: PhantomPinned,
+ });
+
+ existing_inner.next = NonNull::from(new);
+
+ // SAFETY: `next` is in the list because it's pointed at by the existing entry.
+ unsafe { self.inner(next).prev = NonNull::from(new) };
+ }
+
+ /// Adds the given object before another object already in the list.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that:
+ /// - The existing object is currently in the list.
+ /// - The new object is not currently in any lists.
+ /// - The new object remains alive until it is removed from the list.
+ /// - The new object is not moved until it is removed from the list.
+ pub unsafe fn insert_before(&mut self, existing: NonNull<A::EntryType>, new: &A::EntryType) {
+ // SAFETY: The safety requirements of this function satisfy those of `insert_after`.
+ unsafe { self.insert_after(self.inner_ref(existing).prev, new) };
+
+ if self.first.unwrap() == existing {
+ // Update the pointer to the first element as we're inserting before it.
+ self.first = Some(NonNull::from(new));
+ }
+ }
+
+ /// Returns the first element of the list, if one exists.
+ pub fn front(&self) -> Option<NonNull<A::EntryType>> {
+ self.first
+ }
+
+ /// Returns the last element of the list, if one exists.
+ pub fn back(&self) -> Option<NonNull<A::EntryType>> {
+ // SAFETY: Having a pointer to it guarantees that the object is in the list.
+ self.first.map(|f| unsafe { self.inner_ref(f).prev })
+ }
+
+ /// Returns an iterator for the list starting at the first entry.
+ pub fn iter(&self) -> Iterator<'_, A> {
+ Iterator::new(self.cursor_front())
+ }
+
+ /// Returns an iterator for the list starting at the last entry.
+ pub fn iter_back(&self) -> impl iter::DoubleEndedIterator<Item = &'_ A::EntryType> {
+ Iterator::new(self.cursor_back())
+ }
+
+ /// Returns a cursor starting on the first (front) element of the list.
+ pub fn cursor_front(&self) -> Cursor<'_, A> {
+ // SAFETY: `front` is in the list (or is `None`) because we've read it from the list head
+ // and the list cannot have changed because we hold a shared reference to it.
+ unsafe { Cursor::new(self, self.front()) }
+ }
+
+ /// Returns a cursor starting on the last (back) element of the list.
+ pub fn cursor_back(&self) -> Cursor<'_, A> {
+ // SAFETY: `back` is in the list (or is `None`) because we've read it from the list head
+ // and the list cannot have changed because we hold a shared reference to it.
+ unsafe { Cursor::new(self, self.back()) }
+ }
+
+ /// Returns a mutable reference to the links of a given object.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that the element is in the list.
+ unsafe fn inner(&mut self, ptr: NonNull<A::EntryType>) -> &mut LinksInner<A::EntryType> {
+ // SAFETY: The safety requirements guarantee that we the links are initialised because
+ // that's part of the type invariants. Additionally, the type invariants also guarantee
+ // that having a mutable reference to the list guarantees that the links are mutably
+ // accessible as well.
+ unsafe { (*A::to_links(ptr.as_ref()).0.get()).assume_init_mut() }
+ }
+
+ /// Returns a shared reference to the links of a given object.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that the element is in the list.
+ unsafe fn inner_ref(&self, ptr: NonNull<A::EntryType>) -> &LinksInner<A::EntryType> {
+ // SAFETY: The safety requirements guarantee that we the links are initialised because
+ // that's part of the type invariants. Additionally, the type invariants also guarantee
+ // that having a shared reference to the list guarantees that the links are accessible in
+ // shared mode as well.
+ unsafe { (*A::to_links(ptr.as_ref()).0.get()).assume_init_ref() }
+ }
+}
+
+impl<'a, A: Adapter + ?Sized> iter::IntoIterator for &'a List<A> {
+ type Item = &'a A::EntryType;
+ type IntoIter = Iterator<'a, A>;
+ fn into_iter(self) -> Self::IntoIter {
+ self.iter()
+ }
+}
+
+/// An iterator for the linked list.
+pub struct Iterator<'a, A: Adapter + ?Sized> {
+ cursor: Cursor<'a, A>,
+}
+
+impl<'a, A: Adapter + ?Sized> Iterator<'a, A> {
+ fn new(cursor: Cursor<'a, A>) -> Self {
+ Self { cursor }
+ }
+}
+
+impl<'a, A: Adapter + ?Sized> iter::Iterator for Iterator<'a, A> {
+ type Item = &'a A::EntryType;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ let ret = self.cursor.current()?;
+ self.cursor.move_next();
+ Some(ret)
+ }
+}
+
+impl<A: Adapter + ?Sized> iter::DoubleEndedIterator for Iterator<'_, A> {
+ fn next_back(&mut self) -> Option<Self::Item> {
+ let ret = self.cursor.current()?;
+ self.cursor.move_prev();
+ Some(ret)
+ }
+}
+
+/// A linked-list adapter.
+///
+/// It is a separate type (as opposed to implemented by the type of the elements of the list)
+/// so that a given type can be inserted into multiple lists at the same time; in such cases, each
+/// list needs its own adapter that returns a different pointer to links.
+///
+/// It may, however, be implemented by the type itself to be inserted into lists, which makes it
+/// more readable.
+///
+/// # Safety
+///
+/// Implementers must ensure that the links returned by [`Adapter::to_links`] are unique to the
+/// adapter. That is, different adapters must return different links for a given object.
+///
+/// The reason for this requirement is to avoid confusion that may lead to UB. In particular, if
+/// two adapters were to use the same links, a user may have two lists (one for each adapter) and
+/// try to insert the same object into both at the same time; although this clearly violates the
+/// list safety requirements (e.g., those in [`List::push_back`]), for users to notice it, they'd
+/// have to dig into the details of the two adapters.
+///
+/// By imposing the requirement on the adapter, we make it easier for users to check compliance
+/// with the requirements when using the list.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::unsafe_list::{Adapter, Links, List};
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// links1: Links<Example>,
+/// links2: Links<Example>,
+/// }
+///
+/// // SAFETY: This adapter is the only one that uses `Example::links1`.
+/// unsafe impl Adapter for Example {
+/// type EntryType = Self;
+/// fn to_links(obj: &Self) -> &Links<Self> {
+/// &obj.links1
+/// }
+/// }
+///
+/// struct ExampleAdapter;
+///
+/// // SAFETY: This adapter is the only one that uses `Example::links2`.
+/// unsafe impl Adapter for ExampleAdapter {
+/// type EntryType = Example;
+/// fn to_links(obj: &Example) -> &Links<Example> {
+/// &obj.links2
+/// }
+/// }
+///
+/// static LIST1: List<Example> = List::new();
+/// static LIST2: List<ExampleAdapter> = List::new();
+/// ```
+pub unsafe trait Adapter {
+ /// The type of the enties in the list.
+ type EntryType: ?Sized;
+
+ /// Retrieves the linked list links for the given object.
+ fn to_links(obj: &Self::EntryType) -> &Links<Self::EntryType>;
+}
+
+struct LinksInner<T: ?Sized> {
+ next: NonNull<T>,
+ prev: NonNull<T>,
+ _pin: PhantomPinned,
+}
+
+/// Links of a linked list.
+///
+/// List entries need one of these per concurrent list.
+pub struct Links<T: ?Sized>(UnsafeCell<MaybeUninit<LinksInner<T>>>);
+
+// SAFETY: `Links` can be safely sent to other threads but we restrict it to being `Send` only when
+// the list entries it points to are also `Send`.
+unsafe impl<T: ?Sized> Send for Links<T> {}
+
+// SAFETY: `Links` is usable from other threads via references but we restrict it to being `Sync`
+// only when the list entries it points to are also `Sync`.
+unsafe impl<T: ?Sized> Sync for Links<T> {}
+
+impl<T: ?Sized> Links<T> {
+ /// Constructs a new instance of the linked-list links.
+ pub const fn new() -> Self {
+ Self(UnsafeCell::new(MaybeUninit::uninit()))
+ }
+}
+
+pub(crate) struct CommonCursor<A: Adapter + ?Sized> {
+ pub(crate) cur: Option<NonNull<A::EntryType>>,
+}
+
+impl<A: Adapter + ?Sized> CommonCursor<A> {
+ pub(crate) fn new(cur: Option<NonNull<A::EntryType>>) -> Self {
+ Self { cur }
+ }
+
+ /// Moves the cursor to the next entry of the list.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that the cursor is either [`None`] or points to an entry that is in
+ /// `list`.
+ pub(crate) unsafe fn move_next(&mut self, list: &List<A>) {
+ match self.cur.take() {
+ None => self.cur = list.first,
+ Some(cur) => {
+ if let Some(head) = list.first {
+ // SAFETY: Per the function safety requirements, `cur` is in the list.
+ let links = unsafe { list.inner_ref(cur) };
+ if links.next != head {
+ self.cur = Some(links.next);
+ }
+ }
+ }
+ }
+ }
+
+ /// Moves the cursor to the previous entry of the list.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that the cursor is either [`None`] or points to an entry that is in
+ /// `list`.
+ pub(crate) unsafe fn move_prev(&mut self, list: &List<A>) {
+ match list.first {
+ None => self.cur = None,
+ Some(head) => {
+ let next = match self.cur.take() {
+ None => head,
+ Some(cur) => {
+ if cur == head {
+ return;
+ }
+ cur
+ }
+ };
+ // SAFETY: `next` is either `head` or `cur`. The former is in the list because it's
+ // its head; the latter is in the list per the function safety requirements.
+ self.cur = Some(unsafe { list.inner_ref(next) }.prev);
+ }
+ }
+ }
+}
+
+/// A list cursor that allows traversing a linked list and inspecting elements.
+pub struct Cursor<'a, A: Adapter + ?Sized> {
+ cursor: CommonCursor<A>,
+ list: &'a List<A>,
+}
+
+impl<'a, A: Adapter + ?Sized> Cursor<'a, A> {
+ /// Creates a new cursor.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that `cur` is either [`None`] or points to an entry in `list`.
+ pub(crate) unsafe fn new(list: &'a List<A>, cur: Option<NonNull<A::EntryType>>) -> Self {
+ Self {
+ list,
+ cursor: CommonCursor::new(cur),
+ }
+ }
+
+ /// Returns the element the cursor is currently positioned on.
+ pub fn current(&self) -> Option<&'a A::EntryType> {
+ let cur = self.cursor.cur?;
+ // SAFETY: `cursor` starts off in the list and only changes within the list. Additionally,
+ // the list cannot change because we hold a shared reference to it, so the cursor is always
+ // within the list.
+ Some(unsafe { cur.as_ref() })
+ }
+
+ /// Moves the cursor to the next element.
+ pub fn move_next(&mut self) {
+ // SAFETY: `cursor` starts off in the list and only changes within the list. Additionally,
+ // the list cannot change because we hold a shared reference to it, so the cursor is always
+ // within the list.
+ unsafe { self.cursor.move_next(self.list) };
+ }
+
+ /// Moves the cursor to the previous element.
+ pub fn move_prev(&mut self) {
+ // SAFETY: `cursor` starts off in the list and only changes within the list. Additionally,
+ // the list cannot change because we hold a shared reference to it, so the cursor is always
+ // within the list.
+ unsafe { self.cursor.move_prev(self.list) };
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use alloc::{boxed::Box, vec::Vec};
+ use core::ptr::NonNull;
+
+ struct Example {
+ links: super::Links<Self>,
+ }
+
+ // SAFETY: This is the only adapter that uses `Example::links`.
+ unsafe impl super::Adapter for Example {
+ type EntryType = Self;
+ fn to_links(obj: &Self) -> &super::Links<Self> {
+ &obj.links
+ }
+ }
+
+ fn build_vector(size: usize) -> Vec<Box<Example>> {
+ let mut v = Vec::new();
+ v.reserve(size);
+ for _ in 0..size {
+ v.push(Box::new(Example {
+ links: super::Links::new(),
+ }));
+ }
+ v
+ }
+
+ #[track_caller]
+ fn assert_list_contents(v: &[Box<Example>], list: &super::List<Example>) {
+ let n = v.len();
+
+ // Assert that the list is ok going forward.
+ let mut count = 0;
+ for (i, e) in list.iter().enumerate() {
+ assert!(core::ptr::eq(e, &*v[i]));
+ count += 1;
+ }
+ assert_eq!(count, n);
+
+ // Assert that the list is ok going backwards.
+ let mut count = 0;
+ for (i, e) in list.iter_back().rev().enumerate() {
+ assert!(core::ptr::eq(e, &*v[n - 1 - i]));
+ count += 1;
+ }
+ assert_eq!(count, n);
+ }
+
+ #[track_caller]
+ fn test_each_element(
+ min_len: usize,
+ max_len: usize,
+ test: impl Fn(&mut Vec<Box<Example>>, &mut super::List<Example>, usize, Box<Example>),
+ ) {
+ for n in min_len..=max_len {
+ for i in 0..n {
+ let extra = Box::new(Example {
+ links: super::Links::new(),
+ });
+ let mut v = build_vector(n);
+ let mut list = super::List::<Example>::new();
+
+ // Build list.
+ for j in 0..n {
+ // SAFETY: The entry was allocated above, it's not in any lists yet, is never
+ // moved, and outlives the list.
+ unsafe { list.push_back(&v[j]) };
+ }
+
+ // Call the test case.
+ test(&mut v, &mut list, i, extra);
+
+ // Check that the list is ok.
+ assert_list_contents(&v, &list);
+ }
+ }
+ }
+
+ #[test]
+ fn test_push_back() {
+ const MAX: usize = 10;
+ let v = build_vector(MAX);
+ let mut list = super::List::<Example>::new();
+
+ for n in 1..=MAX {
+ // SAFETY: The entry was allocated above, it's not in any lists yet, is never moved,
+ // and outlives the list.
+ unsafe { list.push_back(&v[n - 1]) };
+ assert_list_contents(&v[..n], &list);
+ }
+ }
+
+ #[test]
+ fn test_push_front() {
+ const MAX: usize = 10;
+ let v = build_vector(MAX);
+ let mut list = super::List::<Example>::new();
+
+ for n in 1..=MAX {
+ // SAFETY: The entry was allocated above, it's not in any lists yet, is never moved,
+ // and outlives the list.
+ unsafe { list.push_front(&v[MAX - n]) };
+ assert_list_contents(&v[MAX - n..], &list);
+ }
+ }
+
+ #[test]
+ fn test_one_removal() {
+ test_each_element(1, 10, |v, list, i, _| {
+ // Remove the i-th element.
+ // SAFETY: The i-th element was added to the list above, and wasn't removed yet.
+ unsafe { list.remove(&v[i]) };
+ v.remove(i);
+ });
+ }
+
+ #[test]
+ fn test_one_insert_after() {
+ test_each_element(1, 10, |v, list, i, extra| {
+ // Insert after the i-th element.
+ // SAFETY: The i-th element was added to the list above, and wasn't removed yet.
+ // Additionally, the new element isn't in any list yet, isn't moved, and outlives
+ // the list.
+ unsafe { list.insert_after(NonNull::from(&*v[i]), &*extra) };
+ v.insert(i + 1, extra);
+ });
+ }
+
+ #[test]
+ fn test_one_insert_before() {
+ test_each_element(1, 10, |v, list, i, extra| {
+ // Insert before the i-th element.
+ // SAFETY: The i-th element was added to the list above, and wasn't removed yet.
+ // Additionally, the new element isn't in any list yet, isn't moved, and outlives
+ // the list.
+ unsafe { list.insert_before(NonNull::from(&*v[i]), &*extra) };
+ v.insert(i, extra);
+ });
+ }
+}
diff --git a/rust/kernel/user_ptr.rs b/rust/kernel/user_ptr.rs
new file mode 100644
index 000000000000..0bc2c7f1331e
--- /dev/null
+++ b/rust/kernel/user_ptr.rs
@@ -0,0 +1,175 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! User pointers.
+//!
+//! C header: [`include/linux/uaccess.h`](../../../../include/linux/uaccess.h)
+
+use crate::{
+ bindings,
+ error::code::*,
+ io_buffer::{IoBufferReader, IoBufferWriter},
+ Result,
+};
+use alloc::vec::Vec;
+
+/// A reference to an area in userspace memory, which can be either
+/// read-only or read-write.
+///
+/// All methods on this struct are safe: invalid pointers return
+/// `EFAULT`. Concurrent access, *including data races to/from userspace
+/// memory*, is permitted, because fundamentally another userspace
+/// thread/process could always be modifying memory at the same time
+/// (in the same way that userspace Rust's [`std::io`] permits data races
+/// with the contents of files on disk). In the presence of a race, the
+/// exact byte values read/written are unspecified but the operation is
+/// well-defined. Kernelspace code should validate its copy of data
+/// after completing a read, and not expect that multiple reads of the
+/// same address will return the same value.
+///
+/// All APIs enforce the invariant that a given byte of memory from userspace
+/// may only be read once. By preventing double-fetches we avoid TOCTOU
+/// vulnerabilities. This is accomplished by taking `self` by value to prevent
+/// obtaining multiple readers on a given [`UserSlicePtr`], and the readers
+/// only permitting forward reads.
+///
+/// Constructing a [`UserSlicePtr`] performs no checks on the provided
+/// address and length, it can safely be constructed inside a kernel thread
+/// with no current userspace process. Reads and writes wrap the kernel APIs
+/// `copy_from_user` and `copy_to_user`, which check the memory map of the
+/// current process and enforce that the address range is within the user
+/// range (no additional calls to `access_ok` are needed).
+///
+/// [`std::io`]: https://doc.rust-lang.org/std/io/index.html
+pub struct UserSlicePtr(*mut core::ffi::c_void, usize);
+
+impl UserSlicePtr {
+ /// Constructs a user slice from a raw pointer and a length in bytes.
+ ///
+ /// # Safety
+ ///
+ /// Callers must be careful to avoid time-of-check-time-of-use
+ /// (TOCTOU) issues. The simplest way is to create a single instance of
+ /// [`UserSlicePtr`] per user memory block as it reads each byte at
+ /// most once.
+ pub unsafe fn new(ptr: *mut core::ffi::c_void, length: usize) -> Self {
+ UserSlicePtr(ptr, length)
+ }
+
+ /// Reads the entirety of the user slice.
+ ///
+ /// Returns `EFAULT` if the address does not currently point to
+ /// mapped, readable memory.
+ pub fn read_all(self) -> Result<Vec<u8>> {
+ self.reader().read_all()
+ }
+
+ /// Constructs a [`UserSlicePtrReader`].
+ pub fn reader(self) -> UserSlicePtrReader {
+ UserSlicePtrReader(self.0, self.1)
+ }
+
+ /// Writes the provided slice into the user slice.
+ ///
+ /// Returns `EFAULT` if the address does not currently point to
+ /// mapped, writable memory (in which case some data from before the
+ /// fault may be written), or `data` is larger than the user slice
+ /// (in which case no data is written).
+ pub fn write_all(self, data: &[u8]) -> Result {
+ self.writer().write_slice(data)
+ }
+
+ /// Constructs a [`UserSlicePtrWriter`].
+ pub fn writer(self) -> UserSlicePtrWriter {
+ UserSlicePtrWriter(self.0, self.1)
+ }
+
+ /// Constructs both a [`UserSlicePtrReader`] and a [`UserSlicePtrWriter`].
+ pub fn reader_writer(self) -> (UserSlicePtrReader, UserSlicePtrWriter) {
+ (
+ UserSlicePtrReader(self.0, self.1),
+ UserSlicePtrWriter(self.0, self.1),
+ )
+ }
+}
+
+/// A reader for [`UserSlicePtr`].
+///
+/// Used to incrementally read from the user slice.
+pub struct UserSlicePtrReader(*mut core::ffi::c_void, usize);
+
+impl IoBufferReader for UserSlicePtrReader {
+ /// Returns the number of bytes left to be read from this.
+ ///
+ /// Note that even reading less than this number of bytes may fail.
+ fn len(&self) -> usize {
+ self.1
+ }
+
+ /// Reads raw data from the user slice into a raw kernel buffer.
+ ///
+ /// # Safety
+ ///
+ /// The output buffer must be valid.
+ unsafe fn read_raw(&mut self, out: *mut u8, len: usize) -> Result {
+ if len > self.1 || len > u32::MAX as usize {
+ return Err(EFAULT);
+ }
+ let res = unsafe { bindings::copy_from_user(out as _, self.0, len as _) };
+ if res != 0 {
+ return Err(EFAULT);
+ }
+ // Since this is not a pointer to a valid object in our program,
+ // we cannot use `add`, which has C-style rules for defined
+ // behavior.
+ self.0 = self.0.wrapping_add(len);
+ self.1 -= len;
+ Ok(())
+ }
+}
+
+/// A writer for [`UserSlicePtr`].
+///
+/// Used to incrementally write into the user slice.
+pub struct UserSlicePtrWriter(*mut core::ffi::c_void, usize);
+
+impl IoBufferWriter for UserSlicePtrWriter {
+ fn len(&self) -> usize {
+ self.1
+ }
+
+ fn clear(&mut self, mut len: usize) -> Result {
+ let mut ret = Ok(());
+ if len > self.1 {
+ ret = Err(EFAULT);
+ len = self.1;
+ }
+
+ // SAFETY: The buffer will be validated by `clear_user`. We ensure that `len` is within
+ // bounds in the check above.
+ let left = unsafe { bindings::clear_user(self.0, len as _) } as usize;
+ if left != 0 {
+ ret = Err(EFAULT);
+ len -= left;
+ }
+
+ self.0 = self.0.wrapping_add(len);
+ self.1 -= len;
+ ret
+ }
+
+ unsafe fn write_raw(&mut self, data: *const u8, len: usize) -> Result {
+ if len > self.1 || len > u32::MAX as usize {
+ return Err(EFAULT);
+ }
+ let res = unsafe { bindings::copy_to_user(self.0, data as _, len as _) };
+ if res != 0 {
+ return Err(EFAULT);
+ }
+ // Since this is not a pointer to a valid object in our program,
+ // we cannot use `add`, which has C-style rules for defined
+ // behavior.
+ self.0 = self.0.wrapping_add(len);
+ self.1 -= len;
+ Ok(())
+ }
+}
diff --git a/rust/kernel/workqueue.rs b/rust/kernel/workqueue.rs
new file mode 100644
index 000000000000..c6b89f137469
--- /dev/null
+++ b/rust/kernel/workqueue.rs
@@ -0,0 +1,512 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Work queues.
+//!
+//! C header: [`include/linux/workqueue.h`](../../../../include/linux/workqueue.h)
+
+use crate::{
+ bindings, c_str,
+ error::code::*,
+ sync::{LockClassKey, Ref, UniqueRef},
+ Opaque, Result,
+};
+use core::{fmt, ops::Deref, ptr::NonNull};
+
+/// Spawns a new work item to run in the work queue.
+///
+/// It also automatically defines a new lockdep lock class for the work item.
+#[macro_export]
+macro_rules! spawn_work_item {
+ ($queue:expr, $func:expr) => {{
+ static CLASS: $crate::sync::LockClassKey = $crate::sync::LockClassKey::new();
+ $crate::workqueue::Queue::try_spawn($queue, &CLASS, $func)
+ }};
+}
+
+/// Implements the [`WorkAdapter`] trait for a type where its [`Work`] instance is a field.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::workqueue::Work;
+///
+/// struct Example {
+/// work: Work,
+/// }
+///
+/// kernel::impl_self_work_adapter!(Example, work, |_| {});
+/// ```
+#[macro_export]
+macro_rules! impl_self_work_adapter {
+ ($work_type:ty, $field:ident, $closure:expr) => {
+ $crate::impl_work_adapter!($work_type, $work_type, $field, $closure);
+ };
+}
+
+/// Implements the [`WorkAdapter`] trait for an adapter type.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::workqueue::Work;
+///
+/// struct Example {
+/// work: Work,
+/// }
+///
+/// struct Adapter;
+///
+/// kernel::impl_work_adapter!(Adapter, Example, work, |_| {});
+/// ```
+#[macro_export]
+macro_rules! impl_work_adapter {
+ ($adapter:ty, $work_type:ty, $field:ident, $closure:expr) => {
+ // SAFETY: We use `offset_of` to ensure that the field is within the given type, and we
+ // also check its type is `Work`.
+ unsafe impl $crate::workqueue::WorkAdapter for $adapter {
+ type Target = $work_type;
+ const FIELD_OFFSET: isize = $crate::offset_of!(Self::Target, $field);
+ fn run(w: $crate::sync::Ref<Self::Target>) {
+ let closure: fn($crate::sync::Ref<Self::Target>) = $closure;
+ closure(w);
+ return;
+
+ // Checks that the type of the field is actually `Work`.
+ let tmp = core::mem::MaybeUninit::<$work_type>::uninit();
+ // SAFETY: The pointer is valid and aligned, just not initialised; `addr_of`
+ // ensures that we don't actually read from it (which would be UB) nor create an
+ // intermediate reference.
+ let _x: *const $crate::workqueue::Work =
+ unsafe { core::ptr::addr_of!((*tmp.as_ptr()).$field) };
+ }
+ }
+ };
+}
+
+/// Initialises a work item.
+///
+/// It automatically defines a new lockdep lock class for the work item.
+#[macro_export]
+macro_rules! init_work_item {
+ ($work_container:expr) => {{
+ static CLASS: $crate::sync::LockClassKey = $crate::sync::LockClassKey::new();
+ $crate::workqueue::Work::init($work_container, &CLASS)
+ }};
+}
+
+/// Initialises a work item with the given adapter.
+///
+/// It automatically defines a new lockdep lock class for the work item.
+#[macro_export]
+macro_rules! init_work_item_adapter {
+ ($adapter:ty, $work_container:expr) => {{
+ static CLASS: $crate::sync::LockClassKey = $crate::sync::LockClassKey::new();
+ $crate::workqueue::Work::init_with_adapter::<$adapter>($work_container, &CLASS)
+ }};
+}
+
+/// A kernel work queue.
+///
+/// Wraps the kernel's C `struct workqueue_struct`.
+///
+/// It allows work items to be queued to run on thread pools managed by the kernel. Several are
+/// always available, for example, the ones returned by [`system`], [`system_highpri`],
+/// [`system_long`], etc.
+///
+/// # Examples
+///
+/// The following example is the simplest way to launch a work item:
+///
+/// ```
+/// # use kernel::{spawn_work_item, workqueue};
+///
+/// # fn example() -> Result {
+/// spawn_work_item!(workqueue::system(), || pr_info!("Hello from a work item\n"))?;
+/// # Ok(())
+/// # }
+///
+/// # example().unwrap()
+/// ```
+///
+/// The following example is used to create a work item and enqueue it several times. We note that
+/// enqueuing while the work item is already queued is a no-op, so we enqueue it when it is not
+/// enqueued yet.
+///
+/// ```
+/// # use kernel::workqueue::{self, Work};
+/// use core::sync::atomic::{AtomicU32, Ordering};
+/// use kernel::sync::UniqueRef;
+///
+/// struct Example {
+/// count: AtomicU32,
+/// work: Work,
+/// }
+///
+/// kernel::impl_self_work_adapter!(Example, work, |w| {
+/// let count = w.count.fetch_add(1, Ordering::Relaxed);
+/// pr_info!("Called with count={}\n", count);
+///
+/// // Queue again if the count is less than 10.
+/// if count < 10 {
+/// workqueue::system().enqueue(w);
+/// }
+/// });
+///
+/// # fn example() -> Result {
+/// let e = UniqueRef::try_new(Example {
+/// count: AtomicU32::new(0),
+/// // SAFETY: `work` is initialised below.
+/// work: unsafe { Work::new() },
+/// })?;
+///
+/// kernel::init_work_item!(&e);
+///
+/// // Queue the first time.
+/// workqueue::system().enqueue(e.into());
+/// # Ok(())
+/// # }
+///
+/// # example().unwrap()
+/// ```
+///
+/// The following example has two different work items in the same struct, which allows it to be
+/// queued twice.
+///
+/// ```
+/// # use kernel::workqueue::{self, Work, WorkAdapter};
+/// use core::sync::atomic::{AtomicU32, Ordering};
+/// use kernel::sync::{Ref, UniqueRef};
+///
+/// struct Example {
+/// work1: Work,
+/// work2: Work,
+/// }
+///
+/// kernel::impl_self_work_adapter!(Example, work1, |_| pr_info!("First work\n"));
+///
+/// struct SecondAdapter;
+/// kernel::impl_work_adapter!(SecondAdapter, Example, work2, |_| pr_info!("Second work\n"));
+///
+/// # fn example() -> Result {
+/// let e = UniqueRef::try_new(Example {
+/// // SAFETY: `work1` is initialised below.
+/// work1: unsafe { Work::new() },
+/// // SAFETY: `work2` is initialised below.
+/// work2: unsafe { Work::new() },
+/// })?;
+///
+/// kernel::init_work_item!(&e);
+/// kernel::init_work_item_adapter!(SecondAdapter, &e);
+///
+/// let e = Ref::from(e);
+///
+/// // Enqueue the two different work items.
+/// workqueue::system().enqueue(e.clone());
+/// workqueue::system().enqueue_adapter::<SecondAdapter>(e);
+/// # Ok(())
+/// # }
+///
+/// # example().unwrap()
+/// ```
+#[repr(transparent)]
+pub struct Queue(Opaque<bindings::workqueue_struct>);
+
+// SAFETY: Kernel workqueues are usable from any thread.
+unsafe impl Sync for Queue {}
+
+impl Queue {
+ /// Tries to allocate a new work queue.
+ ///
+ /// Callers should first consider using one of the existing ones (e.g. [`system`]) before
+ /// deciding to create a new one.
+ pub fn try_new(name: fmt::Arguments<'_>) -> Result<BoxedQueue> {
+ // SAFETY: We use a format string that requires an `fmt::Arguments` pointer as the first
+ // and only argument.
+ let ptr = unsafe {
+ bindings::alloc_workqueue(
+ c_str!("%pA").as_char_ptr(),
+ 0,
+ 0,
+ &name as *const _ as *const core::ffi::c_void,
+ )
+ };
+ if ptr.is_null() {
+ return Err(ENOMEM);
+ }
+
+ // SAFETY: `ptr` was just allocated and checked above, so it non-null and valid. Plus, it
+ // isn't touched after the call below, so ownership is transferred.
+ Ok(unsafe { BoxedQueue::new(ptr) })
+ }
+
+ /// Enqueues a work item.
+ ///
+ /// Returns `true` if the work item was successfully enqueue; returns `false` if it had already
+ /// been (and continued to be) enqueued.
+ pub fn enqueue<T: WorkAdapter<Target = T>>(&self, w: Ref<T>) -> bool {
+ self.enqueue_adapter::<T>(w)
+ }
+
+ /// Enqueues a work item with an explicit adapter.
+ ///
+ /// Returns `true` if the work item was successfully enqueue; returns `false` if it had already
+ /// been (and continued to be) enqueued.
+ pub fn enqueue_adapter<A: WorkAdapter + ?Sized>(&self, w: Ref<A::Target>) -> bool {
+ let ptr = Ref::into_raw(w);
+ let field_ptr =
+ (ptr as *const u8).wrapping_offset(A::FIELD_OFFSET) as *mut bindings::work_struct;
+
+ // SAFETY: Having a shared reference to work queue guarantees that it remains valid, while
+ // the work item remains valid because we called `into_raw` and only call `from_raw` again
+ // if the object was already queued (so a previous call already guarantees it remains
+ // alive), when the work item runs, or when the work item is canceled.
+ let ret = unsafe {
+ bindings::queue_work_on(bindings::WORK_CPU_UNBOUND as _, self.0.get(), field_ptr)
+ };
+
+ if !ret {
+ // SAFETY: `ptr` comes from a previous call to `into_raw`. Additionally, given that
+ // `queue_work_on` returned `false`, we know that no-one is going to use the result of
+ // `into_raw`, so we must drop it here to avoid a reference leak.
+ unsafe { Ref::from_raw(ptr) };
+ }
+
+ ret
+ }
+
+ /// Tries to spawn the given function or closure as a work item.
+ ///
+ /// Users are encouraged to use [`spawn_work_item`] as it automatically defines the lock class
+ /// key to be used.
+ pub fn try_spawn<T: 'static + Send + Fn()>(
+ &self,
+ key: &'static LockClassKey,
+ func: T,
+ ) -> Result {
+ let w = UniqueRef::<ClosureAdapter<T>>::try_new(ClosureAdapter {
+ // SAFETY: `work` is initialised below.
+ work: unsafe { Work::new() },
+ func,
+ })?;
+ Work::init(&w, key);
+ self.enqueue(w.into());
+ Ok(())
+ }
+}
+
+struct ClosureAdapter<T: Fn() + Send> {
+ work: Work,
+ func: T,
+}
+
+// SAFETY: `ClosureAdapter::work` is of type `Work`.
+unsafe impl<T: Fn() + Send> WorkAdapter for ClosureAdapter<T> {
+ type Target = Self;
+ const FIELD_OFFSET: isize = crate::offset_of!(Self, work);
+
+ fn run(w: Ref<Self::Target>) {
+ (w.func)();
+ }
+}
+
+/// An adapter for work items.
+///
+/// For the most usual case where a type has a [`Work`] in it and is itself the adapter, it is
+/// recommended that they use the [`impl_self_work_adapter`] or [`impl_work_adapter`] macros
+/// instead of implementing the [`WorkAdapter`] manually. The great advantage is that they don't
+/// require any unsafe blocks.
+///
+/// # Safety
+///
+/// Implementers must ensure that there is a [`Work`] instance `FIELD_OFFSET` bytes from the
+/// beginning of a valid `Target` type. It is normally safe to use the [`crate::offset_of`] macro
+/// for this.
+pub unsafe trait WorkAdapter {
+ /// The type that this work adapter is meant to use.
+ type Target;
+
+ /// The offset, in bytes, from the beginning of [`Self::Target`] to the instance of [`Work`].
+ const FIELD_OFFSET: isize;
+
+ /// Runs when the work item is picked up for execution after it has been enqueued to some work
+ /// queue.
+ fn run(w: Ref<Self::Target>);
+}
+
+/// A work item.
+///
+/// Wraps the kernel's C `struct work_struct`.
+///
+/// Users must add a field of this type to a structure, then implement [`WorkAdapter`] so that it
+/// can be queued for execution in a thread pool. Examples of it being used are available in the
+/// documentation for [`Queue`].
+#[repr(transparent)]
+pub struct Work(Opaque<bindings::work_struct>);
+
+impl Work {
+ /// Creates a new instance of [`Work`].
+ ///
+ /// # Safety
+ ///
+ /// Callers must call either [`Work::init`] or [`Work::init_with_adapter`] before the work item
+ /// can be used.
+ pub unsafe fn new() -> Self {
+ Self(Opaque::uninit())
+ }
+
+ /// Initialises the work item.
+ ///
+ /// Users should prefer the [`init_work_item`] macro because it automatically defines a new
+ /// lock class key.
+ pub fn init<T: WorkAdapter<Target = T>>(obj: &UniqueRef<T>, key: &'static LockClassKey) {
+ Self::init_with_adapter::<T>(obj, key)
+ }
+
+ /// Initialises the work item with the given adapter.
+ ///
+ /// Users should prefer the [`init_work_item_adapter`] macro because it automatically defines a
+ /// new lock class key.
+ pub fn init_with_adapter<A: WorkAdapter>(
+ obj: &UniqueRef<A::Target>,
+ key: &'static LockClassKey,
+ ) {
+ let ptr = &**obj as *const _ as *const u8;
+ let field_ptr = ptr.wrapping_offset(A::FIELD_OFFSET) as *mut bindings::work_struct;
+
+ // SAFETY: `work` is valid for writes -- the `UniqueRef` instance guarantees that it has
+ // been allocated and there is only one pointer to it. Additionally, `work_func` is a valid
+ // callback for the work item.
+ unsafe {
+ bindings::__INIT_WORK_WITH_KEY(field_ptr, Some(Self::work_func::<A>), false, key.get())
+ };
+ }
+
+ /// Cancels the work item.
+ ///
+ /// It is ok for this to be called when the work is not queued.
+ pub fn cancel(&self) {
+ // SAFETY: The work is valid (we have a reference to it), and the function can be called
+ // whether the work is queued or not.
+ if unsafe { bindings::cancel_work_sync(self.0.get()) } {
+ // SAFETY: When the work was queued, a call to `into_raw` was made. We just canceled
+ // the work without it having the chance to run, so we need to explicitly destroy this
+ // reference (which would have happened in `work_func` if it did run).
+ unsafe { Ref::from_raw(&*self) };
+ }
+ }
+
+ unsafe extern "C" fn work_func<A: WorkAdapter>(work: *mut bindings::work_struct) {
+ let field_ptr = work as *const _ as *const u8;
+ let ptr = field_ptr.wrapping_offset(-A::FIELD_OFFSET) as *const A::Target;
+
+ // SAFETY: This callback is only ever used by the `init_with_adapter` method, so it is
+ // always the case that the work item is embedded in a `Work` (Self) struct.
+ let w = unsafe { Ref::from_raw(ptr) };
+ A::run(w);
+ }
+}
+
+/// A boxed owned workqueue.
+///
+/// # Invariants
+///
+/// `ptr` is owned by this instance of [`BoxedQueue`], so it's always valid.
+pub struct BoxedQueue {
+ ptr: NonNull<Queue>,
+}
+
+impl BoxedQueue {
+ /// Creates a new instance of [`BoxedQueue`].
+ ///
+ /// # Safety
+ ///
+ /// `ptr` must be non-null and valid. Additionally, ownership must be handed over to new
+ /// instance of [`BoxedQueue`].
+ unsafe fn new(ptr: *mut bindings::workqueue_struct) -> Self {
+ Self {
+ // SAFETY: We checked above that `ptr` is non-null.
+ ptr: unsafe { NonNull::new_unchecked(ptr.cast()) },
+ }
+ }
+}
+
+impl Deref for BoxedQueue {
+ type Target = Queue;
+
+ fn deref(&self) -> &Queue {
+ // SAFETY: The type invariants guarantee that `ptr` is always valid.
+ unsafe { self.ptr.as_ref() }
+ }
+}
+
+impl Drop for BoxedQueue {
+ fn drop(&mut self) {
+ // SAFETY: The type invariants guarantee that `ptr` is always valid.
+ unsafe { bindings::destroy_workqueue(self.ptr.as_ref().0.get()) };
+ }
+}
+
+/// Returns the system work queue (`system_wq`).
+///
+/// It is the one used by schedule\[_delayed\]_work\[_on\](). Multi-CPU multi-threaded. There are
+/// users which expect relatively short queue flush time.
+///
+/// Callers shouldn't queue work items which can run for too long.
+pub fn system() -> &'static Queue {
+ // SAFETY: `system_wq` is a C global, always available.
+ unsafe { &*bindings::system_wq.cast() }
+}
+
+/// Returns the system high-priority work queue (`system_highpri_wq`).
+///
+/// It is similar to the one returned by [`system`] but for work items which require higher
+/// scheduling priority.
+pub fn system_highpri() -> &'static Queue {
+ // SAFETY: `system_highpri_wq` is a C global, always available.
+ unsafe { &*bindings::system_highpri_wq.cast() }
+}
+
+/// Returns the system work queue for potentially long-running work items (`system_long_wq`).
+///
+/// It is similar to the one returned by [`system`] but may host long running work items. Queue
+/// flushing might take relatively long.
+pub fn system_long() -> &'static Queue {
+ // SAFETY: `system_long_wq` is a C global, always available.
+ unsafe { &*bindings::system_long_wq.cast() }
+}
+
+/// Returns the system unbound work queue (`system_unbound_wq`).
+///
+/// Workers are not bound to any specific CPU, not concurrency managed, and all queued work items
+/// are executed immediately as long as `max_active` limit is not reached and resources are
+/// available.
+pub fn system_unbound() -> &'static Queue {
+ // SAFETY: `system_unbound_wq` is a C global, always available.
+ unsafe { &*bindings::system_unbound_wq.cast() }
+}
+
+/// Returns the system freezable work queue (`system_freezable_wq`).
+///
+/// It is equivalent to the one returned by [`system`] except that it's freezable.
+pub fn system_freezable() -> &'static Queue {
+ // SAFETY: `system_freezable_wq` is a C global, always available.
+ unsafe { &*bindings::system_freezable_wq.cast() }
+}
+
+/// Returns the system power-efficient work queue (`system_power_efficient_wq`).
+///
+/// It is inclined towards saving power and is converted to "unbound" variants if the
+/// `workqueue.power_efficient` kernel parameter is specified; otherwise, it is similar to the one
+/// returned by [`system`].
+pub fn system_power_efficient() -> &'static Queue {
+ // SAFETY: `system_power_efficient_wq` is a C global, always available.
+ unsafe { &*bindings::system_power_efficient_wq.cast() }
+}
+
+/// Returns the system freezable power-efficient work queue (`system_freezable_power_efficient_wq`).
+///
+/// It is similar to the one returned by [`system_power_efficient`] except that is freezable.
+pub fn system_freezable_power_efficient() -> &'static Queue {
+ // SAFETY: `system_freezable_power_efficient_wq` is a C global, always available.
+ unsafe { &*bindings::system_freezable_power_efficient_wq.cast() }
+}
--
2.37.1
Rust provides `compiler_builtins` as a port of LLVM's `compiler-rt`.
Since we do not need the vast majority of them, we avoid the
dependency by providing our own crate.
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Co-developed-by: Sven Van Asbroeck <[email protected]>
Signed-off-by: Sven Van Asbroeck <[email protected]>
Co-developed-by: Gary Guo <[email protected]>
Signed-off-by: Gary Guo <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
rust/compiler_builtins.rs | 79 +++++++++++++++++++++++++++++++++++++++
1 file changed, 79 insertions(+)
create mode 100644 rust/compiler_builtins.rs
diff --git a/rust/compiler_builtins.rs b/rust/compiler_builtins.rs
new file mode 100644
index 000000000000..e57011b7c3da
--- /dev/null
+++ b/rust/compiler_builtins.rs
@@ -0,0 +1,79 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Our own `compiler_builtins`.
+//!
+//! Rust provides [`compiler_builtins`] as a port of LLVM's [`compiler-rt`].
+//! Since we do not need the vast majority of them, we avoid the dependency
+//! by providing this file.
+//!
+//! At the moment, some builtins are required that should not be. For instance,
+//! [`core`] has 128-bit integers functionality which we should not be compiling
+//! in. We will work with upstream [`core`] to provide feature flags to disable
+//! the parts we do not need. For the moment, we define them to [`panic!`] at
+//! runtime for simplicity to catch mistakes, instead of performing surgery
+//! on `core.o`.
+//!
+//! In any case, all these symbols are weakened to ensure we do not override
+//! those that may be provided by the rest of the kernel.
+//!
+//! [`compiler_builtins`]: https://github.com/rust-lang/compiler-builtins
+//! [`compiler-rt`]: https://compiler-rt.llvm.org/
+
+#![feature(compiler_builtins)]
+#![compiler_builtins]
+#![no_builtins]
+#![no_std]
+
+macro_rules! define_panicking_intrinsics(
+ ($reason: tt, { $($ident: ident, )* }) => {
+ $(
+ #[doc(hidden)]
+ #[no_mangle]
+ pub extern "C" fn $ident() {
+ panic!($reason);
+ }
+ )*
+ }
+);
+
+define_panicking_intrinsics!("`f32` should not be used", {
+ __eqsf2,
+ __gesf2,
+ __lesf2,
+ __nesf2,
+ __unordsf2,
+});
+
+define_panicking_intrinsics!("`f64` should not be used", {
+ __unorddf2,
+});
+
+define_panicking_intrinsics!("`i128` should not be used", {
+ __ashrti3,
+ __muloti4,
+ __multi3,
+});
+
+define_panicking_intrinsics!("`u128` should not be used", {
+ __ashlti3,
+ __lshrti3,
+ __udivmodti4,
+ __udivti3,
+ __umodti3,
+});
+
+#[cfg(target_arch = "arm")]
+define_panicking_intrinsics!("`f32` should not be used", {
+ __aeabi_fcmpeq,
+ __aeabi_fcmpun,
+});
+
+#[cfg(target_arch = "arm")]
+define_panicking_intrinsics!("`f64` should not be used", {
+ __aeabi_dcmpun,
+});
+
+#[cfg(target_arch = "arm")]
+define_panicking_intrinsics!("`u64` division/modulo should not be used", {
+ __aeabi_uldivmod,
+});
--
2.37.1
This crate contains the bindings to the C side of the kernel.
Calling C (in general, FFI) is assumed to be unsafe in Rust
and, in many cases, this is accurate. For instance, virtually
all C functions that take a pointer are unsafe since, typically,
it will be dereferenced at some point (and in most cases there
is no way for the callee to check its validity beforehand).
Since one of the goals of using Rust in the kernel is precisely
to avoid unsafe code in "leaf" kernel modules (e.g. drivers),
these bindings should not be used directly by them.
Instead, these bindings need to be wrapped into safe abstractions.
These abstractions provide a safe API that kernel modules can use.
In this way, unsafe code in kernel modules is minimized.
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Finn Behrens <[email protected]>
Signed-off-by: Finn Behrens <[email protected]>
Co-developed-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Co-developed-by: Sven Van Asbroeck <[email protected]>
Signed-off-by: Sven Van Asbroeck <[email protected]>
Co-developed-by: Gary Guo <[email protected]>
Signed-off-by: Gary Guo <[email protected]>
Co-developed-by: Maciej Falkowski <[email protected]>
Signed-off-by: Maciej Falkowski <[email protected]>
Co-developed-by: Jiapeng Chong <[email protected]>
Signed-off-by: Jiapeng Chong <[email protected]>
Co-developed-by: Björn Roy Baron <[email protected]>
Signed-off-by: Björn Roy Baron <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
rust/bindings/bindings_helper.h | 49 ++++++++++++++++++++++++++++
rust/bindings/lib.rs | 57 +++++++++++++++++++++++++++++++++
2 files changed, 106 insertions(+)
create mode 100644 rust/bindings/bindings_helper.h
create mode 100644 rust/bindings/lib.rs
diff --git a/rust/bindings/bindings_helper.h b/rust/bindings/bindings_helper.h
new file mode 100644
index 000000000000..284793085d55
--- /dev/null
+++ b/rust/bindings/bindings_helper.h
@@ -0,0 +1,49 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Header that contains the code (mostly headers) for which Rust bindings
+ * will be automatically generated by `bindgen`.
+ *
+ * Sorted alphabetically.
+ */
+
+#include <kunit/test.h>
+#include <linux/amba/bus.h>
+#include <linux/cdev.h>
+#include <linux/clk.h>
+#include <linux/errname.h>
+#include <linux/file.h>
+#include <linux/fs.h>
+#include <linux/fs_parser.h>
+#include <linux/gpio/driver.h>
+#include <linux/hw_random.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/irqdomain.h>
+#include <linux/irq.h>
+#include <linux/miscdevice.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/netfilter_arp.h>
+#include <linux/netfilter.h>
+#include <linux/netfilter_ipv4.h>
+#include <linux/netfilter_ipv6.h>
+#include <linux/of_platform.h>
+#include <linux/platform_device.h>
+#include <linux/poll.h>
+#include <linux/random.h>
+#include <linux/security.h>
+#include <linux/slab.h>
+#include <linux/sysctl.h>
+#include <linux/uaccess.h>
+#include <linux/uio.h>
+#include <uapi/linux/android/binder.h>
+
+/* `bindgen` gets confused at certain things. */
+const gfp_t BINDINGS_GFP_KERNEL = GFP_KERNEL;
+const gfp_t BINDINGS___GFP_ZERO = __GFP_ZERO;
+const __poll_t BINDINGS_EPOLLIN = EPOLLIN;
+const __poll_t BINDINGS_EPOLLOUT = EPOLLOUT;
+const __poll_t BINDINGS_EPOLLERR = EPOLLERR;
+const __poll_t BINDINGS_EPOLLHUP = EPOLLHUP;
+
+const loff_t BINDINGS_MAX_LFS_FILESIZE = MAX_LFS_FILESIZE;
diff --git a/rust/bindings/lib.rs b/rust/bindings/lib.rs
new file mode 100644
index 000000000000..7fdd74e68b60
--- /dev/null
+++ b/rust/bindings/lib.rs
@@ -0,0 +1,57 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Bindings.
+//!
+//! Imports the generated bindings by `bindgen`.
+//!
+//! This crate may not be directly used. If you need a kernel C API that is
+//! not ported or wrapped in the `kernel` crate, then do so first instead of
+//! using this crate.
+
+#![no_std]
+#![feature(core_ffi_c)]
+// See <https://github.com/rust-lang/rust-bindgen/issues/1651>.
+#![cfg_attr(test, allow(deref_nullptr))]
+#![cfg_attr(test, allow(unaligned_references))]
+#![cfg_attr(test, allow(unsafe_op_in_unsafe_fn))]
+#![allow(
+ clippy::all,
+ missing_docs,
+ non_camel_case_types,
+ non_upper_case_globals,
+ non_snake_case,
+ improper_ctypes,
+ unreachable_pub,
+ unsafe_op_in_unsafe_fn
+)]
+
+mod bindings_raw {
+ // Use glob import here to expose all helpers.
+ // Symbols defined within the module will take precedence to the glob import.
+ pub use super::bindings_helper::*;
+ include!(concat!(
+ env!("OBJTREE"),
+ "/rust/bindings/bindings_generated.rs"
+ ));
+}
+
+// When both a directly exposed symbol and a helper exists for the same function,
+// the directly exposed symbol is preferred and the helper becomes dead code, so
+// ignore the warning here.
+#[allow(dead_code)]
+mod bindings_helper {
+ // Import the generated bindings for types.
+ use super::bindings_raw::*;
+ include!(concat!(
+ env!("OBJTREE"),
+ "/rust/bindings/bindings_helpers_generated.rs"
+ ));
+}
+
+pub use bindings_raw::*;
+
+pub const GFP_KERNEL: gfp_t = BINDINGS_GFP_KERNEL;
+pub const __GFP_ZERO: gfp_t = BINDINGS___GFP_ZERO;
+pub const __GFP_HIGHMEM: gfp_t = ___GFP_HIGHMEM;
+
+pub const MAX_LFS_FILESIZE: loff_t = BINDINGS_MAX_LFS_FILESIZE;
--
2.37.1
Miguel, Alex and Wedson will be maintaining the Rust support.
Reviewed-by: Kees Cook <[email protected]>
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
MAINTAINERS | 15 +++++++++++++++
1 file changed, 15 insertions(+)
diff --git a/MAINTAINERS b/MAINTAINERS
index 64379c699903..a4f90593b59c 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -17477,6 +17477,21 @@ L: [email protected]
S: Maintained
F: drivers/infiniband/ulp/rtrs/
+RUST
+M: Miguel Ojeda <[email protected]>
+M: Alex Gaynor <[email protected]>
+M: Wedson Almeida Filho <[email protected]>
+L: [email protected]
+S: Supported
+W: https://github.com/Rust-for-Linux/linux
+B: https://github.com/Rust-for-Linux/linux/issues
+T: git https://github.com/Rust-for-Linux/linux.git rust-next
+F: Documentation/rust/
+F: rust/
+F: samples/rust/
+F: scripts/*rust*
+K: \b(?i:rust)\b
+
RXRPC SOCKETS (AF_RXRPC)
M: David Howells <[email protected]>
M: Marc Dionne <[email protected]>
--
2.37.1
The `%pA` format specifier is only intended to be used from Rust.
`checkpatch.pl` already gives a warning for invalid specificers:
WARNING: Invalid vsprintf pointer extension '%pA'
This makes it an error and introduces an explanatory message:
ERROR: Invalid vsprintf pointer extension '%pA' - '%pA' is only intended to be used from Rust code
Suggested-by: Kees Cook <[email protected]>
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Co-developed-by: Joe Perches <[email protected]>
Signed-off-by: Joe Perches <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
scripts/checkpatch.pl | 8 ++++++--
1 file changed, 6 insertions(+), 2 deletions(-)
diff --git a/scripts/checkpatch.pl b/scripts/checkpatch.pl
index 503e8abbb2c1..23799e8013b3 100755
--- a/scripts/checkpatch.pl
+++ b/scripts/checkpatch.pl
@@ -6782,15 +6782,19 @@ sub process {
}
if ($bad_specifier ne "") {
my $stat_real = get_stat_real($linenr, $lc);
+ my $msg_level = \&WARN;
my $ext_type = "Invalid";
my $use = "";
if ($bad_specifier =~ /p[Ff]/) {
$use = " - use %pS instead";
$use =~ s/pS/ps/ if ($bad_specifier =~ /pf/);
+ } elsif ($bad_specifier =~ /pA/) {
+ $use = " - '%pA' is only intended to be used from Rust code";
+ $msg_level = \&ERROR;
}
- WARN("VSPRINTF_POINTER_EXTENSION",
- "$ext_type vsprintf pointer extension '$bad_specifier'$use\n" . "$here\n$stat_real\n");
+ &{$msg_level}("VSPRINTF_POINTER_EXTENSION",
+ "$ext_type vsprintf pointer extension '$bad_specifier'$use\n" . "$here\n$stat_real\n");
}
}
}
--
2.37.1
A set of Rust modules that showcase how Rust modules look like
and how to use the abstracted kernel features, as well as
an example of a Rust host program with several modules.
These samples also double as tests in the CI.
The semaphore sample comes with a C version for comparison.
Co-developed-by: Alex Gaynor <[email protected]>
Signed-off-by: Alex Gaynor <[email protected]>
Co-developed-by: Finn Behrens <[email protected]>
Signed-off-by: Finn Behrens <[email protected]>
Co-developed-by: Wedson Almeida Filho <[email protected]>
Signed-off-by: Wedson Almeida Filho <[email protected]>
Co-developed-by: Greg Kroah-Hartman <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
Co-developed-by: Sven Van Asbroeck <[email protected]>
Signed-off-by: Sven Van Asbroeck <[email protected]>
Co-developed-by: Gary Guo <[email protected]>
Signed-off-by: Gary Guo <[email protected]>
Co-developed-by: Boris-Chengbiao Zhou <[email protected]>
Signed-off-by: Boris-Chengbiao Zhou <[email protected]>
Co-developed-by: Boqun Feng <[email protected]>
Signed-off-by: Boqun Feng <[email protected]>
Co-developed-by: Ayaan Zaidi <[email protected]>
Signed-off-by: Ayaan Zaidi <[email protected]>
Co-developed-by: Daniel Xu <[email protected]>
Signed-off-by: Daniel Xu <[email protected]>
Co-developed-by: Milan Landaverde <[email protected]>
Signed-off-by: Milan Landaverde <[email protected]>
Signed-off-by: Miguel Ojeda <[email protected]>
---
samples/Kconfig | 2 +
samples/Makefile | 1 +
samples/rust/Kconfig | 165 +++++++++++++++++++
samples/rust/Makefile | 19 +++
samples/rust/hostprogs/.gitignore | 3 +
samples/rust/hostprogs/Makefile | 5 +
samples/rust/hostprogs/a.rs | 7 +
samples/rust/hostprogs/b.rs | 5 +
samples/rust/hostprogs/single.rs | 12 ++
samples/rust/rust_chrdev.rs | 49 ++++++
samples/rust/rust_echo_server.rs | 60 +++++++
samples/rust/rust_fs.rs | 59 +++++++
samples/rust/rust_minimal.rs | 35 ++++
samples/rust/rust_miscdev.rs | 142 +++++++++++++++++
samples/rust/rust_module_parameters.rs | 69 ++++++++
samples/rust/rust_netfilter.rs | 54 +++++++
samples/rust/rust_platform.rs | 22 +++
samples/rust/rust_print.rs | 54 +++++++
samples/rust/rust_random.rs | 60 +++++++
samples/rust/rust_selftests.rs | 99 ++++++++++++
samples/rust/rust_semaphore.rs | 170 ++++++++++++++++++++
samples/rust/rust_semaphore_c.c | 212 +++++++++++++++++++++++++
samples/rust/rust_stack_probing.rs | 36 +++++
samples/rust/rust_sync.rs | 93 +++++++++++
24 files changed, 1433 insertions(+)
create mode 100644 samples/rust/Kconfig
create mode 100644 samples/rust/Makefile
create mode 100644 samples/rust/hostprogs/.gitignore
create mode 100644 samples/rust/hostprogs/Makefile
create mode 100644 samples/rust/hostprogs/a.rs
create mode 100644 samples/rust/hostprogs/b.rs
create mode 100644 samples/rust/hostprogs/single.rs
create mode 100644 samples/rust/rust_chrdev.rs
create mode 100644 samples/rust/rust_echo_server.rs
create mode 100644 samples/rust/rust_fs.rs
create mode 100644 samples/rust/rust_minimal.rs
create mode 100644 samples/rust/rust_miscdev.rs
create mode 100644 samples/rust/rust_module_parameters.rs
create mode 100644 samples/rust/rust_netfilter.rs
create mode 100644 samples/rust/rust_platform.rs
create mode 100644 samples/rust/rust_print.rs
create mode 100644 samples/rust/rust_random.rs
create mode 100644 samples/rust/rust_selftests.rs
create mode 100644 samples/rust/rust_semaphore.rs
create mode 100644 samples/rust/rust_semaphore_c.c
create mode 100644 samples/rust/rust_stack_probing.rs
create mode 100644 samples/rust/rust_sync.rs
diff --git a/samples/Kconfig b/samples/Kconfig
index 470ee3baf2e1..0d81c00289ee 100644
--- a/samples/Kconfig
+++ b/samples/Kconfig
@@ -263,6 +263,8 @@ config SAMPLE_CORESIGHT_SYSCFG
This demonstrates how a user may create their own CoreSight
configurations and easily load them into the system at runtime.
+source "samples/rust/Kconfig"
+
endif # SAMPLES
config HAVE_SAMPLE_FTRACE_DIRECT
diff --git a/samples/Makefile b/samples/Makefile
index 701e912ab5af..9832ef3f8fcb 100644
--- a/samples/Makefile
+++ b/samples/Makefile
@@ -35,3 +35,4 @@ subdir-$(CONFIG_SAMPLE_WATCH_QUEUE) += watch_queue
obj-$(CONFIG_DEBUG_KMEMLEAK_TEST) += kmemleak/
obj-$(CONFIG_SAMPLE_CORESIGHT_SYSCFG) += coresight/
obj-$(CONFIG_SAMPLE_FPROBE) += fprobe/
+obj-$(CONFIG_SAMPLES_RUST) += rust/
diff --git a/samples/rust/Kconfig b/samples/rust/Kconfig
new file mode 100644
index 000000000000..861b35318b4d
--- /dev/null
+++ b/samples/rust/Kconfig
@@ -0,0 +1,165 @@
+# SPDX-License-Identifier: GPL-2.0
+
+menuconfig SAMPLES_RUST
+ bool "Rust samples"
+ depends on RUST
+ help
+ You can build sample Rust kernel code here.
+
+ If unsure, say N.
+
+if SAMPLES_RUST
+
+config SAMPLE_RUST_MINIMAL
+ tristate "Minimal"
+ help
+ This option builds the Rust minimal module sample.
+
+ To compile this as a module, choose M here:
+ the module will be called rust_minimal.
+
+ If unsure, say N.
+
+config SAMPLE_RUST_PRINT
+ tristate "Printing macros"
+ help
+ This option builds the Rust printing macros sample.
+
+ To compile this as a module, choose M here:
+ the module will be called rust_print.
+
+ If unsure, say N.
+
+config SAMPLE_RUST_MODULE_PARAMETERS
+ tristate "Module parameters"
+ help
+ This option builds the Rust module parameters sample.
+
+ To compile this as a module, choose M here:
+ the module will be called rust_module_parameters.
+
+ If unsure, say N.
+
+config SAMPLE_RUST_SYNC
+ tristate "Synchronisation primitives"
+ help
+ This option builds the Rust synchronisation primitives sample.
+
+ To compile this as a module, choose M here:
+ the module will be called rust_sync.
+
+ If unsure, say N.
+
+config SAMPLE_RUST_CHRDEV
+ tristate "Character device"
+ help
+ This option builds the Rust character device sample.
+
+ To compile this as a module, choose M here:
+ the module will be called rust_chrdev.
+
+ If unsure, say N.
+
+config SAMPLE_RUST_MISCDEV
+ tristate "Miscellaneous device"
+ help
+ This option builds the Rust miscellaneous device sample.
+
+ To compile this as a module, choose M here:
+ the module will be called rust_miscdev.
+
+ If unsure, say N.
+
+config SAMPLE_RUST_STACK_PROBING
+ tristate "Stack probing"
+ help
+ This option builds the Rust stack probing sample.
+
+ To compile this as a module, choose M here:
+ the module will be called rust_stack_probing.
+
+ If unsure, say N.
+
+config SAMPLE_RUST_SEMAPHORE
+ tristate "Semaphore"
+ help
+ This option builds the Rust semaphore sample.
+
+ To compile this as a module, choose M here:
+ the module will be called rust_semaphore.
+
+ If unsure, say N.
+
+config SAMPLE_RUST_SEMAPHORE_C
+ tristate "Semaphore (in C, for comparison)"
+ help
+ This option builds the Rust semaphore sample (in C, for comparison).
+
+ To compile this as a module, choose M here:
+ the module will be called rust_semaphore_c.
+
+ If unsure, say N.
+
+config SAMPLE_RUST_RANDOM
+ tristate "Random"
+ help
+ This option builds the Rust random sample.
+
+ To compile this as a module, choose M here:
+ the module will be called rust_random.
+
+ If unsure, say N.
+
+config SAMPLE_RUST_PLATFORM
+ tristate "Platform device driver"
+ help
+ This option builds the Rust platform device driver sample.
+
+ To compile this as a module, choose M here:
+ the module will be called rust_platform.
+
+config SAMPLE_RUST_FS
+ tristate "File system"
+ help
+ This option builds the Rust file system sample.
+
+ To compile this as a module, choose M here:
+ the module will be called rust_fs.
+
+ If unsure, say N.
+
+config SAMPLE_RUST_NETFILTER
+ tristate "Network filter module"
+ help
+ This option builds the Rust netfilter module sample.
+
+ To compile this as a module, choose M here:
+ the module will be called rust_netfilter.
+
+ If unsure, say N.
+
+config SAMPLE_RUST_ECHO_SERVER
+ tristate "Echo server module"
+ help
+ This option builds the Rust echo server module sample.
+
+ To compile this as a module, choose M here:
+ the module will be called rust_echo_server.
+
+ If unsure, say N.
+
+config SAMPLE_RUST_HOSTPROGS
+ bool "Host programs"
+ help
+ This option builds the Rust host program samples.
+
+ If unsure, say N.
+
+config SAMPLE_RUST_SELFTESTS
+ tristate "Self tests"
+ help
+ This option builds the self test cases for Rust.
+
+ If unsure, say N.
+
+endif # SAMPLES_RUST
diff --git a/samples/rust/Makefile b/samples/rust/Makefile
new file mode 100644
index 000000000000..420bcefeb082
--- /dev/null
+++ b/samples/rust/Makefile
@@ -0,0 +1,19 @@
+# SPDX-License-Identifier: GPL-2.0
+
+obj-$(CONFIG_SAMPLE_RUST_MINIMAL) += rust_minimal.o
+obj-$(CONFIG_SAMPLE_RUST_PRINT) += rust_print.o
+obj-$(CONFIG_SAMPLE_RUST_MODULE_PARAMETERS) += rust_module_parameters.o
+obj-$(CONFIG_SAMPLE_RUST_SYNC) += rust_sync.o
+obj-$(CONFIG_SAMPLE_RUST_CHRDEV) += rust_chrdev.o
+obj-$(CONFIG_SAMPLE_RUST_MISCDEV) += rust_miscdev.o
+obj-$(CONFIG_SAMPLE_RUST_STACK_PROBING) += rust_stack_probing.o
+obj-$(CONFIG_SAMPLE_RUST_SEMAPHORE) += rust_semaphore.o
+obj-$(CONFIG_SAMPLE_RUST_SEMAPHORE_C) += rust_semaphore_c.o
+obj-$(CONFIG_SAMPLE_RUST_RANDOM) += rust_random.o
+obj-$(CONFIG_SAMPLE_RUST_PLATFORM) += rust_platform.o
+obj-$(CONFIG_SAMPLE_RUST_NETFILTER) += rust_netfilter.o
+obj-$(CONFIG_SAMPLE_RUST_ECHO_SERVER) += rust_echo_server.o
+obj-$(CONFIG_SAMPLE_RUST_FS) += rust_fs.o
+obj-$(CONFIG_SAMPLE_RUST_SELFTESTS) += rust_selftests.o
+
+subdir-$(CONFIG_SAMPLE_RUST_HOSTPROGS) += hostprogs
diff --git a/samples/rust/hostprogs/.gitignore b/samples/rust/hostprogs/.gitignore
new file mode 100644
index 000000000000..a6c173da5048
--- /dev/null
+++ b/samples/rust/hostprogs/.gitignore
@@ -0,0 +1,3 @@
+# SPDX-License-Identifier: GPL-2.0
+
+single
diff --git a/samples/rust/hostprogs/Makefile b/samples/rust/hostprogs/Makefile
new file mode 100644
index 000000000000..8ddcbd7416db
--- /dev/null
+++ b/samples/rust/hostprogs/Makefile
@@ -0,0 +1,5 @@
+# SPDX-License-Identifier: GPL-2.0
+
+hostprogs-always-y := single
+
+single-rust := y
diff --git a/samples/rust/hostprogs/a.rs b/samples/rust/hostprogs/a.rs
new file mode 100644
index 000000000000..f7a4a3d0f4e0
--- /dev/null
+++ b/samples/rust/hostprogs/a.rs
@@ -0,0 +1,7 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Rust single host program sample: module `a`.
+
+pub(crate) fn f(x: i32) {
+ println!("The number is {}.", x);
+}
diff --git a/samples/rust/hostprogs/b.rs b/samples/rust/hostprogs/b.rs
new file mode 100644
index 000000000000..c1675890648f
--- /dev/null
+++ b/samples/rust/hostprogs/b.rs
@@ -0,0 +1,5 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Rust single host program sample: module `b`.
+
+pub(crate) const CONSTANT: i32 = 42;
diff --git a/samples/rust/hostprogs/single.rs b/samples/rust/hostprogs/single.rs
new file mode 100644
index 000000000000..8c48a119339a
--- /dev/null
+++ b/samples/rust/hostprogs/single.rs
@@ -0,0 +1,12 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Rust single host program sample.
+
+mod a;
+mod b;
+
+fn main() {
+ println!("Hello world!");
+
+ a::f(b::CONSTANT);
+}
diff --git a/samples/rust/rust_chrdev.rs b/samples/rust/rust_chrdev.rs
new file mode 100644
index 000000000000..52f6e652d1a6
--- /dev/null
+++ b/samples/rust/rust_chrdev.rs
@@ -0,0 +1,49 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Rust character device sample.
+
+use kernel::prelude::*;
+use kernel::{chrdev, file};
+
+module! {
+ type: RustChrdev,
+ name: b"rust_chrdev",
+ author: b"Rust for Linux Contributors",
+ description: b"Rust character device sample",
+ license: b"GPL",
+}
+
+struct RustFile;
+
+#[vtable]
+impl file::Operations for RustFile {
+ fn open(_shared: &(), _file: &file::File) -> Result {
+ Ok(())
+ }
+}
+
+struct RustChrdev {
+ _dev: Pin<Box<chrdev::Registration<2>>>,
+}
+
+impl kernel::Module for RustChrdev {
+ fn init(name: &'static CStr, module: &'static ThisModule) -> Result<Self> {
+ pr_info!("Rust character device sample (init)\n");
+
+ let mut chrdev_reg = chrdev::Registration::new_pinned(name, 0, module)?;
+
+ // Register the same kind of device twice, we're just demonstrating
+ // that you can use multiple minors. There are two minors in this case
+ // because its type is `chrdev::Registration<2>`
+ chrdev_reg.as_mut().register::<RustFile>()?;
+ chrdev_reg.as_mut().register::<RustFile>()?;
+
+ Ok(RustChrdev { _dev: chrdev_reg })
+ }
+}
+
+impl Drop for RustChrdev {
+ fn drop(&mut self) {
+ pr_info!("Rust character device sample (exit)\n");
+ }
+}
diff --git a/samples/rust/rust_echo_server.rs b/samples/rust/rust_echo_server.rs
new file mode 100644
index 000000000000..5fc802f4dc33
--- /dev/null
+++ b/samples/rust/rust_echo_server.rs
@@ -0,0 +1,60 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Rust echo server sample.
+
+use kernel::{
+ kasync::executor::{workqueue::Executor as WqExecutor, AutoStopHandle, Executor},
+ kasync::net::{TcpListener, TcpStream},
+ net::{self, Ipv4Addr, SocketAddr, SocketAddrV4},
+ prelude::*,
+ spawn_task,
+ sync::{Ref, RefBorrow},
+};
+
+async fn echo_server(stream: TcpStream) -> Result {
+ let mut buf = [0u8; 1024];
+ loop {
+ let n = stream.read(&mut buf).await?;
+ if n == 0 {
+ return Ok(());
+ }
+ stream.write_all(&buf[..n]).await?;
+ }
+}
+
+async fn accept_loop(listener: TcpListener, executor: Ref<impl Executor>) {
+ loop {
+ if let Ok(stream) = listener.accept().await {
+ let _ = spawn_task!(executor.as_ref_borrow(), echo_server(stream));
+ }
+ }
+}
+
+fn start_listener(ex: RefBorrow<'_, impl Executor + Send + Sync + 'static>) -> Result {
+ let addr = SocketAddr::V4(SocketAddrV4::new(Ipv4Addr::ANY, 8080));
+ let listener = TcpListener::try_new(net::init_ns(), &addr)?;
+ spawn_task!(ex, accept_loop(listener, ex.into()))?;
+ Ok(())
+}
+
+struct RustEchoServer {
+ _handle: AutoStopHandle<dyn Executor>,
+}
+
+impl kernel::Module for RustEchoServer {
+ fn init(_name: &'static CStr, _module: &'static ThisModule) -> Result<Self> {
+ let handle = WqExecutor::try_new(kernel::workqueue::system())?;
+ start_listener(handle.executor())?;
+ Ok(Self {
+ _handle: handle.into(),
+ })
+ }
+}
+
+module! {
+ type: RustEchoServer,
+ name: b"rust_echo_server",
+ author: b"Rust for Linux Contributors",
+ description: b"Rust tcp echo sample",
+ license: b"GPL v2",
+}
diff --git a/samples/rust/rust_fs.rs b/samples/rust/rust_fs.rs
new file mode 100644
index 000000000000..d286b396dd17
--- /dev/null
+++ b/samples/rust/rust_fs.rs
@@ -0,0 +1,59 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Rust file system sample.
+
+use kernel::prelude::*;
+use kernel::{c_str, fs};
+
+module_fs! {
+ type: RustFs,
+ name: b"rust_fs",
+ author: b"Rust for Linux Contributors",
+ license: b"GPL",
+}
+
+struct RustFs;
+
+#[vtable]
+impl fs::Context<Self> for RustFs {
+ type Data = ();
+
+ kernel::define_fs_params! {(),
+ {flag, "flag", |_, v| { pr_info!("flag passed-in: {v}\n"); Ok(()) } },
+ {flag_no, "flagno", |_, v| { pr_info!("flagno passed-in: {v}\n"); Ok(()) } },
+ {bool, "bool", |_, v| { pr_info!("bool passed-in: {v}\n"); Ok(()) } },
+ {u32, "u32", |_, v| { pr_info!("u32 passed-in: {v}\n"); Ok(()) } },
+ {u32oct, "u32oct", |_, v| { pr_info!("u32oct passed-in: {v}\n"); Ok(()) } },
+ {u32hex, "u32hex", |_, v| { pr_info!("u32hex passed-in: {v}\n"); Ok(()) } },
+ {s32, "s32", |_, v| { pr_info!("s32 passed-in: {v}\n"); Ok(()) } },
+ {u64, "u64", |_, v| { pr_info!("u64 passed-in: {v}\n"); Ok(()) } },
+ {string, "string", |_, v| { pr_info!("string passed-in: {v}\n"); Ok(()) } },
+ {enum, "enum", [("first", 10), ("second", 20)], |_, v| {
+ pr_info!("enum passed-in: {v}\n"); Ok(()) }
+ },
+ }
+
+ fn try_new() -> Result {
+ pr_info!("context created!\n");
+ Ok(())
+ }
+}
+
+impl fs::Type for RustFs {
+ type Context = Self;
+ const SUPER_TYPE: fs::Super = fs::Super::Independent;
+ const NAME: &'static CStr = c_str!("rustfs");
+ const FLAGS: i32 = fs::flags::USERNS_MOUNT;
+
+ fn fill_super(_data: (), sb: fs::NewSuperBlock<'_, Self>) -> Result<&fs::SuperBlock<Self>> {
+ let sb = sb.init(
+ (),
+ &fs::SuperParams {
+ magic: 0x72757374,
+ ..fs::SuperParams::DEFAULT
+ },
+ )?;
+ let sb = sb.init_root()?;
+ Ok(sb)
+ }
+}
diff --git a/samples/rust/rust_minimal.rs b/samples/rust/rust_minimal.rs
new file mode 100644
index 000000000000..6e1a926c6f62
--- /dev/null
+++ b/samples/rust/rust_minimal.rs
@@ -0,0 +1,35 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Rust minimal sample.
+
+use kernel::prelude::*;
+
+module! {
+ type: RustMinimal,
+ name: b"rust_minimal",
+ author: b"Rust for Linux Contributors",
+ description: b"Rust minimal sample",
+ license: b"GPL",
+}
+
+struct RustMinimal {
+ message: String,
+}
+
+impl kernel::Module for RustMinimal {
+ fn init(_name: &'static CStr, _module: &'static ThisModule) -> Result<Self> {
+ pr_info!("Rust minimal sample (init)\n");
+ pr_info!("Am I built-in? {}\n", !cfg!(MODULE));
+
+ Ok(RustMinimal {
+ message: "on the heap!".try_to_owned()?,
+ })
+ }
+}
+
+impl Drop for RustMinimal {
+ fn drop(&mut self) {
+ pr_info!("My message is {}\n", self.message);
+ pr_info!("Rust minimal sample (exit)\n");
+ }
+}
diff --git a/samples/rust/rust_miscdev.rs b/samples/rust/rust_miscdev.rs
new file mode 100644
index 000000000000..647b77864f10
--- /dev/null
+++ b/samples/rust/rust_miscdev.rs
@@ -0,0 +1,142 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Rust miscellaneous device sample.
+
+use kernel::prelude::*;
+use kernel::{
+ file::{self, File},
+ io_buffer::{IoBufferReader, IoBufferWriter},
+ miscdev,
+ sync::{CondVar, Mutex, Ref, RefBorrow, UniqueRef},
+};
+
+module! {
+ type: RustMiscdev,
+ name: b"rust_miscdev",
+ author: b"Rust for Linux Contributors",
+ description: b"Rust miscellaneous device sample",
+ license: b"GPL",
+}
+
+const MAX_TOKENS: usize = 3;
+
+struct SharedStateInner {
+ token_count: usize,
+}
+
+struct SharedState {
+ state_changed: CondVar,
+ inner: Mutex<SharedStateInner>,
+}
+
+impl SharedState {
+ fn try_new() -> Result<Ref<Self>> {
+ let mut state = Pin::from(UniqueRef::try_new(Self {
+ // SAFETY: `condvar_init!` is called below.
+ state_changed: unsafe { CondVar::new() },
+ // SAFETY: `mutex_init!` is called below.
+ inner: unsafe { Mutex::new(SharedStateInner { token_count: 0 }) },
+ })?);
+
+ // SAFETY: `state_changed` is pinned when `state` is.
+ let pinned = unsafe { state.as_mut().map_unchecked_mut(|s| &mut s.state_changed) };
+ kernel::condvar_init!(pinned, "SharedState::state_changed");
+
+ // SAFETY: `inner` is pinned when `state` is.
+ let pinned = unsafe { state.as_mut().map_unchecked_mut(|s| &mut s.inner) };
+ kernel::mutex_init!(pinned, "SharedState::inner");
+
+ Ok(state.into())
+ }
+}
+
+struct Token;
+#[vtable]
+impl file::Operations for Token {
+ type Data = Ref<SharedState>;
+ type OpenData = Ref<SharedState>;
+
+ fn open(shared: &Ref<SharedState>, _file: &File) -> Result<Self::Data> {
+ Ok(shared.clone())
+ }
+
+ fn read(
+ shared: RefBorrow<'_, SharedState>,
+ _: &File,
+ data: &mut impl IoBufferWriter,
+ offset: u64,
+ ) -> Result<usize> {
+ // Succeed if the caller doesn't provide a buffer or if not at the start.
+ if data.is_empty() || offset != 0 {
+ return Ok(0);
+ }
+
+ {
+ let mut inner = shared.inner.lock();
+
+ // Wait until we are allowed to decrement the token count or a signal arrives.
+ while inner.token_count == 0 {
+ if shared.state_changed.wait(&mut inner) {
+ return Err(EINTR);
+ }
+ }
+
+ // Consume a token.
+ inner.token_count -= 1;
+ }
+
+ // Notify a possible writer waiting.
+ shared.state_changed.notify_all();
+
+ // Write a one-byte 1 to the reader.
+ data.write_slice(&[1u8; 1])?;
+ Ok(1)
+ }
+
+ fn write(
+ shared: RefBorrow<'_, SharedState>,
+ _: &File,
+ data: &mut impl IoBufferReader,
+ _offset: u64,
+ ) -> Result<usize> {
+ {
+ let mut inner = shared.inner.lock();
+
+ // Wait until we are allowed to increment the token count or a signal arrives.
+ while inner.token_count == MAX_TOKENS {
+ if shared.state_changed.wait(&mut inner) {
+ return Err(EINTR);
+ }
+ }
+
+ // Increment the number of token so that a reader can be released.
+ inner.token_count += 1;
+ }
+
+ // Notify a possible reader waiting.
+ shared.state_changed.notify_all();
+ Ok(data.len())
+ }
+}
+
+struct RustMiscdev {
+ _dev: Pin<Box<miscdev::Registration<Token>>>,
+}
+
+impl kernel::Module for RustMiscdev {
+ fn init(name: &'static CStr, _module: &'static ThisModule) -> Result<Self> {
+ pr_info!("Rust miscellaneous device sample (init)\n");
+
+ let state = SharedState::try_new()?;
+
+ Ok(RustMiscdev {
+ _dev: miscdev::Registration::new_pinned(fmt!("{name}"), state)?,
+ })
+ }
+}
+
+impl Drop for RustMiscdev {
+ fn drop(&mut self) {
+ pr_info!("Rust miscellaneous device sample (exit)\n");
+ }
+}
diff --git a/samples/rust/rust_module_parameters.rs b/samples/rust/rust_module_parameters.rs
new file mode 100644
index 000000000000..12fe5e738e83
--- /dev/null
+++ b/samples/rust/rust_module_parameters.rs
@@ -0,0 +1,69 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Rust module parameters sample.
+
+use kernel::prelude::*;
+
+module! {
+ type: RustModuleParameters,
+ name: b"rust_module_parameters",
+ author: b"Rust for Linux Contributors",
+ description: b"Rust module parameters sample",
+ license: b"GPL",
+ params: {
+ my_bool: bool {
+ default: true,
+ permissions: 0,
+ description: b"Example of bool",
+ },
+ my_i32: i32 {
+ default: 42,
+ permissions: 0o644,
+ description: b"Example of i32",
+ },
+ my_str: str {
+ default: b"default str val",
+ permissions: 0o644,
+ description: b"Example of a string param",
+ },
+ my_usize: usize {
+ default: 42,
+ permissions: 0o644,
+ description: b"Example of usize",
+ },
+ my_array: ArrayParam<i32, 3> {
+ default: [0, 1],
+ permissions: 0,
+ description: b"Example of array",
+ },
+ },
+}
+
+struct RustModuleParameters;
+
+impl kernel::Module for RustModuleParameters {
+ fn init(_name: &'static CStr, module: &'static ThisModule) -> Result<Self> {
+ pr_info!("Rust module parameters sample (init)\n");
+
+ {
+ let lock = module.kernel_param_lock();
+ pr_info!("Parameters:\n");
+ pr_info!(" my_bool: {}\n", my_bool.read());
+ pr_info!(" my_i32: {}\n", my_i32.read(&lock));
+ pr_info!(
+ " my_str: {}\n",
+ core::str::from_utf8(my_str.read(&lock))?
+ );
+ pr_info!(" my_usize: {}\n", my_usize.read(&lock));
+ pr_info!(" my_array: {:?}\n", my_array.read());
+ }
+
+ Ok(RustModuleParameters)
+ }
+}
+
+impl Drop for RustModuleParameters {
+ fn drop(&mut self) {
+ pr_info!("Rust module parameters sample (exit)\n");
+ }
+}
diff --git a/samples/rust/rust_netfilter.rs b/samples/rust/rust_netfilter.rs
new file mode 100644
index 000000000000..4bd5c07fee8c
--- /dev/null
+++ b/samples/rust/rust_netfilter.rs
@@ -0,0 +1,54 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Rust netfilter sample.
+
+use kernel::net;
+use kernel::net::filter::{self as netfilter, inet, Disposition, Family};
+use kernel::prelude::*;
+
+module! {
+ type: RustNetfilter,
+ name: b"rust_netfilter",
+ author: b"Rust for Linux Contributors",
+ description: b"Rust netfilter sample",
+ license: b"GPL",
+}
+
+struct RustNetfilter {
+ _in: Pin<Box<netfilter::Registration<Self>>>,
+ _out: Pin<Box<netfilter::Registration<Self>>>,
+}
+
+impl netfilter::Filter for RustNetfilter {
+ fn filter(_: (), skb: &net::SkBuff) -> Disposition {
+ let data = skb.head_data();
+ pr_info!(
+ "packet headlen={}, len={}, first bytes={:02x?}\n",
+ data.len(),
+ skb.len(),
+ &data[..core::cmp::min(10, data.len())]
+ );
+ Disposition::Accept
+ }
+}
+
+impl kernel::Module for RustNetfilter {
+ fn init(_name: &'static CStr, _module: &'static ThisModule) -> Result<Self> {
+ Ok(Self {
+ _in: netfilter::Registration::new_pinned(
+ Family::INet(inet::Hook::PreRouting),
+ 0,
+ net::init_ns().into(),
+ None,
+ (),
+ )?,
+ _out: netfilter::Registration::new_pinned(
+ Family::INet(inet::Hook::PostRouting),
+ 0,
+ net::init_ns().into(),
+ None,
+ (),
+ )?,
+ })
+ }
+}
diff --git a/samples/rust/rust_platform.rs b/samples/rust/rust_platform.rs
new file mode 100644
index 000000000000..f62784676919
--- /dev/null
+++ b/samples/rust/rust_platform.rs
@@ -0,0 +1,22 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Rust platform device driver sample.
+
+use kernel::{module_platform_driver, of, platform, prelude::*};
+
+module_platform_driver! {
+ type: Driver,
+ name: b"rust_platform",
+ license: b"GPL",
+}
+
+struct Driver;
+impl platform::Driver for Driver {
+ kernel::define_of_id_table! {(), [
+ (of::DeviceId::Compatible(b"rust,sample"), None),
+ ]}
+
+ fn probe(_dev: &mut platform::Device, _id_info: Option<&Self::IdInfo>) -> Result {
+ Ok(())
+ }
+}
diff --git a/samples/rust/rust_print.rs b/samples/rust/rust_print.rs
new file mode 100644
index 000000000000..30d96e025d89
--- /dev/null
+++ b/samples/rust/rust_print.rs
@@ -0,0 +1,54 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Rust printing macros sample.
+
+use kernel::prelude::*;
+use kernel::{pr_cont, str::CStr, ThisModule};
+
+module! {
+ type: RustPrint,
+ name: b"rust_print",
+ author: b"Rust for Linux Contributors",
+ description: b"Rust printing macros sample",
+ license: b"GPL",
+}
+
+struct RustPrint;
+
+impl kernel::Module for RustPrint {
+ fn init(_name: &'static CStr, _module: &'static ThisModule) -> Result<Self> {
+ pr_info!("Rust printing macros sample (init)\n");
+
+ pr_emerg!("Emergency message (level 0) without args\n");
+ pr_alert!("Alert message (level 1) without args\n");
+ pr_crit!("Critical message (level 2) without args\n");
+ pr_err!("Error message (level 3) without args\n");
+ pr_warn!("Warning message (level 4) without args\n");
+ pr_notice!("Notice message (level 5) without args\n");
+ pr_info!("Info message (level 6) without args\n");
+
+ pr_info!("A line that");
+ pr_cont!(" is continued");
+ pr_cont!(" without args\n");
+
+ pr_emerg!("{} message (level {}) with args\n", "Emergency", 0);
+ pr_alert!("{} message (level {}) with args\n", "Alert", 1);
+ pr_crit!("{} message (level {}) with args\n", "Critical", 2);
+ pr_err!("{} message (level {}) with args\n", "Error", 3);
+ pr_warn!("{} message (level {}) with args\n", "Warning", 4);
+ pr_notice!("{} message (level {}) with args\n", "Notice", 5);
+ pr_info!("{} message (level {}) with args\n", "Info", 6);
+
+ pr_info!("A {} that", "line");
+ pr_cont!(" is {}", "continued");
+ pr_cont!(" with {}\n", "args");
+
+ Ok(RustPrint)
+ }
+}
+
+impl Drop for RustPrint {
+ fn drop(&mut self) {
+ pr_info!("Rust printing macros sample (exit)\n");
+ }
+}
diff --git a/samples/rust/rust_random.rs b/samples/rust/rust_random.rs
new file mode 100644
index 000000000000..771c7a940b3d
--- /dev/null
+++ b/samples/rust/rust_random.rs
@@ -0,0 +1,60 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Rust random device.
+//!
+//! Adapted from Alex Gaynor's original available at
+//! <https://github.com/alex/just-use/blob/master/src/lib.rs>.
+
+use kernel::{
+ file::{self, File},
+ io_buffer::{IoBufferReader, IoBufferWriter},
+ prelude::*,
+};
+
+module_misc_device! {
+ type: RandomFile,
+ name: b"rust_random",
+ author: b"Rust for Linux Contributors",
+ description: b"Just use /dev/urandom: Now with early-boot safety",
+ license: b"GPL",
+}
+
+struct RandomFile;
+
+#[vtable]
+impl file::Operations for RandomFile {
+ fn open(_data: &(), _file: &File) -> Result {
+ Ok(())
+ }
+
+ fn read(_this: (), file: &File, buf: &mut impl IoBufferWriter, _: u64) -> Result<usize> {
+ let total_len = buf.len();
+ let mut chunkbuf = [0; 256];
+
+ while !buf.is_empty() {
+ let len = chunkbuf.len().min(buf.len());
+ let chunk = &mut chunkbuf[0..len];
+ let blocking = (file.flags() & file::flags::O_NONBLOCK) == 0;
+
+ if blocking {
+ kernel::random::getrandom(chunk)?;
+ } else {
+ kernel::random::getrandom_nonblock(chunk)?;
+ }
+ buf.write_slice(chunk)?;
+ }
+ Ok(total_len)
+ }
+
+ fn write(_this: (), _file: &File, buf: &mut impl IoBufferReader, _: u64) -> Result<usize> {
+ let total_len = buf.len();
+ let mut chunkbuf = [0; 256];
+ while !buf.is_empty() {
+ let len = chunkbuf.len().min(buf.len());
+ let chunk = &mut chunkbuf[0..len];
+ buf.read_slice(chunk)?;
+ kernel::random::add_randomness(chunk);
+ }
+ Ok(total_len)
+ }
+}
diff --git a/samples/rust/rust_selftests.rs b/samples/rust/rust_selftests.rs
new file mode 100644
index 000000000000..965c48fd0e29
--- /dev/null
+++ b/samples/rust/rust_selftests.rs
@@ -0,0 +1,99 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Self test cases for Rust.
+
+use kernel::prelude::*;
+// Keep the `use` for a test in its test function. Module-level `use`s are only for the test
+// framework.
+
+module! {
+ type: RustSelftests,
+ name: b"rust_selftests",
+ author: b"Rust for Linux Contributors",
+ description: b"Self test cases for Rust",
+ license: b"GPL",
+}
+
+struct RustSelftests;
+
+/// A summary of testing.
+///
+/// A test can
+///
+/// * pass (successfully), or
+/// * fail (without hitting any error), or
+/// * hit an error (interrupted).
+///
+/// This is the type that differentiates the first two (pass and fail) cases.
+///
+/// When a test hits an error, the test function should skip and return the error. Note that this
+/// doesn't mean the test fails, for example if the system doesn't have enough memory for
+/// testing, the test function may return an `Err(ENOMEM)` and skip.
+#[allow(dead_code)]
+enum TestSummary {
+ Pass,
+ Fail,
+}
+
+use TestSummary::Fail;
+use TestSummary::Pass;
+
+macro_rules! do_tests {
+ ($($name:ident),*) => {
+ let mut total = 0;
+ let mut pass = 0;
+ let mut fail = 0;
+
+ $({
+ total += 1;
+
+ match $name() {
+ Ok(Pass) => {
+ pass += 1;
+ pr_info!("{} passed!", stringify!($name));
+ },
+ Ok(Fail) => {
+ fail += 1;
+ pr_info!("{} failed!", stringify!($name));
+ },
+ Err(err) => {
+ pr_info!("{} hit error {:?}", stringify!($name), err);
+ }
+ }
+ })*
+
+ pr_info!("{} tests run, {} passed, {} failed, {} hit errors\n",
+ total, pass, fail, total - pass - fail);
+
+ if total == pass {
+ pr_info!("All tests passed. Congratulations!\n");
+ }
+ }
+}
+
+/// An example of test.
+#[allow(dead_code)]
+fn test_example() -> Result<TestSummary> {
+ // `use` declarations for the test can be put here, e.g. `use foo::bar;`.
+
+ // Always pass.
+ Ok(Pass)
+}
+
+impl kernel::Module for RustSelftests {
+ fn init(_name: &'static CStr, _module: &'static ThisModule) -> Result<Self> {
+ pr_info!("Rust self tests (init)\n");
+
+ do_tests! {
+ test_example // TODO: Remove when there is at least a real test.
+ };
+
+ Ok(RustSelftests)
+ }
+}
+
+impl Drop for RustSelftests {
+ fn drop(&mut self) {
+ pr_info!("Rust self tests (exit)\n");
+ }
+}
diff --git a/samples/rust/rust_semaphore.rs b/samples/rust/rust_semaphore.rs
new file mode 100644
index 000000000000..e91f82a6abfb
--- /dev/null
+++ b/samples/rust/rust_semaphore.rs
@@ -0,0 +1,170 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Rust semaphore sample.
+//!
+//! A counting semaphore that can be used by userspace.
+//!
+//! The count is incremented by writes to the device. A write of `n` bytes results in an increment
+//! of `n`. It is decremented by reads; each read results in the count being decremented by 1. If
+//! the count is already zero, a read will block until another write increments it.
+//!
+//! This can be used in user space from the shell for example as follows (assuming a node called
+//! `semaphore`): `cat semaphore` decrements the count by 1 (waiting for it to become non-zero
+//! before decrementing); `echo -n 123 > semaphore` increments the semaphore by 3, potentially
+//! unblocking up to 3 blocked readers.
+
+use core::sync::atomic::{AtomicU64, Ordering};
+use kernel::{
+ condvar_init,
+ file::{self, File, IoctlCommand, IoctlHandler},
+ io_buffer::{IoBufferReader, IoBufferWriter},
+ miscdev::Registration,
+ mutex_init,
+ prelude::*,
+ sync::{CondVar, Mutex, Ref, UniqueRef},
+ user_ptr::{UserSlicePtrReader, UserSlicePtrWriter},
+};
+
+module! {
+ type: RustSemaphore,
+ name: b"rust_semaphore",
+ author: b"Rust for Linux Contributors",
+ description: b"Rust semaphore sample",
+ license: b"GPL",
+}
+
+struct SemaphoreInner {
+ count: usize,
+ max_seen: usize,
+}
+
+struct Semaphore {
+ changed: CondVar,
+ inner: Mutex<SemaphoreInner>,
+}
+
+struct FileState {
+ read_count: AtomicU64,
+ shared: Ref<Semaphore>,
+}
+
+impl FileState {
+ fn consume(&self) -> Result {
+ let mut inner = self.shared.inner.lock();
+ while inner.count == 0 {
+ if self.shared.changed.wait(&mut inner) {
+ return Err(EINTR);
+ }
+ }
+ inner.count -= 1;
+ Ok(())
+ }
+}
+
+#[vtable]
+impl file::Operations for FileState {
+ type Data = Box<Self>;
+ type OpenData = Ref<Semaphore>;
+
+ fn open(shared: &Ref<Semaphore>, _file: &File) -> Result<Box<Self>> {
+ Ok(Box::try_new(Self {
+ read_count: AtomicU64::new(0),
+ shared: shared.clone(),
+ })?)
+ }
+
+ fn read(this: &Self, _: &File, data: &mut impl IoBufferWriter, offset: u64) -> Result<usize> {
+ if data.is_empty() || offset > 0 {
+ return Ok(0);
+ }
+ this.consume()?;
+ data.write_slice(&[0u8; 1])?;
+ this.read_count.fetch_add(1, Ordering::Relaxed);
+ Ok(1)
+ }
+
+ fn write(this: &Self, _: &File, data: &mut impl IoBufferReader, _offs: u64) -> Result<usize> {
+ {
+ let mut inner = this.shared.inner.lock();
+ inner.count = inner.count.saturating_add(data.len());
+ if inner.count > inner.max_seen {
+ inner.max_seen = inner.count;
+ }
+ }
+
+ this.shared.changed.notify_all();
+ Ok(data.len())
+ }
+
+ fn ioctl(this: &Self, file: &File, cmd: &mut IoctlCommand) -> Result<i32> {
+ cmd.dispatch::<Self>(this, file)
+ }
+}
+
+struct RustSemaphore {
+ _dev: Pin<Box<Registration<FileState>>>,
+}
+
+impl kernel::Module for RustSemaphore {
+ fn init(name: &'static CStr, _module: &'static ThisModule) -> Result<Self> {
+ pr_info!("Rust semaphore sample (init)\n");
+
+ let mut sema = Pin::from(UniqueRef::try_new(Semaphore {
+ // SAFETY: `condvar_init!` is called below.
+ changed: unsafe { CondVar::new() },
+
+ // SAFETY: `mutex_init!` is called below.
+ inner: unsafe {
+ Mutex::new(SemaphoreInner {
+ count: 0,
+ max_seen: 0,
+ })
+ },
+ })?);
+
+ // SAFETY: `changed` is pinned when `sema` is.
+ let pinned = unsafe { sema.as_mut().map_unchecked_mut(|s| &mut s.changed) };
+ condvar_init!(pinned, "Semaphore::changed");
+
+ // SAFETY: `inner` is pinned when `sema` is.
+ let pinned = unsafe { sema.as_mut().map_unchecked_mut(|s| &mut s.inner) };
+ mutex_init!(pinned, "Semaphore::inner");
+
+ Ok(Self {
+ _dev: Registration::new_pinned(fmt!("{name}"), sema.into())?,
+ })
+ }
+}
+
+impl Drop for RustSemaphore {
+ fn drop(&mut self) {
+ pr_info!("Rust semaphore sample (exit)\n");
+ }
+}
+
+const IOCTL_GET_READ_COUNT: u32 = 0x80086301;
+const IOCTL_SET_READ_COUNT: u32 = 0x40086301;
+
+impl IoctlHandler for FileState {
+ type Target<'a> = &'a Self;
+
+ fn read(this: &Self, _: &File, cmd: u32, writer: &mut UserSlicePtrWriter) -> Result<i32> {
+ match cmd {
+ IOCTL_GET_READ_COUNT => {
+ writer.write(&this.read_count.load(Ordering::Relaxed))?;
+ Ok(0)
+ }
+ _ => Err(EINVAL),
+ }
+ }
+
+ fn write(this: &Self, _: &File, cmd: u32, reader: &mut UserSlicePtrReader) -> Result<i32> {
+ match cmd {
+ IOCTL_SET_READ_COUNT => {
+ this.read_count.store(reader.read()?, Ordering::Relaxed);
+ Ok(0)
+ }
+ _ => Err(EINVAL),
+ }
+ }
+}
diff --git a/samples/rust/rust_semaphore_c.c b/samples/rust/rust_semaphore_c.c
new file mode 100644
index 000000000000..7672b0b4c105
--- /dev/null
+++ b/samples/rust/rust_semaphore_c.c
@@ -0,0 +1,212 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Rust semaphore sample (in C, for comparison)
+ *
+ * This is a C implementation of `rust_semaphore.rs`. Refer to the description
+ * in that file for details on the device.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/miscdevice.h>
+#include <linux/module.h>
+#include <linux/fs.h>
+#include <linux/slab.h>
+#include <linux/refcount.h>
+#include <linux/wait.h>
+
+#define IOCTL_GET_READ_COUNT _IOR('c', 1, u64)
+#define IOCTL_SET_READ_COUNT _IOW('c', 1, u64)
+
+struct semaphore_state {
+ struct kref ref;
+ struct miscdevice miscdev;
+ wait_queue_head_t changed;
+ struct mutex mutex;
+ size_t count;
+ size_t max_seen;
+};
+
+struct file_state {
+ atomic64_t read_count;
+ struct semaphore_state *shared;
+};
+
+static int semaphore_consume(struct semaphore_state *state)
+{
+ DEFINE_WAIT(wait);
+
+ mutex_lock(&state->mutex);
+ while (state->count == 0) {
+ prepare_to_wait(&state->changed, &wait, TASK_INTERRUPTIBLE);
+ mutex_unlock(&state->mutex);
+ schedule();
+ finish_wait(&state->changed, &wait);
+ if (signal_pending(current))
+ return -EINTR;
+ mutex_lock(&state->mutex);
+ }
+
+ state->count--;
+ mutex_unlock(&state->mutex);
+
+ return 0;
+}
+
+static int semaphore_open(struct inode *nodp, struct file *filp)
+{
+ struct semaphore_state *shared =
+ container_of(filp->private_data, struct semaphore_state, miscdev);
+ struct file_state *state;
+
+ state = kzalloc(sizeof(*state), GFP_KERNEL);
+ if (!state)
+ return -ENOMEM;
+
+ kref_get(&shared->ref);
+ state->shared = shared;
+ atomic64_set(&state->read_count, 0);
+
+ filp->private_data = state;
+
+ return 0;
+}
+
+static ssize_t semaphore_write(struct file *filp, const char __user *buffer, size_t count,
+ loff_t *ppos)
+{
+ struct file_state *state = filp->private_data;
+ struct semaphore_state *shared = state->shared;
+
+ mutex_lock(&shared->mutex);
+
+ shared->count += count;
+ if (shared->count < count)
+ shared->count = SIZE_MAX;
+
+ if (shared->count > shared->max_seen)
+ shared->max_seen = shared->count;
+
+ mutex_unlock(&shared->mutex);
+
+ wake_up_all(&shared->changed);
+
+ return count;
+}
+
+static ssize_t semaphore_read(struct file *filp, char __user *buffer,
+ size_t count, loff_t *ppos)
+{
+ struct file_state *state = filp->private_data;
+ char c = 0;
+ int ret;
+
+ if (count == 0 || *ppos > 0)
+ return 0;
+
+ ret = semaphore_consume(state->shared);
+ if (ret)
+ return ret;
+
+ if (copy_to_user(buffer, &c, sizeof(c)))
+ return -EFAULT;
+
+ atomic64_add(1, &state->read_count);
+ *ppos += 1;
+ return 1;
+}
+
+static long semaphore_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
+{
+ struct file_state *state = filp->private_data;
+ void __user *buffer = (void __user *)arg;
+ u64 value;
+
+ switch (cmd) {
+ case IOCTL_GET_READ_COUNT:
+ value = atomic64_read(&state->read_count);
+ if (copy_to_user(buffer, &value, sizeof(value)))
+ return -EFAULT;
+ return 0;
+ case IOCTL_SET_READ_COUNT:
+ if (copy_from_user(&value, buffer, sizeof(value)))
+ return -EFAULT;
+ atomic64_set(&state->read_count, value);
+ return 0;
+ default:
+ return -EINVAL;
+ }
+}
+
+static void semaphore_free(struct kref *kref)
+{
+ struct semaphore_state *device;
+
+ device = container_of(kref, struct semaphore_state, ref);
+ kfree(device);
+}
+
+static int semaphore_release(struct inode *nodp, struct file *filp)
+{
+ struct file_state *state = filp->private_data;
+
+ kref_put(&state->shared->ref, semaphore_free);
+ kfree(state);
+ return 0;
+}
+
+static const struct file_operations semaphore_fops = {
+ .owner = THIS_MODULE,
+ .open = semaphore_open,
+ .read = semaphore_read,
+ .write = semaphore_write,
+ .compat_ioctl = semaphore_ioctl,
+ .release = semaphore_release,
+};
+
+static struct semaphore_state *device;
+
+static int __init semaphore_init(void)
+{
+ int ret;
+ struct semaphore_state *state;
+
+ pr_info("Rust semaphore sample (in C, for comparison) (init)\n");
+
+ state = kzalloc(sizeof(*state), GFP_KERNEL);
+ if (!state)
+ return -ENOMEM;
+
+ mutex_init(&state->mutex);
+ kref_init(&state->ref);
+ init_waitqueue_head(&state->changed);
+
+ state->miscdev.fops = &semaphore_fops;
+ state->miscdev.minor = MISC_DYNAMIC_MINOR;
+ state->miscdev.name = "semaphore";
+
+ ret = misc_register(&state->miscdev);
+ if (ret < 0) {
+ kfree(state);
+ return ret;
+ }
+
+ device = state;
+
+ return 0;
+}
+
+static void __exit semaphore_exit(void)
+{
+ pr_info("Rust semaphore sample (in C, for comparison) (exit)\n");
+
+ misc_deregister(&device->miscdev);
+ kref_put(&device->ref, semaphore_free);
+}
+
+module_init(semaphore_init);
+module_exit(semaphore_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Rust for Linux Contributors");
+MODULE_DESCRIPTION("Rust semaphore sample (in C, for comparison)");
diff --git a/samples/rust/rust_stack_probing.rs b/samples/rust/rust_stack_probing.rs
new file mode 100644
index 000000000000..1448fe8e1b56
--- /dev/null
+++ b/samples/rust/rust_stack_probing.rs
@@ -0,0 +1,36 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Rust stack probing sample.
+
+use kernel::prelude::*;
+
+module! {
+ type: RustStackProbing,
+ name: b"rust_stack_probing",
+ author: b"Rust for Linux Contributors",
+ description: b"Rust stack probing sample",
+ license: b"GPL",
+}
+
+struct RustStackProbing;
+
+impl kernel::Module for RustStackProbing {
+ fn init(_name: &'static CStr, _module: &'static ThisModule) -> Result<Self> {
+ pr_info!("Rust stack probing sample (init)\n");
+
+ // Including this large variable on the stack will trigger
+ // stack probing on the supported archs.
+ // This will verify that stack probing does not lead to
+ // any errors if we need to link `__rust_probestack`.
+ let x: [u64; 514] = core::hint::black_box([5; 514]);
+ pr_info!("Large array has length: {}\n", x.len());
+
+ Ok(RustStackProbing)
+ }
+}
+
+impl Drop for RustStackProbing {
+ fn drop(&mut self) {
+ pr_info!("Rust stack probing sample (exit)\n");
+ }
+}
diff --git a/samples/rust/rust_sync.rs b/samples/rust/rust_sync.rs
new file mode 100644
index 000000000000..46637ace2f7f
--- /dev/null
+++ b/samples/rust/rust_sync.rs
@@ -0,0 +1,93 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Rust synchronisation primitives sample.
+
+use kernel::prelude::*;
+use kernel::{
+ condvar_init, mutex_init, spinlock_init,
+ sync::{CondVar, Mutex, SpinLock},
+};
+
+module! {
+ type: RustSync,
+ name: b"rust_sync",
+ author: b"Rust for Linux Contributors",
+ description: b"Rust synchronisation primitives sample",
+ license: b"GPL",
+}
+
+kernel::init_static_sync! {
+ static SAMPLE_MUTEX: Mutex<u32> = 10;
+ static SAMPLE_CONDVAR: CondVar;
+}
+
+struct RustSync;
+
+impl kernel::Module for RustSync {
+ fn init(_name: &'static CStr, _module: &'static ThisModule) -> Result<Self> {
+ pr_info!("Rust synchronisation primitives sample (init)\n");
+
+ // Test mutexes.
+ {
+ // SAFETY: `init` is called below.
+ let mut data = Pin::from(Box::try_new(unsafe { Mutex::new(0) })?);
+ mutex_init!(data.as_mut(), "RustSync::init::data1");
+ *data.lock() = 10;
+ pr_info!("Value: {}\n", *data.lock());
+
+ // SAFETY: `init` is called below.
+ let mut cv = Pin::from(Box::try_new(unsafe { CondVar::new() })?);
+ condvar_init!(cv.as_mut(), "RustSync::init::cv1");
+
+ {
+ let mut guard = data.lock();
+ while *guard != 10 {
+ let _ = cv.wait(&mut guard);
+ }
+ }
+ cv.notify_one();
+ cv.notify_all();
+ cv.free_waiters();
+ }
+
+ // Test static mutex + condvar.
+ *SAMPLE_MUTEX.lock() = 20;
+
+ {
+ let mut guard = SAMPLE_MUTEX.lock();
+ while *guard != 20 {
+ let _ = SAMPLE_CONDVAR.wait(&mut guard);
+ }
+ }
+
+ // Test spinlocks.
+ {
+ // SAFETY: `init` is called below.
+ let mut data = Pin::from(Box::try_new(unsafe { SpinLock::new(0) })?);
+ spinlock_init!(data.as_mut(), "RustSync::init::data2");
+ *data.lock() = 10;
+ pr_info!("Value: {}\n", *data.lock());
+
+ // SAFETY: `init` is called below.
+ let mut cv = Pin::from(Box::try_new(unsafe { CondVar::new() })?);
+ condvar_init!(cv.as_mut(), "RustSync::init::cv2");
+ {
+ let mut guard = data.lock();
+ while *guard != 10 {
+ let _ = cv.wait(&mut guard);
+ }
+ }
+ cv.notify_one();
+ cv.notify_all();
+ cv.free_waiters();
+ }
+
+ Ok(RustSync)
+ }
+}
+
+impl Drop for RustSync {
+ fn drop(&mut self) {
+ pr_info!("Rust synchronisation primitives sample (exit)\n");
+ }
+}
--
2.37.1
From: Miguel Ojeda
> Sent: 02 August 2022 02:50
>
> From: Boqun Feng <[email protected]>
>
> This introduces `KSYM_NAME_LEN_BUFFER` in place of the previously
> hardcoded size of the input buffer.
>
> It will also make it easier to update the size in a single place
> in a later patch.
>
> Signed-off-by: Boqun Feng <[email protected]>
> Co-developed-by: Miguel Ojeda <[email protected]>
> Signed-off-by: Miguel Ojeda <[email protected]>
> ---
> scripts/kallsyms.c | 10 ++++++++--
> 1 file changed, 8 insertions(+), 2 deletions(-)
>
> diff --git a/scripts/kallsyms.c b/scripts/kallsyms.c
> index 52f5488c61bc..f3c5a2623f71 100644
> --- a/scripts/kallsyms.c
> +++ b/scripts/kallsyms.c
> @@ -27,8 +27,14 @@
>
> #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0]))
>
> +#define _stringify_1(x) #x
> +#define _stringify(x) _stringify_1(x)
> +
> #define KSYM_NAME_LEN 128
>
> +/* A substantially bigger size than the current maximum. */
> +#define KSYM_NAME_LEN_BUFFER 499
> +
> struct sym_entry {
> unsigned long long addr;
> unsigned int len;
> @@ -198,13 +204,13 @@ static void check_symbol_range(const char *sym, unsigned long long addr,
>
> static struct sym_entry *read_symbol(FILE *in)
> {
> - char name[500], type;
> + char name[KSYM_NAME_LEN_BUFFER+1], type;
> unsigned long long addr;
> unsigned int len;
> struct sym_entry *sym;
> int rc;
>
> - rc = fscanf(in, "%llx %c %499s\n", &addr, &type, name);
> + rc = fscanf(in, "%llx %c %" _stringify(KSYM_NAME_LEN_BUFFER) "s\n", &addr, &type, name);
Think I'd use "%*s" - simpler.
Although I normally completely avoid scanf() - too easy to get wrong.
David
> if (rc != 3) {
> if (rc != EOF && fgets(name, sizeof(name), in) == NULL)
> fprintf(stderr, "Read error or end of file.\n");
> --
> 2.37.1
-
Registered Address Lakeside, Bramley Road, Mount Farm, Milton Keynes, MK1 1PT, UK
Registration No: 1397386 (Wales)
On 02/08/2022 10.29, David Laight wrote:
> From: Miguel Ojeda
>> Sent: 02 August 2022 02:50
>> - rc = fscanf(in, "%llx %c %499s\n", &addr, &type, name);
>> + rc = fscanf(in, "%llx %c %" _stringify(KSYM_NAME_LEN_BUFFER) "s\n", &addr, &type, name);
>
> Think I'd use "%*s" - simpler.
> Although I normally completely avoid scanf() - too easy to get wrong.
Indeed, and your suggestion is a perfect example: for scanf, * doesn't
mean "there's an int argument specifying the 'precision'", quite the
contrary. man fscanf:
• An optional '*' assignment-suppression character: scanf()
reads input as directed by the conversion specification, but
discards the input. No corresponding pointer argument is re‐
quired, and this specification is not included in the count of
successful assignments returned by scanf().
Rasmus
On Tue, Aug 02, 2022 at 03:49:47AM +0200, Miguel Ojeda wrote:
> Some of the improvements to the abstractions and example drivers are:
>
> - Filesystem support (`fs` module), including:
>
> + `INode` type (which wraps `struct inode`).
> + `DEntry` type (which wraps `struct dentry`).
> + `Filename` type (which wraps `struct filename`).
> + `Registration` type.
> + `Type` and `Context` traits.
> + `SuperBlock` type (which wraps `struct super_block` and takes
> advantage of typestates for its initialization).
> + File system parameters support (with a `Value` enum; `Spec*`
> and `Constant*` types, `define_fs_params!` macro...).
> + File system flags.
> + `module_fs!` macro to simplify registering kernel modules that
> only implement a single file system.
> + A file system sample.
None of this (afaict) has been discussed on linux-fsdevel. And I may
have missed somethiing, but I don't see the fs module in this series
of patches. Could linux-fsdevel be cc'd on the development of Rust
support for filesystems in the future?
On Tue, Aug 02, 2022 at 03:50:04AM +0200, Miguel Ojeda wrote:
> From: Wedson Almeida Filho <[email protected]>
>
> The `kernel` crate currently includes all the abstractions that wrap
> kernel features written in C.
>
> These abstractions call the C side of the kernel via the generated
> bindings with the `bindgen` tool. Modules developed in Rust should
> never call the bindings themselves.
>
> In the future, as the abstractions grow in number, we may need
> to split this crate into several, possibly following a similar
> subdivision in subsystems as the kernel itself and/or moving
> the code to the actual subsystems.
>
> Co-developed-by: Alex Gaynor <[email protected]>
> Signed-off-by: Alex Gaynor <[email protected]>
> Co-developed-by: Geoffrey Thomas <[email protected]>
> Signed-off-by: Geoffrey Thomas <[email protected]>
> Co-developed-by: Finn Behrens <[email protected]>
> Signed-off-by: Finn Behrens <[email protected]>
> Co-developed-by: Adam Bratschi-Kaye <[email protected]>
> Signed-off-by: Adam Bratschi-Kaye <[email protected]>
> Co-developed-by: Michael Ellerman <[email protected]>
> Signed-off-by: Michael Ellerman <[email protected]>
> Co-developed-by: Sumera Priyadarsini <[email protected]>
> Signed-off-by: Sumera Priyadarsini <[email protected]>
> Co-developed-by: Sven Van Asbroeck <[email protected]>
> Signed-off-by: Sven Van Asbroeck <[email protected]>
> Co-developed-by: Gary Guo <[email protected]>
> Signed-off-by: Gary Guo <[email protected]>
> Co-developed-by: Boris-Chengbiao Zhou <[email protected]>
> Signed-off-by: Boris-Chengbiao Zhou <[email protected]>
> Co-developed-by: Boqun Feng <[email protected]>
> Signed-off-by: Boqun Feng <[email protected]>
> Co-developed-by: Fox Chen <[email protected]>
> Signed-off-by: Fox Chen <[email protected]>
> Co-developed-by: Dan Robertson <[email protected]>
> Signed-off-by: Dan Robertson <[email protected]>
> Co-developed-by: Viktor Garske <[email protected]>
> Signed-off-by: Viktor Garske <[email protected]>
> Co-developed-by: Dariusz Sosnowski <[email protected]>
> Signed-off-by: Dariusz Sosnowski <[email protected]>
> Co-developed-by: L?o Lanteri Thauvin <[email protected]>
> Signed-off-by: L?o Lanteri Thauvin <[email protected]>
> Co-developed-by: Niklas Mohrin <[email protected]>
> Signed-off-by: Niklas Mohrin <[email protected]>
> Co-developed-by: Gioh Kim <[email protected]>
> Signed-off-by: Gioh Kim <[email protected]>
> Co-developed-by: Daniel Xu <[email protected]>
> Signed-off-by: Daniel Xu <[email protected]>
> Co-developed-by: Milan Landaverde <[email protected]>
> Signed-off-by: Milan Landaverde <[email protected]>
> Co-developed-by: Morgan Bartlett <[email protected]>
> Signed-off-by: Morgan Bartlett <[email protected]>
> Co-developed-by: Maciej Falkowski <[email protected]>
> Signed-off-by: Maciej Falkowski <[email protected]>
> Co-developed-by: Jiapeng Chong <[email protected]>
> Signed-off-by: Jiapeng Chong <[email protected]>
> Co-developed-by: N?ndor Istv?n Kr?cser <[email protected]>
> Signed-off-by: N?ndor Istv?n Kr?cser <[email protected]>
> Co-developed-by: David Gow <[email protected]>
> Signed-off-by: David Gow <[email protected]>
> Co-developed-by: John Baublitz <[email protected]>
> Signed-off-by: John Baublitz <[email protected]>
> Co-developed-by: Bj?rn Roy Baron <[email protected]>
> Signed-off-by: Bj?rn Roy Baron <[email protected]>
> Signed-off-by: Wedson Almeida Filho <[email protected]>
> Co-developed-by: Miguel Ojeda <[email protected]>
> Signed-off-by: Miguel Ojeda <[email protected]>
> ---
> rust/kernel/allocator.rs | 64 ++
> rust/kernel/amba.rs | 261 +++++++
> rust/kernel/build_assert.rs | 83 +++
> rust/kernel/chrdev.rs | 206 ++++++
> rust/kernel/clk.rs | 79 ++
> rust/kernel/cred.rs | 46 ++
> rust/kernel/delay.rs | 104 +++
> rust/kernel/device.rs | 527 ++++++++++++++
> rust/kernel/driver.rs | 442 +++++++++++
> rust/kernel/error.rs | 564 ++++++++++++++
> rust/kernel/file.rs | 887 +++++++++++++++++++++++
> rust/kernel/fs.rs | 846 +++++++++++++++++++++
> rust/kernel/fs/param.rs | 553 ++++++++++++++
> rust/kernel/gpio.rs | 505 +++++++++++++
> rust/kernel/hwrng.rs | 210 ++++++
> rust/kernel/io_buffer.rs | 153 ++++
> rust/kernel/io_mem.rs | 278 +++++++
> rust/kernel/iov_iter.rs | 81 +++
> rust/kernel/irq.rs | 681 +++++++++++++++++
> rust/kernel/kasync.rs | 50 ++
> rust/kernel/kasync/executor.rs | 154 ++++
> rust/kernel/kasync/executor/workqueue.rs | 291 ++++++++
> rust/kernel/kasync/net.rs | 322 ++++++++
> rust/kernel/kunit.rs | 91 +++
> rust/kernel/lib.rs | 267 +++++++
> rust/kernel/linked_list.rs | 247 +++++++
> rust/kernel/miscdev.rs | 290 ++++++++
> rust/kernel/mm.rs | 149 ++++
> rust/kernel/module_param.rs | 499 +++++++++++++
> rust/kernel/net.rs | 392 ++++++++++
> rust/kernel/net/filter.rs | 447 ++++++++++++
> rust/kernel/of.rs | 63 ++
> rust/kernel/pages.rs | 144 ++++
> rust/kernel/platform.rs | 223 ++++++
> rust/kernel/power.rs | 118 +++
> rust/kernel/prelude.rs | 36 +
> rust/kernel/print.rs | 406 +++++++++++
> rust/kernel/random.rs | 42 ++
> rust/kernel/raw_list.rs | 361 +++++++++
> rust/kernel/rbtree.rs | 563 ++++++++++++++
> rust/kernel/revocable.rs | 425 +++++++++++
> rust/kernel/security.rs | 38 +
> rust/kernel/static_assert.rs | 34 +
> rust/kernel/std_vendor.rs | 161 ++++
> rust/kernel/str.rs | 597 +++++++++++++++
> rust/kernel/sync.rs | 48 +-
> rust/kernel/sysctl.rs | 199 +++++
> rust/kernel/task.rs | 239 ++++++
> rust/kernel/types.rs | 705 ++++++++++++++++++
> rust/kernel/unsafe_list.rs | 680 +++++++++++++++++
> rust/kernel/user_ptr.rs | 175 +++++
> rust/kernel/workqueue.rs | 512 +++++++++++++
> 52 files changed, 15518 insertions(+), 20 deletions(-)
This is huge for a single commit, and pretty much impossible to review
as-is.
Any chance you can turn this into a series of commits, that starts with
the basics and builds on top of that? Right now you are mixing many
many different subsystems all at once into one commit, guaranteeing that
no one can review the whole thing properly :(
thanks,
greg k-h
Hi Willy,
On Tue, Aug 2, 2022 at 2:26 PM Matthew Wilcox <[email protected]> wrote:
>
> None of this (afaict) has been discussed on linux-fsdevel. And I may
> have missed somethiing, but I don't see the fs module in this series
> of patches. Could linux-fsdevel be cc'd on the development of Rust
> support for filesystems in the future?
In order to provide example drivers and kernel modules, we need to
have some safe abstractions for them, thus we are adding some as we
need them.
More importantly, the abstractions also serve as a showcase of how
they may be written in the future if Rust support is merged.
This does not mean these abstractions are a final design or that we
plan to develop them independently of subsystem maintainers. In fact,
we would prefer the opposite: in the future, when the support is
merged and more people start having more experience with Rust, we hope
that the respective kernel maintainers start developing and
maintaining the abstractions themselves.
But we have to start somewhere, and at least provide enough examples
to serve as guidance and to show that it is actually possible to write
abstractions that restrict the amount of unsafe code.
And, of course, if you are already interested in developing them, that
would be actually great and we would love your input and/or that you
join us.
As for the `fs` module, I see in lore 2 patches didn't make it
through, but I didn't get a bounce (I do get bounces for the
rust-for-linux ML, but I was told that was fine as long as LKML got
them). Sorry about that... I will ask what to do.
Meanwhile, you can see the patches in this branch:
https://github.com/Rust-for-Linux/linux.git rust-next
Cheers,
Miguel
On Tue, Aug 02, 2022 at 03:45:50PM +0200, Miguel Ojeda wrote:
> Hi Willy,
>
> On Tue, Aug 2, 2022 at 2:26 PM Matthew Wilcox <[email protected]> wrote:
> >
> > None of this (afaict) has been discussed on linux-fsdevel. And I may
> > have missed somethiing, but I don't see the fs module in this series
> > of patches. Could linux-fsdevel be cc'd on the development of Rust
> > support for filesystems in the future?
>
> In order to provide example drivers and kernel modules, we need to
> have some safe abstractions for them, thus we are adding some as we
> need them.
>
> More importantly, the abstractions also serve as a showcase of how
> they may be written in the future if Rust support is merged.
>
> This does not mean these abstractions are a final design or that we
> plan to develop them independently of subsystem maintainers. In fact,
> we would prefer the opposite: in the future, when the support is
> merged and more people start having more experience with Rust, we hope
> that the respective kernel maintainers start developing and
> maintaining the abstractions themselves.
>
> But we have to start somewhere, and at least provide enough examples
> to serve as guidance and to show that it is actually possible to write
> abstractions that restrict the amount of unsafe code.
>
> And, of course, if you are already interested in developing them, that
> would be actually great and we would love your input and/or that you
> join us.
No objections to any of this. I love the idea of being able to write
filesystems in Rust. I just think it would go more smoothly if
linux-fsdevel were involved more closely so people at least have the
option of being able to follow design decisions, and hopefully influence
them. That goes both ways, of course; I hardly think our current
operations structures are the optimum way to implement a filesystem,
and having fresh eyes say things like "But that shouldn't be part of the
address_space_operations" can impel better abstractions.
> As for the `fs` module, I see in lore 2 patches didn't make it
> through, but I didn't get a bounce (I do get bounces for the
> rust-for-linux ML, but I was told that was fine as long as LKML got
> them). Sorry about that... I will ask what to do.
The obvious answer is to split out the 'fs module' into its own patch
;-) I presume it was part of the kernel crate which would have been
either patch 17 or 11 in that series?
> Meanwhile, you can see the patches in this branch:
>
> https://github.com/Rust-for-Linux/linux.git rust-next
>
> Cheers,
> Miguel
> +module! {
> + type: RustSemaphore,
> + name: b"rust_semaphore",
> + author: b"Rust for Linux Contributors",
> + description: b"Rust semaphore sample",
> + license: b"GPL",
> +}
A minor neat, but ain't it possible to use &str here in order to drop
this ugly binary string prefix?
Miguel,
handwaiving and pointing to git trees is not how Linux development
works. Please make sure all the patches go to the relevant lists
and maintainers first, and actually do have ACKs.
On Tue, Aug 2, 2022 at 3:48 PM Christoph Hellwig <[email protected]> wrote:
>
> handwaiving and pointing to git trees is not how Linux development
> works. Please make sure all the patches go to the relevant lists
> and maintainers first, and actually do have ACKs.
Which hand-waving? In fact, we were requested to do it like this.
As for the Cc's, if any ML wants to be Cc'd for an abstraction we
create, even if no C code is modified on their side, I am more than
happy to Cc them. I can even do that by default, but not everyone may
want to hear about the Rust side just yet, so I have not been doing it
so far.
Cheers,
Miguel
Hi Greg,
On Tue, Aug 2, 2022 at 3:34 PM Greg Kroah-Hartman
<[email protected]> wrote:
>
> This is huge for a single commit, and pretty much impossible to review
> as-is.
>
> Any chance you can turn this into a series of commits, that starts with
> the basics and builds on top of that? Right now you are mixing many
> many different subsystems all at once into one commit, guaranteeing that
> no one can review the whole thing properly :(
Yeah, of course, I am happy to do that -- I did it for the `sync`
module, but stopped splitting further since I understood you wanted it
this way from what you told me on February.
Cheers,
Miguel
On Tue, Aug 02, 2022 at 04:33:17PM +0200, Miguel Ojeda wrote:
> Hi Greg,
>
> On Tue, Aug 2, 2022 at 3:34 PM Greg Kroah-Hartman
> <[email protected]> wrote:
> >
> > This is huge for a single commit, and pretty much impossible to review
> > as-is.
> >
> > Any chance you can turn this into a series of commits, that starts with
> > the basics and builds on top of that? Right now you are mixing many
> > many different subsystems all at once into one commit, guaranteeing that
> > no one can review the whole thing properly :(
>
> Yeah, of course, I am happy to do that -- I did it for the `sync`
> module, but stopped splitting further since I understood you wanted it
> this way from what you told me on February.
I did? Maybe I didn't realize we would end up with 15k lines of code
from different parts of the kernel like amba bus and filesystem apis all
in a single commit. If so, my fault, but as other parts of this
discussion show, it is going to be required to get the subsystem
maintainers to be able to review the interfaces to their code in order
to get any further.
thanks,
greg k-h
On Tue, Aug 2, 2022 at 4:36 PM Greg Kroah-Hartman
<[email protected]> wrote:
>
> I did? Maybe I didn't realize we would end up with 15k lines of code
> from different parts of the kernel like amba bus and filesystem apis all
> in a single commit. If so, my fault, but as other parts of this
> discussion show, it is going to be required to get the subsystem
> maintainers to be able to review the interfaces to their code in order
> to get any further.
No worries at all! Probably a misunderstanding on my side too.
I am more than happy to spit it into quite a few patches, and it will
also help with the C-d-b's.
As for reviewing -- since we keep adding abstractions and new features
to show how things may work, we would be chasing new reviews all the
time. Would it be better to drop some of those for the moment and get
the "core" in first?
That way we can merge each subsystem part by part later, send it to
the proper MLs as smaller patches, get maintainers on board, etc.
etc., and it would be more manageable for everyone.
Cheers,
Miguel
On Tue, Aug 2, 2022 at 4:01 PM Matthew Wilcox <[email protected]> wrote:
>
> No objections to any of this. I love the idea of being able to write
> filesystems in Rust. I just think it would go more smoothly if
> linux-fsdevel were involved more closely so people at least have the
> option of being able to follow design decisions, and hopefully influence
> them. That goes both ways, of course; I hardly think our current
> operations structures are the optimum way to implement a filesystem,
> and having fresh eyes say things like "But that shouldn't be part of the
> address_space_operations" can impel better abstractions.
I will send the patches to fsdevel then!
As for following development closely and design decisions, we have
been doing it in GitHub so far pre-merge, so the easiest until the
merge (for us) would be to ping you there. We can also send you copies
of the `fs` related patches too if you would like that. I would highly
recommend joining the monthly informal calls too.
(I appreciate the kind answer, by the way!)
> The obvious answer is to split out the 'fs module' into its own patch
> ;-) I presume it was part of the kernel crate which would have been
> either patch 17 or 11 in that series?
Yeah, patch 17, exactly (patch 11 is the `alloc` import). I have asked
Konstantin privately about them.
In any case, I will split the patches further for v9 which should help.
Meanwhile, you can also see the `fs` module here, if you are curious:
https://github.com/Rust-for-Linux/linux/blob/rust-next/rust/kernel/fs.rs
https://github.com/Rust-for-Linux/linux/blob/rust-next/rust/kernel/fs/param.rs
Cheers,
Miguel
On Tue, Aug 2, 2022 at 5:09 PM Miguel Ojeda
<[email protected]> wrote:
>
> Yeah, patch 17, exactly (patch 11 is the `alloc` import). I have asked
> Konstantin privately about them.
The patches are showing up now in lore -- not sure if it was just a
delay (which would be consistent with the lack of bounce) or somebody
did something (thank you if so!).
Cheers,
Miguel
On Tue, Aug 02, 2022 at 05:07:56PM +0300, Konstantin Shelekhin wrote:
> > +module! {
> > + type: RustSemaphore,
> > + name: b"rust_semaphore",
> > + author: b"Rust for Linux Contributors",
> > + description: b"Rust semaphore sample",
> > + license: b"GPL",
> > +}
>
> A minor neat, but ain't it possible to use &str here in order to drop
> this ugly binary string prefix?
Their types are different. One is for u8. The other is for UTF-8.
Thanks,
Wei.
On Tue, Aug 02, 2022 at 04:53:17PM +0200, Miguel Ojeda wrote:
> On Tue, Aug 2, 2022 at 4:36 PM Greg Kroah-Hartman
> <[email protected]> wrote:
> >
> > I did? Maybe I didn't realize we would end up with 15k lines of code
> > from different parts of the kernel like amba bus and filesystem apis all
> > in a single commit. If so, my fault, but as other parts of this
> > discussion show, it is going to be required to get the subsystem
> > maintainers to be able to review the interfaces to their code in order
> > to get any further.
>
> No worries at all! Probably a misunderstanding on my side too.
>
> I am more than happy to spit it into quite a few patches, and it will
> also help with the C-d-b's.
>
> As for reviewing -- since we keep adding abstractions and new features
> to show how things may work, we would be chasing new reviews all the
> time. Would it be better to drop some of those for the moment and get
> the "core" in first?
Yes, it would be good to drop almost all of these for now, anything you
do not have an in-tree user for, should not be present in anything you
submit upstream.
> That way we can merge each subsystem part by part later, send it to
> the proper MLs as smaller patches, get maintainers on board, etc.
> etc., and it would be more manageable for everyone.
Yes, that would be the normal review process.
thanks,
greg k-h
> Their types are different. One is for u8. The other is for UTF-8.
Yes, but:
+#[derive(Debug, Default)]
+struct ModuleInfo {
+ type_: String,
+ license: String,
+ name: String,
+ author: Option<String>,
+ description: Option<String>,
+ alias: Option<String>,
+ params: Option<Group>,
+}
[...]
+impl ModuleInfo {
+ fn parse(it: &mut token_stream::IntoIter) -> Self {
+ match key.as_str() {
+ "type" => info.type_ = expect_ident(it),
+ "name" => info.name = expect_byte_string(it),
+ "author" => info.author = Some(expect_byte_string(it)),
+ "description" => info.description = Some(expect_byte_string(it)),
+ "license" => info.license = expect_byte_string(it),
+ "alias" => info.alias = Some(expect_byte_string(it)),
+ "alias_rtnl_link" => {
+ info.alias = Some(format!("rtnl-link-{}", expect_byte_string(it)))
+ }
+ "params" => info.params = Some(expect_group(it)),
+ _ => panic!(
+ "Unknown key \"{}\". Valid keys are: {:?}.",
+ key, EXPECTED_KEYS
+ ),
+ }
In the the end all module parameters are String, so why not use &str in
the API?
On Tue, Aug 02, 2022 at 03:49:55AM +0200, Miguel Ojeda wrote:
> From: Wedson Almeida Filho <[email protected]>
>
> A Rust helper (introduced in a later patch) needs to call
> `raw_spin_lock_init` with a passed key, rather than define
> one in place.
>
> In order to do that, this changes the `raw_spin_lock_init` macro
> to call a new `_raw_spin_lock_init` function which takes the key
> as an extra parameter.
>
> Co-developed-by: Alex Gaynor <[email protected]>
> Signed-off-by: Alex Gaynor <[email protected]>
> Signed-off-by: Wedson Almeida Filho <[email protected]>
> Co-developed-by: Miguel Ojeda <[email protected]>
> Signed-off-by: Miguel Ojeda <[email protected]>
Acked-by: Boqun Feng <[email protected]>
Regards,
Boqun
> ---
> include/linux/spinlock.h | 8 +++++++-
> 1 file changed, 7 insertions(+), 1 deletion(-)
>
> diff --git a/include/linux/spinlock.h b/include/linux/spinlock.h
> index ad1c91884ed8..27df5380c1e4 100644
> --- a/include/linux/spinlock.h
> +++ b/include/linux/spinlock.h
> @@ -99,11 +99,17 @@
> extern void __raw_spin_lock_init(raw_spinlock_t *lock, const char *name,
> struct lock_class_key *key, short inner);
>
> +static inline void _raw_spin_lock_init(raw_spinlock_t *lock, const char *name,
> + struct lock_class_key *key)
> +{
> + __raw_spin_lock_init(lock, name, key, LD_WAIT_SPIN);
> +}
> +
> # define raw_spin_lock_init(lock) \
> do { \
> static struct lock_class_key __key; \
> \
> - __raw_spin_lock_init((lock), #lock, &__key, LD_WAIT_SPIN); \
> + _raw_spin_lock_init((lock), #lock, &__key); \
> } while (0)
>
> #else
> --
> 2.37.1
>
>
On Tue, Aug 02, 2022 at 03:49:54AM +0200, Miguel Ojeda wrote:
> From: Wedson Almeida Filho <[email protected]>
>
> A Rust helper (introduced in a later patch) needs to call
> `spin_lock_init` with a passed key, rather than define
> one in place.
>
> In order to do that, this changes the `spin_lock_init` macro
> to call a new `__spin_lock_init` function which takes the key
> as an extra parameter.
>
> Co-developed-by: Alex Gaynor <[email protected]>
> Signed-off-by: Alex Gaynor <[email protected]>
> Signed-off-by: Wedson Almeida Filho <[email protected]>
> Co-developed-by: Miguel Ojeda <[email protected]>
> Signed-off-by: Miguel Ojeda <[email protected]>
Acked-by: Boqun Feng <[email protected]>
Peter, Will & Waiman, could you take a look at this patch and patch #8?
These two are needed because currently there is no way to convert a C
macro to a Rust macro, a C macro can be called as a function on Rust
side, but that's not quite for generating a static key of lockdep. As
a result, __spin_lock_init() needs to be exposed.
I think these are tiny and harmless, but looking forwards to your
insight ;-)
Regards,
Boqun
> ---
> include/linux/spinlock.h | 9 +++++++--
> 1 file changed, 7 insertions(+), 2 deletions(-)
>
> diff --git a/include/linux/spinlock.h b/include/linux/spinlock.h
> index 5c0c5174155d..ad1c91884ed8 100644
> --- a/include/linux/spinlock.h
> +++ b/include/linux/spinlock.h
> @@ -326,12 +326,17 @@ static __always_inline raw_spinlock_t *spinlock_check(spinlock_t *lock)
>
> #ifdef CONFIG_DEBUG_SPINLOCK
>
> +static inline void __spin_lock_init(spinlock_t *lock, const char *name,
> + struct lock_class_key *key)
> +{
> + __raw_spin_lock_init(spinlock_check(lock), name, key, LD_WAIT_CONFIG);
> +}
> +
> # define spin_lock_init(lock) \
> do { \
> static struct lock_class_key __key; \
> \
> - __raw_spin_lock_init(spinlock_check(lock), \
> - #lock, &__key, LD_WAIT_CONFIG); \
> + __spin_lock_init(lock, #lock, &__key); \
> } while (0)
>
> #else
> --
> 2.37.1
>
>
On Tue, Aug 2, 2022 at 4:08 PM Konstantin Shelekhin
<[email protected]> wrote:
>
> A minor neat, but ain't it possible to use &str here in order to drop
> this ugly binary string prefix?
Yeah, we would like to remove those at some point -- please see
https://github.com/Rust-for-Linux/linux/issues/252.
Cheers,
Miguel
On Thu, Aug 04, 2022 at 10:31:41PM +0200, Miguel Ojeda wrote:
> «Внимание! Данное письмо от внешнего адресата!»
>
> On Tue, Aug 2, 2022 at 4:08 PM Konstantin Shelekhin
> <[email protected]> wrote:
> >
> > A minor neat, but ain't it possible to use &str here in order to drop
> > this ugly binary string prefix?
>
> Yeah, we would like to remove those at some point -- please see
> https://github.com/Rust-for-Linux/linux/issues/252.
Cool, thanks. I suggest it for the next patchset iteration, since it's
already has a GH issue.
On Fri, Aug 5, 2022 at 1:40 PM Konstantin Shelekhin
<[email protected]> wrote:
>
> Cool, thanks. I suggest it for the next patchset iteration, since it's
> already has a GH issue.
Gary implemented a subset of string literals to cover this without
having to vendor extra external code in
https://github.com/Rust-for-Linux/linux/pull/858:
module! {
type: RustNetfilter,
name: "rust_netfilter",
author: "Rust for Linux Contributors",
description: "Rust netfilter sample",
license: "GPL",
}
It will be there in v10.
Cheers,
Miguel
On Tue, Aug 02, 2022 at 03:49:53AM +0200, Miguel Ojeda wrote:
> From: Wedson Almeida Filho <[email protected]>
>
> A Rust helper (introduced in a later patch) needs to call
> `__INIT_WORK` with a passed key, rather than define one in place.
>
> In order to do that, this moves the initialization code from
> the `__INIT_WORK` macro into a new `__INIT_WORK_WITH_KEY` macro
> which takes the key as an extra parameter.
>
> Co-developed-by: Alex Gaynor <[email protected]>
> Signed-off-by: Alex Gaynor <[email protected]>
> Signed-off-by: Wedson Almeida Filho <[email protected]>
> Co-developed-by: Miguel Ojeda <[email protected]>
> Signed-off-by: Miguel Ojeda <[email protected]>
Acked-by: Tejun Heo <[email protected]>
Please feel free to route the patch with the rest of the series or let me
know if you want through the wq tree.
Thanks.
--
tejun
Hi Tejun,
On Mon, Aug 15, 2022 at 11:14 PM Tejun Heo <[email protected]> wrote:
>
> Acked-by: Tejun Heo <[email protected]>
>
> Please feel free to route the patch with the rest of the series or let me
> know if you want through the wq tree.
Since for v9 [1] I had to trim the patch series, this patch is not in
the series anymore, so I think this one should ideally go through the
wq tree later on when we send it together with the Rust abstractions
for it after the core support is merged.
Thanks a lot!
[1] https://lore.kernel.org/lkml/[email protected]/
Cheers,
Miguel
On Tue, Aug 2, 2022 at 3:50 AM Miguel Ojeda <[email protected]> wrote:
>
> +# These flags apply to all Rust code in the tree, including the kernel and
> +# host programs.
> +export rust_common_flags := --edition=2021 \
> + -Zbinary_dep_depinfo=y \
> + -Dunsafe_op_in_unsafe_fn -Drust_2018_idioms \
> + -Dunreachable_pub -Dnon_ascii_idents \
> + -Wmissing_docs \
> + -Drustdoc::missing_crate_level_docs \
> + -Dclippy::correctness -Dclippy::style \
> + -Dclippy::suspicious -Dclippy::complexity \
> + -Dclippy::perf \
> + -Dclippy::let_unit_value -Dclippy::mut_mut \
> + -Dclippy::needless_bitwise_bool \
> + -Dclippy::needless_continue \
> + -Wclippy::dbg_macro
Hi Miguel,
I tried enabling rust support in the gcc builds I provide at
https://mirrors.edge.kernel.org/pub/tools/crosstool/files/bin/arm64/12.1.0/
to make this more accessible, but it appears that the command line
options here are not portable:
/home/arnd/cross/x86_64/gcc-12.1.0+rust-nolibc/x86_64-linux/bin/x86_64-linux-gccrs
--edition=2021 -Zbinary_dep_depinfo=y -Dunsafe_op_in_unsafe_fn
-Drust_2018_idioms -Dunreachable_pub -Dnon_ascii_idents -Wmissing_docs
-Drustdoc::missing_crate_level_docs -Dclippy::correctness
-Dclippy::style -Dclippy::suspicious -Dclippy::complexity
-Dclippy::perf -Dclippy::let_unit_value -Dclippy::mut_mut
-Dclippy::needless_bitwise_bool -Dclippy::needless_continue
-Wclippy::dbg_macro -O -Cstrip=debuginfo -Zallow-features=
--emit=dep-info,link --out-dir=scripts/
/git/arm-soc/scripts/generate_rust_target.rs; mv
scripts/generate_rust_target.d scripts/.generate_rust_target.d; sed -i
'/^#/d' scripts/.generate_rust_target.d
x86_64-linux-gccrs: error: unrecognized command-line option
'--edition=2021'; did you mean '-frust-edition=2021'?
x86_64-linux-gccrs: error: unrecognized command-line option
'-Zbinary_dep_depinfo=y'
x86_64-linux-gccrs: error: unrecognized command-line option
'-Wmissing_docs'; did you mean '-Wmissing-braces'?
x86_64-linux-gccrs: error: unrecognized command-line option
'-Wclippy::dbg_macro'
x86_64-linux-gccrs: error: unrecognized command-line option '-Cstrip=debuginfo'
x86_64-linux-gccrs: error: unrecognized command-line option '-Zallow-features='
x86_64-linux-gccrs: error: unrecognized command-line option
'--emit=dep-info,link'
x86_64-linux-gccrs: error: unrecognized command-line option '--out-dir=scripts/'
make[3]: *** [/git/arm-soc/scripts/Makefile.host:157:
scripts/generate_rust_target] Error 1
I guess nobody has tried this so far. Would you think that fixing this is only
a matter for fixing the build system to pass the correct flags depending on the
compiler, or is this broken in a more fundamental way?
Arnd
Hi Arnd,
On Wed, Aug 17, 2022 at 4:40 PM Arnd Bergmann <[email protected]> wrote:
>
> Hi Miguel,
>
> I tried enabling rust support in the gcc builds I provide at
> https://mirrors.edge.kernel.org/pub/tools/crosstool/files/bin/arm64/12.1.0/
Thanks for giving it a go!
> to make this more accessible, but it appears that the command line
> options here are not portable:
>
> /home/arnd/cross/x86_64/gcc-12.1.0+rust-nolibc/x86_64-linux/bin/x86_64-linux-gccrs
So you mean with GCC Rust, right? (i.e. we have "GCC builds" working,
via compiling the Rust side with LLVM and linking with the GCC C side,
but it is not intended for production or to be supported, even if we
cover it in our CI, test it boots and loads modules etc.).
Indeed, `gccrs` does not support `rustc` flags yet. I am not sure if
the GCC Rust team will eventually provide a driver for those like
clang does for e.g. `cl` -- I would hope they do, since many projects
would benefit from it, but maybe they plan to start simply by
modifying Cargo to call them as they need instead.
If they don't support it, we will have to map the flags on our side --
it should not be a big problem. However, see below...
> I guess nobody has tried this so far. Would you think that fixing this is only
> a matter for fixing the build system to pass the correct flags depending on the
> compiler, or is this broken in a more fundamental way?
If you meant GCC Rust, then it is a bit too early for the compiler. As
far as I now, they are working on compiling the `core` crate and
supporting more stable language features. They are also researching
the integration of the borrow checker, though we wouldn't need that
for "only" compiling the kernel.
Now, if they decided to focus on supporting Rust for Linux early on
(which would be great), they would still need to work on the delta
between what what they target now and what we use (which includes both
stable and some unstable features), plus I assume infrastructure bits
like the platform (target spec) support, the flags / `rustc` driver
(though I would be happy to do as much as possible on our side to
help), etc.
(We privately talked about possible timelines for all that if they
were to focus on Rust for Linux etc., but I let them comment or not on
that... Cc'ing them! :)
Cheers,
Miguel
On Wed, Aug 17, 2022 at 5:13 PM Miguel Ojeda
<[email protected]> wrote:
> On Wed, Aug 17, 2022 at 4:40 PM Arnd Bergmann <[email protected]> wrote:
> >
> > I tried enabling rust support in the gcc builds I provide at
> > https://mirrors.edge.kernel.org/pub/tools/crosstool/files/bin/arm64/12.1.0/
>
> Thanks for giving it a go!
>
> > to make this more accessible, but it appears that the command line
> > options here are not portable:
> >
> > /home/arnd/cross/x86_64/gcc-12.1.0+rust-nolibc/x86_64-linux/bin/x86_64-linux-gccrs
>
> So you mean with GCC Rust, right? (i.e. we have "GCC builds" working,
> via compiling the Rust side with LLVM and linking with the GCC C side,
> but it is not intended for production or to be supported, even if we
> cover it in our CI, test it boots and loads modules etc.).
Yes, I meant GCC rust, with the contents of
https://gcc.gnu.org/git/?p=gcc.git;a=shortlog;h=refs/heads/devel/rust/master
merged into the gcc-12.1.0 release tag.
> > I guess nobody has tried this so far. Would you think that fixing this is only
> > a matter for fixing the build system to pass the correct flags depending on the
> > compiler, or is this broken in a more fundamental way?
>
> If you meant GCC Rust, then it is a bit too early for the compiler. As
> far as I now, they are working on compiling the `core` crate and
> supporting more stable language features. They are also researching
> the integration of the borrow checker, though we wouldn't need that
> for "only" compiling the kernel.
>
> Now, if they decided to focus on supporting Rust for Linux early on
> (which would be great), they would still need to work on the delta
> between what what they target now and what we use (which includes both
> stable and some unstable features), plus I assume infrastructure bits
> like the platform (target spec) support, the flags / `rustc` driver
> (though I would be happy to do as much as possible on our side to
> help), etc.
>
> (We privately talked about possible timelines for all that if they
> were to focus on Rust for Linux etc., but I let them comment or not on
> that... Cc'ing them! :)
Thanks for the explanation. My hope was that building the kernel
would actually be easier here than building the more complicated
rust user space.
The gcc cross-compilers on kernel.org are similarly easy to build for
all architectures the kernel supports because the complexity is
usually in picking a working libc for the more obscure architectures,
so I was naively thinking that this would work for building the
rust support across all architectures in Linux.
I tried one more step and just removed the unsupported command
line flags to see what would happen, but that did not get me any
further:
/home/arnd/cross/x86_64/gcc-12.1.0+rust-nolibc/x86_64-linux/bin/x86_64-linux-gccrs
-frust-edition=2021 -Dunsafe_op_in_unsafe_fn -Drust_2018_idioms
-Dunreachable_pub -Dnon_ascii_idents
-Drustdoc::missing_crate_level_docs -Dclippy::correctness
-Dclippy::style -Dclippy::suspicious -Dclippy::complexity
-Dclippy::perf -Dclippy::let_unit_value -Dclippy::mut_mut
-Dclippy::needless_bitwise_bool -Dclippy::needless_continue -O
/git/arm-soc/scripts/generate_rust_target.rs; mv
scripts/generate_rust_target.d scripts/.generate_rust_target.d; sed -i
'/^#/d' scripts/.generate_rust_target.d
rust1: internal compiler error: Segmentation fault
0x7f37ee04b51f ???
./signal/../sysdeps/unix/sysv/linux/x86_64/libc_sigaction.c:0
0x7f37ee032fcf __libc_start_call_main
../sysdeps/nptl/libc_start_call_main.h:58
0x7f37ee03307c __libc_start_main_impl
../csu/libc-start.c:409
Please submit a full bug report, with preprocessed source (by using
-freport-bug).
Please include the complete backtrace with any bug report.
See <https://gcc.gnu.org/bugs/> for instructions.
Arnd
On Wednesday, August 17th, 2022 at 17:13, Miguel Ojeda <[email protected]> wrote:
> Hi Arnd,
>
> On Wed, Aug 17, 2022 at 4:40 PM Arnd Bergmann [email protected] wrote:
>
> > Hi Miguel,
> >
> > I tried enabling rust support in the gcc builds I provide at
> > https://mirrors.edge.kernel.org/pub/tools/crosstool/files/bin/arm64/12.1.0/
>
>
> Thanks for giving it a go!
>
> > to make this more accessible, but it appears that the command line
> > options here are not portable:
> >
> > /home/arnd/cross/x86_64/gcc-12.1.0+rust-nolibc/x86_64-linux/bin/x86_64-linux-gccrs
>
>
> So you mean with GCC Rust, right? (i.e. we have "GCC builds" working,
> via compiling the Rust side with LLVM and linking with the GCC C side,
> but it is not intended for production or to be supported, even if we
> cover it in our CI, test it boots and loads modules etc.).
>
> Indeed, `gccrs` does not support `rustc` flags yet. I am not sure if
> the GCC Rust team will eventually provide a driver for those like
> clang does for e.g. `cl` -- I would hope they do, since many projects
> would benefit from it, but maybe they plan to start simply by
> modifying Cargo to call them as they need instead.
There is already a prototype of such a driver. It can be found at https://github.com/Rust-GCC/cargo-gccrs. Unlike what the name suggests it is not cargo specific. It consists of two binaries. The first calls cargo, but tells it to use the second binary instead of a real rustc. This second part then translates all arguments to what gccrs expects. It is possible to directly invoke this second binary. For now it probably won't work for rust-for-linux though as it doesn't have all arguments that are used by rust-for-linux implemented.
>
> If they don't support it, we will have to map the flags on our side --
> it should not be a big problem. However, see below...
>
> > I guess nobody has tried this so far. Would you think that fixing this is only
> > a matter for fixing the build system to pass the correct flags depending on the
> > compiler, or is this broken in a more fundamental way?
>
>
> If you meant GCC Rust, then it is a bit too early for the compiler. As
> far as I now, they are working on compiling the `core` crate and
> supporting more stable language features. They are also researching
> the integration of the borrow checker, though we wouldn't need that
> for "only" compiling the kernel.
>
> Now, if they decided to focus on supporting Rust for Linux early on
> (which would be great), they would still need to work on the delta
> between what what they target now and what we use (which includes both
> stable and some unstable features), plus I assume infrastructure bits
> like the platform (target spec) support, the flags / `rustc` driver
> (though I would be happy to do as much as possible on our side to
> help), etc.
>
> (We privately talked about possible timelines for all that if they
> were to focus on Rust for Linux etc., but I let them comment or not on
> that... Cc'ing them! :)
>
> Cheers,
> Miguel
As alternative to GCC Rust there is also github.com/rust-lang/rustc_codegen_gcc/ which uses libgccjit as backend for the official rust compiler rather than writing a full Rust frontend for GCC from scratch. With a bit of patching to force it to be used, I was able to compile all Rust samples with GCC using rustc_codegen_gcc. However it gives warnings of the following kind:
ld.lld: warning: rust/built-in.a(core.o):(.data.rel.local) is being placed in '.data.rel.local'
And hangs very early in the boot process. If I enable early logging, it prints up to "Booting the kernel." and then does nothing. This is probably because support for setting a different relocation model is not yet implemented. I opened https://github.com/rust-lang/rustc_codegen_gcc/issues/205 for this.
There may be other issues, but rustc_codegen_gcc is probably going to be the easiest route towards a LLVM free rust-for-linux build. By the way note that rust-bindgen which we use for generating rust bindings from C headers depends on LLVM. See https://github.com/rust-lang/rust-bindgen/issues/1949.
Cheers,
Bjorn
On Wed, Aug 17, 2022 at 6:11 PM Björn Roy Baron
<[email protected]> wrote:
>
> There is already a prototype of such a driver. It can be found at https://github.com/Rust-GCC/cargo-gccrs. Unlike what the name suggests it is not cargo specific. It consists of two binaries. The first calls cargo, but tells it to use the second binary instead of a real rustc. This second part then translates all arguments to what gccrs expects. It is possible to directly invoke this second binary. For now it probably won't work for rust-for-linux though as it doesn't have all arguments that are used by rust-for-linux implemented.
I spoke with them about this a few weeks ago, but I thought it was
best to leave it up to the GCC Rust folks to detail how they will
proceed if they already know.
> As alternative to GCC Rust there is also github.com/rust-lang/rustc_codegen_gcc/ which uses libgccjit as backend for the official rust compiler rather than writing a full Rust frontend for GCC from scratch. With a bit of patching to force it to be used, I was able to compile all Rust samples with GCC using rustc_codegen_gcc. However it gives warnings of the following kind:
>
> ld.lld: warning: rust/built-in.a(core.o):(.data.rel.local) is being placed in '.data.rel.local'
>
> And hangs very early in the boot process. If I enable early logging, it prints up to "Booting the kernel." and then does nothing. This is probably because support for setting a different relocation model is not yet implemented. I opened https://github.com/rust-lang/rustc_codegen_gcc/issues/205 for this.
Thanks Björn for giving it a go!
Arnd maintains a set of cross-GCC binaries for kernel developers, so I
assumed he was mainly interested in including GCC Rust there -- I
didn't mean to leave `rustc_codegen_gcc` aside! :) In fact, a few
weeks ago I also spoke with Antoni (Cc'd too!) about whether he would
be interested in getting it to work with Rust for Linux soon, whether
and how we could help him, etc.
In any case, both GCC Rust and `rustc_codegen_gcc` will be present in
Kangrejos and LPC (Rust MC), so hopefully we will discuss the details
face-to-face!
> There may be other issues, but rustc_codegen_gcc is probably going to be the easiest route towards a LLVM free rust-for-linux build. By the way note that rust-bindgen which we use for generating rust bindings from C headers depends on LLVM. See https://github.com/rust-lang/rust-bindgen/issues/1949.
Yeah, `rustc_codegen_gcc` is possibly going to happen sooner than GCC
Rust for the kernel.
As for `bindgen`, it is indeed a pain point. There are several
possibilities we have been considering (GCC backend in `bindgen`, an
equivalent tool in GCC, something based on other parsers, something
else entirely, "just checking the results" approaches, even convincing
upstream Rust that C header support would be amazing for Rust
uptake... ;-). Ideally we would get funding to have somebody working
on the problem, but we will see.
Cheers,
Miguel
On Wed, Aug 17, 2022 at 5:51 PM Arnd Bergmann <[email protected]> wrote:
>
> Thanks for the explanation. My hope was that building the kernel
Don't mention it!
> would actually be easier here than building the more complicated
> rust user space.
Yeah, the kernel is complicated for them in different ways, so I
assume they will decide which bits to tackle first... Hopefully I will
succeed in my attempts to convince them to focus a bit on the kernel
at least ;)
> I tried one more step and just removed the unsupported command
> line flags to see what would happen, but that did not get me any
> further:
Thanks!
It looks like it failed when compiling the target spec generator,
which is a Rust host program. If they were to attempt the GCC Rust
support early on, we could make things easier for them by not
compiling host programs with gccrs.
By the way, feel free to remove all the `-D` flags ("denying") when
playing with it since they are related to diagnostics (making lints
errors that can still be bypassed if needed), in case the crash is
about handling those.
Cheers,
Miguel
On Tue, Aug 2, 2022 at 10:53 AM Miguel Ojeda <[email protected]> wrote:
>
> Having all the new files in place, we now enable Rust support
> in the build system, including `Kconfig` entries related to Rust,
> the Rust configuration printer, the target specification
> generation script, the version detection script and a few
> other bits.
>
> Co-developed-by: Alex Gaynor <[email protected]>
> Signed-off-by: Alex Gaynor <[email protected]>
> Co-developed-by: Finn Behrens <[email protected]>
> Signed-off-by: Finn Behrens <[email protected]>
> Co-developed-by: Adam Bratschi-Kaye <[email protected]>
> Signed-off-by: Adam Bratschi-Kaye <[email protected]>
> Co-developed-by: Wedson Almeida Filho <[email protected]>
> Signed-off-by: Wedson Almeida Filho <[email protected]>
> Co-developed-by: Michael Ellerman <[email protected]>
> Signed-off-by: Michael Ellerman <[email protected]>
> Co-developed-by: Sven Van Asbroeck <[email protected]>
> Signed-off-by: Sven Van Asbroeck <[email protected]>
> Co-developed-by: Gary Guo <[email protected]>
> Signed-off-by: Gary Guo <[email protected]>
> Co-developed-by: Boris-Chengbiao Zhou <[email protected]>
> Signed-off-by: Boris-Chengbiao Zhou <[email protected]>
> Co-developed-by: Boqun Feng <[email protected]>
> Signed-off-by: Boqun Feng <[email protected]>
> Co-developed-by: Douglas Su <[email protected]>
> Signed-off-by: Douglas Su <[email protected]>
> Co-developed-by: Dariusz Sosnowski <[email protected]>
> Signed-off-by: Dariusz Sosnowski <[email protected]>
> Co-developed-by: Antonio Terceiro <[email protected]>
> Signed-off-by: Antonio Terceiro <[email protected]>
> Co-developed-by: Daniel Xu <[email protected]>
> Signed-off-by: Daniel Xu <[email protected]>
> Co-developed-by: Miguel Cano <[email protected]>
> Signed-off-by: Miguel Cano <[email protected]>
> Co-developed-by: David Gow <[email protected]>
> Signed-off-by: David Gow <[email protected]>
> Co-developed-by: Tiago Lam <[email protected]>
> Signed-off-by: Tiago Lam <[email protected]>
> Co-developed-by: Björn Roy Baron <[email protected]>
> Signed-off-by: Björn Roy Baron <[email protected]>
> Co-developed-by: Martin Rodriguez Reboredo <[email protected]>
> Signed-off-by: Martin Rodriguez Reboredo <[email protected]>
> Signed-off-by: Miguel Ojeda <[email protected]>
> ---
> .gitignore | 6 +
> .rustfmt.toml | 12 +
> Makefile | 172 +++++++-
> arch/Kconfig | 6 +
> arch/arm/Kconfig | 1 +
> arch/arm64/Kconfig | 1 +
> arch/powerpc/Kconfig | 1 +
> arch/riscv/Kconfig | 1 +
> arch/riscv/Makefile | 5 +
> arch/um/Kconfig | 1 +
> arch/x86/Kconfig | 1 +
> arch/x86/Makefile | 10 +
> include/linux/compiler_types.h | 6 +-
> init/Kconfig | 46 +-
> lib/Kconfig.debug | 82 ++++
> rust/.gitignore | 10 +
> rust/Makefile | 415 +++++++++++++++++++
> rust/bindgen_parameters | 21 +
> scripts/.gitignore | 1 +
> scripts/Kconfig.include | 6 +-
> scripts/Makefile | 3 +
> scripts/Makefile.build | 60 +++
> scripts/Makefile.debug | 10 +
> scripts/Makefile.host | 34 +-
> scripts/Makefile.lib | 12 +
> scripts/Makefile.modfinal | 8 +-
> scripts/cc-version.sh | 12 +-
> scripts/generate_rust_target.rs | 232 +++++++++++
> scripts/is_rust_module.sh | 16 +
> scripts/kconfig/confdata.c | 75 ++++
> scripts/min-tool-version.sh | 6 +
> scripts/rust-is-available-bindgen-libclang.h | 2 +
> scripts/rust-is-available.sh | 160 +++++++
> 33 files changed, 1408 insertions(+), 26 deletions(-)
> create mode 100644 .rustfmt.toml
> create mode 100644 rust/.gitignore
> create mode 100644 rust/Makefile
> create mode 100644 rust/bindgen_parameters
> create mode 100644 scripts/generate_rust_target.rs
> create mode 100755 scripts/is_rust_module.sh
> create mode 100644 scripts/rust-is-available-bindgen-libclang.h
> create mode 100755 scripts/rust-is-available.sh
>
> @@ -151,7 +162,8 @@ config WERROR
> default COMPILE_TEST
> help
> A kernel build should not cause any compiler warnings, and this
> - enables the '-Werror' flag to enforce that rule by default.
> + enables the '-Werror' (for C) and '-Dwarnings' (for Rust) flags
> + to enforce that rule by default.
>
> However, if you have a new (or very old) compiler with odd and
> unusual warnings, or you have some architecture with problems,
> @@ -1898,6 +1910,38 @@ config PROFILING
> Say Y here to enable the extended profiling support mechanisms used
> by profilers.
>
> +config RUST
> + bool "Rust support"
> + depends on HAVE_RUST
> + depends on RUST_IS_AVAILABLE
> + depends on !MODVERSIONS
> + depends on !GCC_PLUGINS
> + depends on !RANDSTRUCT
> + depends on !DEBUG_INFO_BTF
> + select CONSTRUCTORS
> + help
> + Enables Rust support in the kernel.
> +
> + This allows other Rust-related options, like drivers written in Rust,
> + to be selected.
> +
> + It is also required to be able to load external kernel modules
> + written in Rust.
> +
> + See Documentation/rust/ for more information.
> +
> + If unsure, say N.
> +
> +config RUSTC_VERSION_TEXT
> + string
> + depends on RUST
> + default $(shell,command -v $(RUSTC) >/dev/null 2>&1 && $(RUSTC) --version || echo n)
> +
> +config BINDGEN_VERSION_TEXT
> + string
> + depends on RUST
> + default $(shell,command -v $(BINDGEN) >/dev/null 2>&1 && $(BINDGEN) --version || echo n)
> +
Where are these config options used?
I grep'ed but no hit.
masahiro@zoe:~/ref/linux-next$ git grep RUSTC_VERSION_TEXT
init/Kconfig:config RUSTC_VERSION_TEXT
masahiro@zoe:~/ref/linux-next$ git grep BINDGEN_VERSION_TEXT
init/Kconfig:config BINDGEN_VERSION_TEXT
> --
> 2.37.1
>
--
Best Regards
Masahiro Yamada
Masahiro Yamada <[email protected]> writes:
> On Tue, Aug 2, 2022 at 10:53 AM Miguel Ojeda <[email protected]> wrote:
>>
>> Having all the new files in place, we now enable Rust support
>> in the build system, including `Kconfig` entries related to Rust,
>> the Rust configuration printer, the target specification
>> generation script, the version detection script and a few
>> other bits.
...
>> +
>> +config RUSTC_VERSION_TEXT
>> + string
>> + depends on RUST
>> + default $(shell,command -v $(RUSTC) >/dev/null 2>&1 && $(RUSTC) --version || echo n)
>> +
>> +config BINDGEN_VERSION_TEXT
>> + string
>> + depends on RUST
>> + default $(shell,command -v $(BINDGEN) >/dev/null 2>&1 && $(BINDGEN) --version || echo n)
>> +
>
> Where are these config options used?
>
> I grep'ed but no hit.
>
> masahiro@zoe:~/ref/linux-next$ git grep RUSTC_VERSION_TEXT
> init/Kconfig:config RUSTC_VERSION_TEXT
> masahiro@zoe:~/ref/linux-next$ git grep BINDGEN_VERSION_TEXT
> init/Kconfig:config BINDGEN_VERSION_TEXT
That came up before in a review by Nick:
Miguel wrote:
> Nick wrote:
> > Are these two kconfigs used anywhere?
>
> Not for the moment, but it could still be useful when getting
> `.config` reports (and we could add it to `LINUX_COMPILER` etc. in the
> future).
https://lore.kernel.org/all/CANiq72n2bU3LSGu-4v66nif_95EVq--z2X_F2V7JBPU8v=h8EA@mail.gmail.com/
cheers