2023-05-25 11:35:13

by Ojaswin Mujoo

[permalink] [raw]
Subject: [PATCH 00/13] multiblock allocator improvements

** Changes since RFC [1] **

[1] https://lore.kernel.org/linux-ext4/[email protected]/

1. Patch 1 reverts the commit 32c08693

Lore link:
https://lore.kernel.org/linux-ext4/[email protected]/

So this patch was intended to remove a dead if-condition but it was not
actually dead code and removing it was causing a performance regression.
Unfortunately I somehow missed that when I was reviewing his patchset
and it already went in so I had to revert the commit. I've added details
of the regression and root cause in the revert commit. Also attaching
the performance numbers I observer:

Workload: fsmark - 100GiB ramdisk, 64 threads writing ~42000 files nodelalloc
-----
Baseline kernel: ~5000 files/sec, ~9,000,000 extents scanned

This patchset rebased on
ted/dev w/o revert patch: ~8000 files/sec, ~7,000,000 ex scanned (+40-50%)

This patchset on ted/dev
with revert patch: ~30000 files/sec, ~800,000 ex scanned (+500%)
-----

2. Added Patch 13 which introduces symbolic names for criterias

3. In CR1.5 patch (Patch 12), in ext4_mb_choose_next_group_cr1_5(),
while trimming we also consider stripe size now. If specified, we round
up the goal length to stripe size. Here, with bigalloc I've made an
assumption that stripe size in fs blocks is always a multiple of
cluster_ratio. This assumption is based on a yet unmerged patch:
https://lore.kernel.org/linux-ext4/[email protected]/

4. In CR1.5 patch, slight optimization in ext4_mb_choose_next_group_cr1_5()
based on Jan's feedback.

I've run xfstests quick on the patchset and plan to run auto overnight.
Would report if anything is breaking.

** Original Cover letter **

This patchset intends to improve some of the shortcomings of mb allocator
that we had noticed while running various tests and workloads in a
POWERPC machine with 64k block size.

** Problems **

More specifically, we were seeing a sharp drop in performance when the
FS was highly fragmented (64K bs). We noticed that:

Problem 1: prefetch logic seemed to be skipping BLOCK_UNINIT groups
which was resulting in buddy and CR0/1 cache not being initialized for
these even though it could be done without any IO. (Not sure if there
was any history behind this design, do let me know if so).

Problem 2: With a 64K bs FS, we were commonly seeing cases where CR1
would correctly identify a good group but due to very high
fragmentation, complex scan would exit early due to ac->ac_found >
s_mb_max_to_scan, resulting in trimming of the allocated len.

Problem 3: Even though our avg free extent was say 4MB and original
request was merely 1 block of data, mballoc noramlization kept adding
PAs and requesting 8MB chunks. This led to almost all the requests
falling into slower CR 2 and with increased threads, we started seeing
lots of CR3 requests as well.

** How did we address them **

Problem 1 (Patch 8,9): Make ext4_mb_prefetch also call
ext4_read_block_bitmap_nowait() in case of BLOCK_UNINIT, so it can init
the BG and exit early without an IO. Next, fix the calls to
prefetch_fini so these newly init BGs can have their buddy initialised.

Problem 2 (Patch 7): When we come to complex_scan after CR1, my
understanding is that due to free/frag > goal_len, we can be sure that
there is atleast one chunk big enough to accomodate the goal request.
Hence, we can skip the overhead of mb_find_extent() other accounting for
each free extent and just process extents that are big enough.

Problem 3 (Patch 11): To solve this problem, this patchset implements a
new allocation criteria (CR1.5 or CR1_5 in code). The idea is that if
CR1 fails to find a BG, it will jump to CR1.5. Here the flow is as
follows:

* We make an assumption that if CR1 has failed that means none of the
currently cached BGs have a big enough continuous extent to satisfy
our request In this case we fall to CR1.5.

* In CR 1.5, we find the highest available free/frag BGs (from CR1
lists) and trim the PAs to this order so that we can find
a BG without IO overhead of CR2.

* Parallely, prefetch will get in more groups in memory, and as more
and more groups are cached, CR1.5 becomes a better replacement of
CR2. This is because, for example, if all BGs are cahced and we
couldn't find anything in CR0/1, we can assume that no BG has a big
enough continuous free extent and hence CR1.5 can directly trim and
find the next biggest extent we could get. In this scenario, without
CR1.5, we would have continued scanning in CR2 which would have
most probably trimmed the request after scanning for ~200 extents.

CR1.5 results in improved allocation speed at the cost of slightly increased
trimming of the len of blocks allocated.

** Performance Numbers **

Unless stated otherwise, these numbers are from fsmark and fio tests with 64k
BS, 64K pagesize on 100Gi nvme0n1 with nodelalloc. There tests were performed
after the FS was fragmented till Avg Fragment Size == 4MB.

* Test 1: Writing ~40000 files of 64K each in a single directory (64 threads, fsmark)
* Test 2: Same as Test 1 on a 500GiB pmem device with dax
* Test 3: 5Gi write with mix of random and seq writes (fio)
* Test 4: 5Gi sequential writes (fio)

Here:
e = extents scanned
c = cr0 / cr1 / cr1.5 / cr2 / cr3 hits

+─────────+───────────────────────────────────+────────────────────────────────+
| | Unpatched | Patched |
+─────────+───────────────────────────────────+────────────────────────────────+
| Test 1 | 6866 files/s | 13527 files/s |
| | e: 8,188,644 | e: 1,719,725 |
| | c: 381 / 330 / - / 4779 / 35534 | c: 381/ 280 / 33299/ 1000/ 6064|
+─────────+───────────────────────────────────+────────────────────────────────+
| Test 2 | 6927 files/s | 8422 files/s |
| | e: 8,055,911 | e: 261,268 |
| | cr: 1011 / 999 / - / 6153 / 32861 | c: 1721 / 1210 / 38093 / 0 / 0 |
+─────────+───────────────────────────────────+────────────────────────────────+
| Test 3 | 387 MiB/s | 443 MiB/s |
+─────────+───────────────────────────────────+────────────────────────────────+
| Test 4 | 3139 MiB/s | 3180 MiB/s |
+─────────+───────────────────────────────────+────────────────────────────────+

The numbers of same tests with 4k bs 64k pagesize are:

+─────────+────────────────────────────────────+────────────────────────────────+
| | Unpatched | Patched |
+─────────+────────────────────────────────────+────────────────────────────────+
| Test 1 | 21618 files/s | 23528 files/s |
| | e: 8,149,272 | e: 223,013 |
| | c: 34 / 1380 / - / 5624 / 34710 | 34 / 1341 / 40387 / 0 / 0 |
+─────────+───────────────────────────────────+─────────────────────────────────+
| Test 2 | 30739 files/s | 30946 files/s |
| | e: 7,742,853 | e: 2,176,475 |
| | c: 1131 / 2244 / - / 3914 / 34468 | c: 1596/1079/28425/1098/8547 |
+─────────+───────────────────────────────────+─────────────────────────────────+
| Test 3 | 200 MiB/s | 186MiB/s |
+─────────+───────────────────────────────────+─────────────────────────────────+
| Test 4 | 621 MiB/s | 632 MiB/s |
+─────────+────────────────────────────────────+────────────────────────────────+

** Some Observations **

1. In the case of highly fragmented 64k blocksize most of the performance is
lost since we hold the BG lock while scanning a block group for best extent.
As our goal len is 8MB and we only have 4MB blocks, we are taking a long time
to scan causing other threads to wait on the BG lock. This can be seen in perf
diff of unpatched vs patched:

83.14% -24.89% [kernel.vmlinux] [k] do_raw_spin_lock

Using lockstat and perf call graph I was able to confirm that this lock was the
BG lock taken in ext4_mb_regular_allocator, contending with other processes trying
to take the same BG's lock in ext4_mb_regular_allocator() and __ext4_new_inode()


2. Currently, I do see some increase in fragmentation, I can take this
up as future work. Below are the e2freefrag results after Test 1 with
64k BS:

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Unpatched:

Min. free extent: 128 KB
Max. free extent: 8000 KB
Avg. free extent: 4096 KB
Num. free extent: 12630

HISTOGRAM OF FREE EXTENT SIZES:
Extent Size Range : Free extents Free Blocks Percent
128K... 256K- : 1 2 0.00%
256K... 512K- : 1 6 0.00%
512K... 1024K- : 4 48 0.01%
1M... 2M- : 5 120 0.01%
2M... 4M- : 11947 725624 85.31%
4M... 8M- : 672 83796 9.85%

Patched:

Min. free extent: 64 KB
Max. free extent: 11648 KB
Avg. free extent: 2688 KB
Num. free extent: 18847

HISTOGRAM OF FREE EXTENT SIZES:
Extent Size Range : Free extents Free Blocks Percent
64K... 128K- : 1 1 0.00%
128K... 256K- : 2 5 0.00%
256K... 512K- : 1 5 0.00%
512K... 1024K- : 297 3909 0.48%
1M... 2M- : 11221 341065 42.13%
2M... 4M- : 4940 294260 36.35%
4M... 8M- : 2384 170169 21.02%
8M... 16M- : 1 182 0.02%

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

-------------------------------------

Since these changes are looking good to me from my end, so posting for a
feedback from ext4 community.

(gcexfstests -c all quick went fine with no new failures reported)

Any thoughts/suggestions are welcome!!

Regards,
Ojaswin

Ojaswin Mujoo (11):
Revert "ext4: remove ac->ac_found > sbi->s_mb_min_to_scan dead check
in ext4_mb_check_limits"
ext4: Fix a small typo in ext4_mb_prefetch_fini()
ext4: Convert mballoc cr (criteria) to enum
ext4: Add per CR extent scanned counter
ext4: Add counter to track successful allocation of goal length
ext4: Avoid scanning smaller extents in BG during CR1
ext4: Don't skip prefetching BLOCK_UNINIT groups
ext4: Ensure ext4_mb_prefetch_fini() is called for all prefetched BGs
ext4: Abstract out logic to search average fragment list
ext4: Add allocation criteria 1.5 (CR1_5)
ext4: Give symbolic names to mballoc criterias

Ritesh Harjani (IBM) (2):
ext4: mballoc: Remove useless setting of ac_criteria
ext4: Remove unused extern variables declaration

fs/ext4/ext4.h | 70 +++++-
fs/ext4/mballoc.c | 455 ++++++++++++++++++++++++++----------
fs/ext4/mballoc.h | 16 +-
fs/ext4/super.c | 11 +-
fs/ext4/sysfs.c | 2 +
include/trace/events/ext4.h | 18 +-
6 files changed, 428 insertions(+), 144 deletions(-)

--
2.31.1



2023-05-25 11:35:38

by Ojaswin Mujoo

[permalink] [raw]
Subject: [PATCH 07/13] ext4: Add counter to track successful allocation of goal length

Track number of allocations where the length of blocks allocated is equal to the
length of goal blocks (post normalization). This metric could be useful if
making changes to the allocator logic in the future as it could give us
visibility into how often do we trim our requests.

PS: ac_b_ex.fe_len might get modified due to preallocation efforts and
hence we use ac_f_ex.fe_len instead since we want to compare how much the
allocator was able to actually find.

Signed-off-by: Ojaswin Mujoo <[email protected]>
Reviewed-by: Ritesh Harjani (IBM) <[email protected]>
Reviewed-by: Jan Kara <[email protected]>
---
fs/ext4/ext4.h | 1 +
fs/ext4/mballoc.c | 3 +++
2 files changed, 4 insertions(+)

diff --git a/fs/ext4/ext4.h b/fs/ext4/ext4.h
index 7b460a31ac82..8bb1edcd2dda 100644
--- a/fs/ext4/ext4.h
+++ b/fs/ext4/ext4.h
@@ -1556,6 +1556,7 @@ struct ext4_sb_info {
atomic_t s_bal_cX_ex_scanned[EXT4_MB_NUM_CRS]; /* total extents scanned */
atomic_t s_bal_groups_scanned; /* number of groups scanned */
atomic_t s_bal_goals; /* goal hits */
+ atomic_t s_bal_len_goals; /* len goal hits */
atomic_t s_bal_breaks; /* too long searches */
atomic_t s_bal_2orders; /* 2^order hits */
atomic_t s_bal_cr0_bad_suggestions;
diff --git a/fs/ext4/mballoc.c b/fs/ext4/mballoc.c
index 98d93d2c5401..8786aa0dd57a 100644
--- a/fs/ext4/mballoc.c
+++ b/fs/ext4/mballoc.c
@@ -2962,6 +2962,7 @@ int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
atomic64_read(&sbi->s_bal_cX_failed[CR3]));
seq_printf(seq, "\textents_scanned: %u\n", atomic_read(&sbi->s_bal_ex_scanned));
seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
+ seq_printf(seq, "\t\tlen_goal_hits: %u\n", atomic_read(&sbi->s_bal_len_goals));
seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
@@ -4407,6 +4408,8 @@ static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
atomic_inc(&sbi->s_bal_goals);
+ if (ac->ac_f_ex.fe_len == ac->ac_g_ex.fe_len)
+ atomic_inc(&sbi->s_bal_len_goals);
if (ac->ac_found > sbi->s_mb_max_to_scan)
atomic_inc(&sbi->s_bal_breaks);
}
--
2.31.1


2023-05-25 11:35:47

by Ojaswin Mujoo

[permalink] [raw]
Subject: [PATCH 11/13] ext4: Abstract out logic to search average fragment list

Make the logic of searching average fragment list of a given order reusable
by abstracting it out to a differnet function. This will also avoid
code duplication in upcoming patches.

No functional changes.

Signed-off-by: Ojaswin Mujoo <[email protected]>
Reviewed-by: Ritesh Harjani (IBM) <[email protected]>
Reviewed-by: Jan Kara <[email protected]>
---
fs/ext4/mballoc.c | 51 ++++++++++++++++++++++++++++++-----------------
1 file changed, 33 insertions(+), 18 deletions(-)

diff --git a/fs/ext4/mballoc.c b/fs/ext4/mballoc.c
index b6bb314d778e..fd29ee02685d 100644
--- a/fs/ext4/mballoc.c
+++ b/fs/ext4/mballoc.c
@@ -904,6 +904,37 @@ static void ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac,
}
}

+/*
+ * Find a suitable group of given order from the average fragments list.
+ */
+static struct ext4_group_info *
+ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
+{
+ struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
+ struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
+ rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
+ struct ext4_group_info *grp = NULL, *iter;
+ enum criteria cr = ac->ac_criteria;
+
+ if (list_empty(frag_list))
+ return NULL;
+ read_lock(frag_list_lock);
+ if (list_empty(frag_list)) {
+ read_unlock(frag_list_lock);
+ return NULL;
+ }
+ list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
+ if (sbi->s_mb_stats)
+ atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
+ if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
+ grp = iter;
+ break;
+ }
+ }
+ read_unlock(frag_list_lock);
+ return grp;
+}
+
/*
* Choose next group by traversing average fragment size list of suitable
* order. Updates *new_cr if cr level needs an update.
@@ -912,7 +943,7 @@ static void ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac,
enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
{
struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
- struct ext4_group_info *grp = NULL, *iter;
+ struct ext4_group_info *grp = NULL;
int i;

if (unlikely(ac->ac_flags & EXT4_MB_CR1_OPTIMIZED)) {
@@ -922,23 +953,7 @@ static void ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac,

for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
i < MB_NUM_ORDERS(ac->ac_sb); i++) {
- if (list_empty(&sbi->s_mb_avg_fragment_size[i]))
- continue;
- read_lock(&sbi->s_mb_avg_fragment_size_locks[i]);
- if (list_empty(&sbi->s_mb_avg_fragment_size[i])) {
- read_unlock(&sbi->s_mb_avg_fragment_size_locks[i]);
- continue;
- }
- list_for_each_entry(iter, &sbi->s_mb_avg_fragment_size[i],
- bb_avg_fragment_size_node) {
- if (sbi->s_mb_stats)
- atomic64_inc(&sbi->s_bal_cX_groups_considered[CR1]);
- if (likely(ext4_mb_good_group(ac, iter->bb_group, CR1))) {
- grp = iter;
- break;
- }
- }
- read_unlock(&sbi->s_mb_avg_fragment_size_locks[i]);
+ grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
if (grp)
break;
}
--
2.31.1


2023-05-25 11:35:50

by Ojaswin Mujoo

[permalink] [raw]
Subject: [PATCH 13/13] ext4: Give symbolic names to mballoc criterias

mballoc criterias have historically been called by numbers
like CR0, CR1... however this makes it confusing to understand
what each criteria is about.

Change these criterias from numbers to symbolic names and add
relevant comments. While we are at it, also reformat and add some
comments to ext4_seq_mb_stats_show() for better readability.

Additionally, define CR_FAST which signifies the criteria
below which we can make quicker decisions like:
* quitting early if (free block < requested len)
* avoiding to scan free extents smaller than required len.
* avoiding to initialize buddy cache and work with existing cache
* limiting prefetches

Suggested-by: Jan Kara <[email protected]>
Signed-off-by: Ojaswin Mujoo <[email protected]>
---
fs/ext4/ext4.h | 55 ++++++--
fs/ext4/mballoc.c | 269 ++++++++++++++++++++----------------
fs/ext4/mballoc.h | 8 +-
fs/ext4/sysfs.c | 4 +-
include/trace/events/ext4.h | 26 ++--
5 files changed, 212 insertions(+), 150 deletions(-)

diff --git a/fs/ext4/ext4.h b/fs/ext4/ext4.h
index 0d30255cca2b..cd41591ddb22 100644
--- a/fs/ext4/ext4.h
+++ b/fs/ext4/ext4.h
@@ -135,16 +135,45 @@ enum SHIFT_DIRECTION {
*/
#define EXT4_MB_NUM_CRS 5
/*
- * All possible allocation criterias for mballoc
+ * All possible allocation criterias for mballoc. Lower are faster.
*/
enum criteria {
- CR0,
- CR1,
- CR1_5,
- CR2,
- CR3,
+ /*
+ * Used when number of blocks needed is a power of 2. This doesn't
+ * trigger any disk IO except prefetch and is the fastest criteria.
+ */
+ CR_POWER2_ALIGNED,
+
+ /*
+ * Tries to lookup in-memory data structures to find the most suitable
+ * group that satisfies goal request. No disk IO except block prefetch.
+ */
+ CR_GOAL_LEN_FAST,
+
+ /*
+ * Same as CR_GOAL_LEN_FAST but is allowed to reduce the goal length to
+ * the best available length for faster allocation.
+ */
+ CR_BEST_AVAIL_LEN,
+
+ /*
+ * Reads each block group sequentially, performing disk IO if necessary, to
+ * find find_suitable block group. Tries to allocate goal length but might trim
+ * the request if nothing is found after enough tries.
+ */
+ CR_GOAL_LEN_SLOW,
+
+ /*
+ * Finds the first free set of blocks and allocates those. This is only
+ * used in rare cases when CR_GOAL_LEN_SLOW also fails to allocate
+ * anything.
+ */
+ CR_ANY_FREE,
};

+/* criteria below which we use fast block scanning and avoid unnecessary IO */
+#define CR_FAST CR_GOAL_LEN_SLOW
+
/*
* Flags used in mballoc's allocation_context flags field.
*
@@ -183,11 +212,11 @@ enum criteria {
/* Do strict check for free blocks while retrying block allocation */
#define EXT4_MB_STRICT_CHECK 0x4000
/* Large fragment size list lookup succeeded at least once for cr = 0 */
-#define EXT4_MB_CR0_OPTIMIZED 0x8000
+#define EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED 0x8000
/* Avg fragment size rb tree lookup succeeded at least once for cr = 1 */
-#define EXT4_MB_CR1_OPTIMIZED 0x00010000
+#define EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED 0x00010000
/* Avg fragment size rb tree lookup succeeded at least once for cr = 1.5 */
-#define EXT4_MB_CR1_5_OPTIMIZED 0x00020000
+#define EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED 0x00020000

struct ext4_allocation_request {
/* target inode for block we're allocating */
@@ -1551,7 +1580,7 @@ struct ext4_sb_info {
unsigned long s_mb_last_start;
unsigned int s_mb_prefetch;
unsigned int s_mb_prefetch_limit;
- unsigned int s_mb_cr1_5_max_trim_order;
+ unsigned int s_mb_best_avail_max_trim_order;

/* stats for buddy allocator */
atomic_t s_bal_reqs; /* number of reqs with len > 1 */
@@ -1564,9 +1593,9 @@ struct ext4_sb_info {
atomic_t s_bal_len_goals; /* len goal hits */
atomic_t s_bal_breaks; /* too long searches */
atomic_t s_bal_2orders; /* 2^order hits */
- atomic_t s_bal_cr0_bad_suggestions;
- atomic_t s_bal_cr1_bad_suggestions;
- atomic_t s_bal_cr1_5_bad_suggestions;
+ atomic_t s_bal_p2_aligned_bad_suggestions;
+ atomic_t s_bal_goal_fast_bad_suggestions;
+ atomic_t s_bal_best_avail_bad_suggestions;
atomic64_t s_bal_cX_groups_considered[EXT4_MB_NUM_CRS];
atomic64_t s_bal_cX_hits[EXT4_MB_NUM_CRS];
atomic64_t s_bal_cX_failed[EXT4_MB_NUM_CRS]; /* cX loop didn't find blocks */
diff --git a/fs/ext4/mballoc.c b/fs/ext4/mballoc.c
index 6f48f2fb843c..c5f7a86553e0 100644
--- a/fs/ext4/mballoc.c
+++ b/fs/ext4/mballoc.c
@@ -154,27 +154,31 @@
* structures to decide the order in which groups are to be traversed for
* fulfilling an allocation request.
*
- * At CR0 , we look for groups which have the largest_free_order >= the order
- * of the request. We directly look at the largest free order list in the data
- * structure (1) above where largest_free_order = order of the request. If that
- * list is empty, we look at remaining list in the increasing order of
- * largest_free_order. This allows us to perform CR0 lookup in O(1) time.
+ * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
+ * >= the order of the request. We directly look at the largest free order list
+ * in the data structure (1) above where largest_free_order = order of the
+ * request. If that list is empty, we look at remaining list in the increasing
+ * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
+ * lookup in O(1) time.
*
- * At CR1, we only consider groups where average fragment size > request
- * size. So, we lookup a group which has average fragment size just above or
- * equal to request size using our average fragment size group lists (data
- * structure 2) in O(1) time.
+ * At CR_GOAL_LEN_FAST, we only consider groups where
+ * average fragment size > request size. So, we lookup a group which has average
+ * fragment size just above or equal to request size using our average fragment
+ * size group lists (data structure 2) in O(1) time.
*
- * At CR1.5 (aka CR1_5), we aim to optimize allocations which can't be satisfied
- * in CR1. The fact that we couldn't find a group in CR1 suggests that there is
- * no BG that has average fragment size > goal length. So before falling to the
- * slower CR2, in CR1.5 we proactively trim goal length and then use the same
- * fragment lists as CR1 to find a BG with a big enough average fragment size.
- * This increases the chances of finding a suitable block group in O(1) time and
- * results * in faster allocation at the cost of reduced size of allocation.
+ * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
+ * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
+ * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
+ * fragment size > goal length. So before falling to the slower
+ * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
+ * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
+ * enough average fragment size. This increases the chances of finding a
+ * suitable block group in O(1) time and results in faster allocation at the
+ * cost of reduced size of allocation.
*
* If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
- * linear order which requires O(N) search time for each CR0 and CR1 phase.
+ * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
+ * CR_GOAL_LEN_FAST phase.
*
* The regular allocator (using the buddy cache) supports a few tunables.
*
@@ -359,8 +363,8 @@
* - bitlock on a group (group)
* - object (inode/locality) (object)
* - per-pa lock (pa)
- * - cr0 lists lock (cr0)
- * - cr1 tree lock (cr1)
+ * - cr_power2_aligned lists lock (cr_power2_aligned)
+ * - cr_goal_len_fast lists lock (cr_goal_len_fast)
*
* Paths:
* - new pa
@@ -392,7 +396,7 @@
*
* - allocation path (ext4_mb_regular_allocator)
* group
- * cr0/cr1
+ * cr_power2_aligned/cr_goal_len_fast
*/
static struct kmem_cache *ext4_pspace_cachep;
static struct kmem_cache *ext4_ac_cachep;
@@ -866,7 +870,7 @@ mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
* Choose next group by traversing largest_free_order lists. Updates *new_cr if
* cr level needs an update.
*/
-static void ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac,
+static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
{
struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
@@ -876,8 +880,8 @@ static void ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac,
if (ac->ac_status == AC_STATUS_FOUND)
return;

- if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR0_OPTIMIZED))
- atomic_inc(&sbi->s_bal_cr0_bad_suggestions);
+ if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
+ atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);

grp = NULL;
for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
@@ -892,8 +896,8 @@ static void ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac,
list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
bb_largest_free_order_node) {
if (sbi->s_mb_stats)
- atomic64_inc(&sbi->s_bal_cX_groups_considered[CR0]);
- if (likely(ext4_mb_good_group(ac, iter->bb_group, CR0))) {
+ atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
+ if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
grp = iter;
break;
}
@@ -905,10 +909,10 @@ static void ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac,

if (!grp) {
/* Increment cr and search again */
- *new_cr = CR1;
+ *new_cr = CR_GOAL_LEN_FAST;
} else {
*group = grp->bb_group;
- ac->ac_flags |= EXT4_MB_CR0_OPTIMIZED;
+ ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
}
}

@@ -947,16 +951,16 @@ ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int o
* Choose next group by traversing average fragment size list of suitable
* order. Updates *new_cr if cr level needs an update.
*/
-static void ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac,
+static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
{
struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
struct ext4_group_info *grp = NULL;
int i;

- if (unlikely(ac->ac_flags & EXT4_MB_CR1_OPTIMIZED)) {
+ if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
if (sbi->s_mb_stats)
- atomic_inc(&sbi->s_bal_cr1_bad_suggestions);
+ atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
}

for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
@@ -968,22 +972,22 @@ static void ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac,

if (grp) {
*group = grp->bb_group;
- ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED;
+ ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
} else {
- *new_cr = CR1_5;
+ *new_cr = CR_BEST_AVAIL_LEN;
}
}

/*
- * We couldn't find a group in CR1 so try to find the highest free fragment
+ * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
* order we have and proactively trim the goal request length to that order to
* find a suitable group faster.
*
* This optimizes allocation speed at the cost of slightly reduced
* preallocations. However, we make sure that we don't trim the request too
- * much and fall to CR2 in that case.
+ * much and fall to CR_GOAL_LEN_SLOW in that case.
*/
-static void ext4_mb_choose_next_group_cr1_5(struct ext4_allocation_context *ac,
+static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
{
struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
@@ -991,9 +995,9 @@ static void ext4_mb_choose_next_group_cr1_5(struct ext4_allocation_context *ac,
int i, order, min_order;
unsigned long num_stripe_clusters = 0;

- if (unlikely(ac->ac_flags & EXT4_MB_CR1_5_OPTIMIZED)) {
+ if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
if (sbi->s_mb_stats)
- atomic_inc(&sbi->s_bal_cr1_5_bad_suggestions);
+ atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
}

/*
@@ -1003,7 +1007,7 @@ static void ext4_mb_choose_next_group_cr1_5(struct ext4_allocation_context *ac,
* goal length.
*/
order = fls(ac->ac_g_ex.fe_len);
- min_order = order - sbi->s_mb_cr1_5_max_trim_order;
+ min_order = order - sbi->s_mb_best_avail_max_trim_order;
if (min_order < 0)
min_order = 0;

@@ -1051,11 +1055,11 @@ static void ext4_mb_choose_next_group_cr1_5(struct ext4_allocation_context *ac,

if (grp) {
*group = grp->bb_group;
- ac->ac_flags |= EXT4_MB_CR1_5_OPTIMIZED;
+ ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
} else {
- /* Reset goal length to original goal length before falling into CR2 */
+ /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
- *new_cr = CR2;
+ *new_cr = CR_GOAL_LEN_SLOW;
}
}

@@ -1063,7 +1067,7 @@ static inline int should_optimize_scan(struct ext4_allocation_context *ac)
{
if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
return 0;
- if (ac->ac_criteria >= CR2)
+ if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
return 0;
if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
return 0;
@@ -1117,12 +1121,12 @@ static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
return;
}

- if (*new_cr == CR0) {
- ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups);
- } else if (*new_cr == CR1) {
- ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups);
- } else if (*new_cr == CR1_5) {
- ext4_mb_choose_next_group_cr1_5(ac, new_cr, group, ngroups);
+ if (*new_cr == CR_POWER2_ALIGNED) {
+ ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups);
+ } else if (*new_cr == CR_GOAL_LEN_FAST) {
+ ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups);
+ } else if (*new_cr == CR_BEST_AVAIL_LEN) {
+ ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups);
} else {
/*
* TODO: For CR=2, we can arrange groups in an rb tree sorted by
@@ -2444,11 +2448,12 @@ void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
break;
}

- if (ac->ac_criteria < CR2) {
+ if (ac->ac_criteria < CR_FAST) {
/*
- * In CR1 and CR1_5, we are sure that this group will
- * have a large enough continuous free extent, so skip
- * over the smaller free extents
+ * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
+ * sure that this group will have a large enough
+ * continuous free extent, so skip over the smaller free
+ * extents
*/
j = mb_find_next_bit(bitmap,
EXT4_CLUSTERS_PER_GROUP(sb), i);
@@ -2542,7 +2547,7 @@ static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);

- BUG_ON(cr < CR0 || cr >= EXT4_MB_NUM_CRS);
+ BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);

if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp) || !grp))
return false;
@@ -2556,7 +2561,7 @@ static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
return false;

switch (cr) {
- case CR0:
+ case CR_POWER2_ALIGNED:
BUG_ON(ac->ac_2order == 0);

/* Avoid using the first bg of a flexgroup for data files */
@@ -2575,16 +2580,16 @@ static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
return false;

return true;
- case CR1:
- case CR1_5:
+ case CR_GOAL_LEN_FAST:
+ case CR_BEST_AVAIL_LEN:
if ((free / fragments) >= ac->ac_g_ex.fe_len)
return true;
break;
- case CR2:
+ case CR_GOAL_LEN_SLOW:
if (free >= ac->ac_g_ex.fe_len)
return true;
break;
- case CR3:
+ case CR_ANY_FREE:
return true;
default:
BUG();
@@ -2625,7 +2630,7 @@ static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
free = grp->bb_free;
if (free == 0)
goto out;
- if (cr <= CR2 && free < ac->ac_g_ex.fe_len)
+ if (cr <= CR_FAST && free < ac->ac_g_ex.fe_len)
goto out;
if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
goto out;
@@ -2640,15 +2645,16 @@ static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
ext4_get_group_desc(sb, group, NULL);
int ret;

- /* cr=CR0/CR1 is a very optimistic search to find large
- * good chunks almost for free. If buddy data is not
- * ready, then this optimization makes no sense. But
- * we never skip the first block group in a flex_bg,
- * since this gets used for metadata block allocation,
- * and we want to make sure we locate metadata blocks
- * in the first block group in the flex_bg if possible.
+ /*
+ * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
+ * search to find large good chunks almost for free. If buddy
+ * data is not ready, then this optimization makes no sense. But
+ * we never skip the first block group in a flex_bg, since this
+ * gets used for metadata block allocation, and we want to make
+ * sure we locate metadata blocks in the first block group in
+ * the flex_bg if possible.
*/
- if (cr < CR2 &&
+ if (cr < CR_FAST &&
(!sbi->s_log_groups_per_flex ||
((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
!(ext4_has_group_desc_csum(sb) &&
@@ -2808,10 +2814,10 @@ ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
}

/* Let's just scan groups to find more-less suitable blocks */
- cr = ac->ac_2order ? CR0 : CR1;
+ cr = ac->ac_2order ? CR_POWER2_ALIGNED : CR_GOAL_LEN_FAST;
/*
- * cr == CR0 try to get exact allocation,
- * cr == CR3 try to get anything
+ * cr == CR_POWER2_ALIGNED try to get exact allocation,
+ * cr == CR_ANY_FREE try to get anything
*/
repeat:
for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
@@ -2841,7 +2847,7 @@ ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
* spend a lot of time loading imperfect groups
*/
if ((prefetch_grp == group) &&
- (cr > CR1_5 ||
+ (cr >= CR_FAST ||
prefetch_ios < sbi->s_mb_prefetch_limit)) {
nr = sbi->s_mb_prefetch;
if (ext4_has_feature_flex_bg(sb)) {
@@ -2879,9 +2885,9 @@ ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
}

ac->ac_groups_scanned++;
- if (cr == CR0)
+ if (cr == CR_POWER2_ALIGNED)
ext4_mb_simple_scan_group(ac, &e4b);
- else if ((cr == CR1 || cr == CR1_5) && sbi->s_stripe &&
+ else if ((cr == CR_GOAL_LEN_FAST || cr == CR_BEST_AVAIL_LEN) && sbi->s_stripe &&
!(ac->ac_g_ex.fe_len % sbi->s_stripe))
ext4_mb_scan_aligned(ac, &e4b);
else
@@ -2897,9 +2903,9 @@ ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
if (sbi->s_mb_stats && i == ngroups)
atomic64_inc(&sbi->s_bal_cX_failed[cr]);

- if (i == ngroups && ac->ac_criteria == CR1_5)
+ if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
/* Reset goal length to original goal length before
- * falling into CR2 */
+ * falling into CR_GOAL_LEN_SLOW */
ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
}

@@ -2926,7 +2932,7 @@ ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
ac->ac_b_ex.fe_len = 0;
ac->ac_status = AC_STATUS_CONTINUE;
ac->ac_flags |= EXT4_MB_HINT_FIRST;
- cr = CR3;
+ cr = CR_ANY_FREE;
goto repeat;
}
}
@@ -3042,66 +3048,94 @@ int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
seq_puts(seq, "mballoc:\n");
if (!sbi->s_mb_stats) {
seq_puts(seq, "\tmb stats collection turned off.\n");
- seq_puts(seq, "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
+ seq_puts(
+ seq,
+ "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
return 0;
}
seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));

- seq_printf(seq, "\tgroups_scanned: %u\n", atomic_read(&sbi->s_bal_groups_scanned));
-
- seq_puts(seq, "\tcr0_stats:\n");
- seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[CR0]));
- seq_printf(seq, "\t\tgroups_considered: %llu\n",
- atomic64_read(&sbi->s_bal_cX_groups_considered[CR0]));
- seq_printf(seq, "\t\textents_scanned: %u\n", atomic_read(&sbi->s_bal_cX_ex_scanned[CR0]));
+ seq_printf(seq, "\tgroups_scanned: %u\n",
+ atomic_read(&sbi->s_bal_groups_scanned));
+
+ /* CR_POWER2_ALIGNED stats */
+ seq_puts(seq, "\tcr_p2_aligned_stats:\n");
+ seq_printf(seq, "\t\thits: %llu\n",
+ atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
+ seq_printf(
+ seq, "\t\tgroups_considered: %llu\n",
+ atomic64_read(
+ &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
+ seq_printf(seq, "\t\textents_scanned: %u\n",
+ atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
seq_printf(seq, "\t\tuseless_loops: %llu\n",
- atomic64_read(&sbi->s_bal_cX_failed[CR0]));
+ atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
seq_printf(seq, "\t\tbad_suggestions: %u\n",
- atomic_read(&sbi->s_bal_cr0_bad_suggestions));
+ atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));

- seq_puts(seq, "\tcr1_stats:\n");
- seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[CR1]));
+ /* CR_GOAL_LEN_FAST stats */
+ seq_puts(seq, "\tcr_goal_fast_stats:\n");
+ seq_printf(seq, "\t\thits: %llu\n",
+ atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
seq_printf(seq, "\t\tgroups_considered: %llu\n",
- atomic64_read(&sbi->s_bal_cX_groups_considered[CR1]));
- seq_printf(seq, "\t\textents_scanned: %u\n", atomic_read(&sbi->s_bal_cX_ex_scanned[CR1]));
+ atomic64_read(
+ &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
+ seq_printf(seq, "\t\textents_scanned: %u\n",
+ atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
seq_printf(seq, "\t\tuseless_loops: %llu\n",
- atomic64_read(&sbi->s_bal_cX_failed[CR1]));
+ atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
seq_printf(seq, "\t\tbad_suggestions: %u\n",
- atomic_read(&sbi->s_bal_cr1_bad_suggestions));
-
- seq_puts(seq, "\tcr1.5_stats:\n");
- seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[CR1_5]));
- seq_printf(seq, "\t\tgroups_considered: %llu\n",
- atomic64_read(&sbi->s_bal_cX_groups_considered[CR1_5]));
- seq_printf(seq, "\t\textents_scanned: %u\n", atomic_read(&sbi->s_bal_cX_ex_scanned[CR1_5]));
+ atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
+
+ /* CR_BEST_AVAIL_LEN stats */
+ seq_puts(seq, "\tcr_best_avail_stats:\n");
+ seq_printf(seq, "\t\thits: %llu\n",
+ atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
+ seq_printf(
+ seq, "\t\tgroups_considered: %llu\n",
+ atomic64_read(
+ &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
+ seq_printf(seq, "\t\textents_scanned: %u\n",
+ atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
seq_printf(seq, "\t\tuseless_loops: %llu\n",
- atomic64_read(&sbi->s_bal_cX_failed[CR1_5]));
+ atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
seq_printf(seq, "\t\tbad_suggestions: %u\n",
- atomic_read(&sbi->s_bal_cr1_5_bad_suggestions));
+ atomic_read(&sbi->s_bal_best_avail_bad_suggestions));

- seq_puts(seq, "\tcr2_stats:\n");
- seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[CR2]));
+ /* CR_GOAL_LEN_SLOW stats */
+ seq_puts(seq, "\tcr_goal_slow_stats:\n");
+ seq_printf(seq, "\t\thits: %llu\n",
+ atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
seq_printf(seq, "\t\tgroups_considered: %llu\n",
- atomic64_read(&sbi->s_bal_cX_groups_considered[CR2]));
- seq_printf(seq, "\t\textents_scanned: %u\n", atomic_read(&sbi->s_bal_cX_ex_scanned[CR2]));
+ atomic64_read(
+ &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
+ seq_printf(seq, "\t\textents_scanned: %u\n",
+ atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
seq_printf(seq, "\t\tuseless_loops: %llu\n",
- atomic64_read(&sbi->s_bal_cX_failed[CR2]));
-
- seq_puts(seq, "\tcr3_stats:\n");
- seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[CR3]));
- seq_printf(seq, "\t\tgroups_considered: %llu\n",
- atomic64_read(&sbi->s_bal_cX_groups_considered[CR3]));
- seq_printf(seq, "\t\textents_scanned: %u\n", atomic_read(&sbi->s_bal_cX_ex_scanned[CR3]));
+ atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
+
+ /* CR_ANY_FREE stats */
+ seq_puts(seq, "\tcr_any_free_stats:\n");
+ seq_printf(seq, "\t\thits: %llu\n",
+ atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
+ seq_printf(
+ seq, "\t\tgroups_considered: %llu\n",
+ atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
+ seq_printf(seq, "\t\textents_scanned: %u\n",
+ atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
seq_printf(seq, "\t\tuseless_loops: %llu\n",
- atomic64_read(&sbi->s_bal_cX_failed[CR3]));
- seq_printf(seq, "\textents_scanned: %u\n", atomic_read(&sbi->s_bal_ex_scanned));
+ atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
+
+ /* Aggregates */
+ seq_printf(seq, "\textents_scanned: %u\n",
+ atomic_read(&sbi->s_bal_ex_scanned));
seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
- seq_printf(seq, "\t\tlen_goal_hits: %u\n", atomic_read(&sbi->s_bal_len_goals));
+ seq_printf(seq, "\t\tlen_goal_hits: %u\n",
+ atomic_read(&sbi->s_bal_len_goals));
seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
-
seq_printf(seq, "\tbuddies_generated: %u/%u\n",
atomic_read(&sbi->s_mb_buddies_generated),
ext4_get_groups_count(sb));
@@ -3109,8 +3143,7 @@ int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
atomic64_read(&sbi->s_mb_generation_time));
seq_printf(seq, "\tpreallocated: %u\n",
atomic_read(&sbi->s_mb_preallocated));
- seq_printf(seq, "\tdiscarded: %u\n",
- atomic_read(&sbi->s_mb_discarded));
+ seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
return 0;
}

@@ -3597,7 +3630,7 @@ int ext4_mb_init(struct super_block *sb)
sbi->s_mb_stats = MB_DEFAULT_STATS;
sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
- sbi->s_mb_cr1_5_max_trim_order = MB_DEFAULT_CR1_5_TRIM_ORDER;
+ sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;

/*
* The default group preallocation is 512, which for 4k block
diff --git a/fs/ext4/mballoc.h b/fs/ext4/mballoc.h
index bddc0335c261..df6b5e7c2274 100644
--- a/fs/ext4/mballoc.h
+++ b/fs/ext4/mballoc.h
@@ -86,11 +86,11 @@
#define MB_DEFAULT_LINEAR_SCAN_THRESHOLD 16

/*
- * The maximum order upto which CR1.5 can trim a particular allocation request.
- * Example, if we have an order 7 request and max trim order of 3, CR1.5 can
- * trim this upto order 4.
+ * The maximum order upto which CR_BEST_AVAIL_LEN can trim a particular
+ * allocation request. Example, if we have an order 7 request and max trim order
+ * of 3, we can trim this request upto order 4.
*/
-#define MB_DEFAULT_CR1_5_TRIM_ORDER 3
+#define MB_DEFAULT_BEST_AVAIL_TRIM_ORDER 3

/*
* Number of valid buddy orders
diff --git a/fs/ext4/sysfs.c b/fs/ext4/sysfs.c
index 4a5c08c8dddb..6d332dff79dd 100644
--- a/fs/ext4/sysfs.c
+++ b/fs/ext4/sysfs.c
@@ -223,7 +223,7 @@ EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.int
EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst);
EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval);
EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst);
-EXT4_RW_ATTR_SBI_UI(mb_cr1_5_max_trim_order, s_mb_cr1_5_max_trim_order);
+EXT4_RW_ATTR_SBI_UI(mb_best_avail_max_trim_order, s_mb_best_avail_max_trim_order);
#ifdef CONFIG_EXT4_DEBUG
EXT4_RW_ATTR_SBI_UL(simulate_fail, s_simulate_fail);
#endif
@@ -274,7 +274,7 @@ static struct attribute *ext4_attrs[] = {
ATTR_LIST(warning_ratelimit_burst),
ATTR_LIST(msg_ratelimit_interval_ms),
ATTR_LIST(msg_ratelimit_burst),
- ATTR_LIST(mb_cr1_5_max_trim_order),
+ ATTR_LIST(mb_best_avail_max_trim_order),
ATTR_LIST(errors_count),
ATTR_LIST(warning_count),
ATTR_LIST(msg_count),
diff --git a/include/trace/events/ext4.h b/include/trace/events/ext4.h
index 7ea9b4fcb21f..bab28121c7a4 100644
--- a/include/trace/events/ext4.h
+++ b/include/trace/events/ext4.h
@@ -120,19 +120,19 @@ TRACE_DEFINE_ENUM(EXT4_FC_REASON_MAX);
{ EXT4_FC_REASON_INODE_JOURNAL_DATA, "INODE_JOURNAL_DATA"}, \
{ EXT4_FC_REASON_ENCRYPTED_FILENAME, "ENCRYPTED_FILENAME"})

-TRACE_DEFINE_ENUM(CR0);
-TRACE_DEFINE_ENUM(CR1);
-TRACE_DEFINE_ENUM(CR1_5);
-TRACE_DEFINE_ENUM(CR2);
-TRACE_DEFINE_ENUM(CR3);
-
-#define show_criteria(cr) \
- __print_symbolic(cr, \
- { CR0, "CR0" }, \
- { CR1, "CR1" }, \
- { CR1_5, "CR1.5" } \
- { CR2, "CR2" }, \
- { CR3, "CR3" })
+TRACE_DEFINE_ENUM(CR_POWER2_ALIGNED);
+TRACE_DEFINE_ENUM(CR_GOAL_LEN_FAST);
+TRACE_DEFINE_ENUM(CR_BEST_AVAIL_LEN);
+TRACE_DEFINE_ENUM(CR_GOAL_LEN_SLOW);
+TRACE_DEFINE_ENUM(CR_ANY_FREE);
+
+#define show_criteria(cr) \
+ __print_symbolic(cr, \
+ { CR_POWER2_ALIGNED, "CR_POWER2_ALIGNED" }, \
+ { CR_GOAL_LEN_FAST, "CR_GOAL_LEN_FAST" }, \
+ { CR_BEST_AVAIL_LEN, "CR_BEST_AVAIL_LEN" }, \
+ { CR_GOAL_LEN_SLOW, "CR_GOAL_LEN_SLOW" }, \
+ { CR_ANY_FREE, "CR_ANY_FREE" })

TRACE_EVENT(ext4_other_inode_update_time,
TP_PROTO(struct inode *inode, ino_t orig_ino),
--
2.31.1


2023-05-25 11:36:18

by Ojaswin Mujoo

[permalink] [raw]
Subject: [PATCH 12/13] ext4: Add allocation criteria 1.5 (CR1_5)

CR1_5 aims to optimize allocations which can't be satisfied in CR1. The
fact that we couldn't find a group in CR1 suggests that it would be
difficult to find a continuous extent to compleltely satisfy our
allocations. So before falling to the slower CR2, in CR1.5 we
proactively trim the the preallocations so we can find a group with
(free / fragments) big enough. This speeds up our allocation at the
cost of slightly reduced preallocation.

The patch also adds a new sysfs tunable:

* /sys/fs/ext4/<partition>/mb_cr1_5_max_trim_order

This controls how much CR1.5 can trim a request before falling to CR2.
For example, for a request of order 7 and max trim order 2, CR1.5 can
trim this upto order 5.

Suggested-by: Ritesh Harjani (IBM) <[email protected]>
Signed-off-by: Ojaswin Mujoo <[email protected]>
Reviewed-by: Ritesh Harjani (IBM) <[email protected]>

ext4 squash
---
fs/ext4/ext4.h | 8 ++-
fs/ext4/mballoc.c | 137 +++++++++++++++++++++++++++++++++---
fs/ext4/mballoc.h | 13 ++++
fs/ext4/sysfs.c | 2 +
include/trace/events/ext4.h | 2 +
5 files changed, 151 insertions(+), 11 deletions(-)

diff --git a/fs/ext4/ext4.h b/fs/ext4/ext4.h
index 8bb1edcd2dda..0d30255cca2b 100644
--- a/fs/ext4/ext4.h
+++ b/fs/ext4/ext4.h
@@ -133,13 +133,14 @@ enum SHIFT_DIRECTION {
* criteria the slower the allocation. We start at lower criterias and keep
* falling back to higher ones if we are not able to find any blocks.
*/
-#define EXT4_MB_NUM_CRS 4
+#define EXT4_MB_NUM_CRS 5
/*
* All possible allocation criterias for mballoc
*/
enum criteria {
CR0,
CR1,
+ CR1_5,
CR2,
CR3,
};
@@ -185,6 +186,9 @@ enum criteria {
#define EXT4_MB_CR0_OPTIMIZED 0x8000
/* Avg fragment size rb tree lookup succeeded at least once for cr = 1 */
#define EXT4_MB_CR1_OPTIMIZED 0x00010000
+/* Avg fragment size rb tree lookup succeeded at least once for cr = 1.5 */
+#define EXT4_MB_CR1_5_OPTIMIZED 0x00020000
+
struct ext4_allocation_request {
/* target inode for block we're allocating */
struct inode *inode;
@@ -1547,6 +1551,7 @@ struct ext4_sb_info {
unsigned long s_mb_last_start;
unsigned int s_mb_prefetch;
unsigned int s_mb_prefetch_limit;
+ unsigned int s_mb_cr1_5_max_trim_order;

/* stats for buddy allocator */
atomic_t s_bal_reqs; /* number of reqs with len > 1 */
@@ -1561,6 +1566,7 @@ struct ext4_sb_info {
atomic_t s_bal_2orders; /* 2^order hits */
atomic_t s_bal_cr0_bad_suggestions;
atomic_t s_bal_cr1_bad_suggestions;
+ atomic_t s_bal_cr1_5_bad_suggestions;
atomic64_t s_bal_cX_groups_considered[EXT4_MB_NUM_CRS];
atomic64_t s_bal_cX_hits[EXT4_MB_NUM_CRS];
atomic64_t s_bal_cX_failed[EXT4_MB_NUM_CRS]; /* cX loop didn't find blocks */
diff --git a/fs/ext4/mballoc.c b/fs/ext4/mballoc.c
index fd29ee02685d..6f48f2fb843c 100644
--- a/fs/ext4/mballoc.c
+++ b/fs/ext4/mballoc.c
@@ -165,6 +165,14 @@
* equal to request size using our average fragment size group lists (data
* structure 2) in O(1) time.
*
+ * At CR1.5 (aka CR1_5), we aim to optimize allocations which can't be satisfied
+ * in CR1. The fact that we couldn't find a group in CR1 suggests that there is
+ * no BG that has average fragment size > goal length. So before falling to the
+ * slower CR2, in CR1.5 we proactively trim goal length and then use the same
+ * fragment lists as CR1 to find a BG with a big enough average fragment size.
+ * This increases the chances of finding a suitable block group in O(1) time and
+ * results * in faster allocation at the cost of reduced size of allocation.
+ *
* If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
* linear order which requires O(N) search time for each CR0 and CR1 phase.
*
@@ -962,6 +970,91 @@ static void ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac,
*group = grp->bb_group;
ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED;
} else {
+ *new_cr = CR1_5;
+ }
+}
+
+/*
+ * We couldn't find a group in CR1 so try to find the highest free fragment
+ * order we have and proactively trim the goal request length to that order to
+ * find a suitable group faster.
+ *
+ * This optimizes allocation speed at the cost of slightly reduced
+ * preallocations. However, we make sure that we don't trim the request too
+ * much and fall to CR2 in that case.
+ */
+static void ext4_mb_choose_next_group_cr1_5(struct ext4_allocation_context *ac,
+ enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
+{
+ struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
+ struct ext4_group_info *grp = NULL;
+ int i, order, min_order;
+ unsigned long num_stripe_clusters = 0;
+
+ if (unlikely(ac->ac_flags & EXT4_MB_CR1_5_OPTIMIZED)) {
+ if (sbi->s_mb_stats)
+ atomic_inc(&sbi->s_bal_cr1_5_bad_suggestions);
+ }
+
+ /*
+ * mb_avg_fragment_size_order() returns order in a way that makes
+ * retrieving back the length using (1 << order) inaccurate. Hence, use
+ * fls() instead since we need to know the actual length while modifying
+ * goal length.
+ */
+ order = fls(ac->ac_g_ex.fe_len);
+ min_order = order - sbi->s_mb_cr1_5_max_trim_order;
+ if (min_order < 0)
+ min_order = 0;
+
+ if (1 << min_order < ac->ac_o_ex.fe_len)
+ min_order = fls(ac->ac_o_ex.fe_len) + 1;
+
+ if (sbi->s_stripe > 0) {
+ /*
+ * We are assuming that stripe size is always a multiple of
+ * cluster ratio otherwise __ext4_fill_super exists early.
+ */
+ num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
+ if (1 << min_order < num_stripe_clusters)
+ min_order = fls(num_stripe_clusters);
+ }
+
+ for (i = order; i >= min_order; i--) {
+ int frag_order;
+ /*
+ * Scale down goal len to make sure we find something
+ * in the free fragments list. Basically, reduce
+ * preallocations.
+ */
+ ac->ac_g_ex.fe_len = 1 << i;
+
+ if (num_stripe_clusters > 0) {
+ /*
+ * Try to round up the adjusted goal to stripe size
+ * (in cluster units) multiple for efficiency.
+ *
+ * XXX: Is s->stripe always a power of 2? In that case
+ * we can use the faster round_up() variant.
+ */
+ ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
+ num_stripe_clusters);
+ }
+
+ frag_order = mb_avg_fragment_size_order(ac->ac_sb,
+ ac->ac_g_ex.fe_len);
+
+ grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
+ if (grp)
+ break;
+ }
+
+ if (grp) {
+ *group = grp->bb_group;
+ ac->ac_flags |= EXT4_MB_CR1_5_OPTIMIZED;
+ } else {
+ /* Reset goal length to original goal length before falling into CR2 */
+ ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
*new_cr = CR2;
}
}
@@ -1028,6 +1121,8 @@ static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups);
} else if (*new_cr == CR1) {
ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups);
+ } else if (*new_cr == CR1_5) {
+ ext4_mb_choose_next_group_cr1_5(ac, new_cr, group, ngroups);
} else {
/*
* TODO: For CR=2, we can arrange groups in an rb tree sorted by
@@ -2351,7 +2446,7 @@ void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,

if (ac->ac_criteria < CR2) {
/*
- * In CR1, we are sure that this group will
+ * In CR1 and CR1_5, we are sure that this group will
* have a large enough continuous free extent, so skip
* over the smaller free extents
*/
@@ -2481,6 +2576,7 @@ static bool ext4_mb_good_group(struct ext4_allocation_context *ac,

return true;
case CR1:
+ case CR1_5:
if ((free / fragments) >= ac->ac_g_ex.fe_len)
return true;
break;
@@ -2745,7 +2841,7 @@ ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
* spend a lot of time loading imperfect groups
*/
if ((prefetch_grp == group) &&
- (cr > CR1 ||
+ (cr > CR1_5 ||
prefetch_ios < sbi->s_mb_prefetch_limit)) {
nr = sbi->s_mb_prefetch;
if (ext4_has_feature_flex_bg(sb)) {
@@ -2785,8 +2881,8 @@ ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
ac->ac_groups_scanned++;
if (cr == CR0)
ext4_mb_simple_scan_group(ac, &e4b);
- else if (cr == CR1 && sbi->s_stripe &&
- !(ac->ac_g_ex.fe_len % sbi->s_stripe))
+ else if ((cr == CR1 || cr == CR1_5) && sbi->s_stripe &&
+ !(ac->ac_g_ex.fe_len % sbi->s_stripe))
ext4_mb_scan_aligned(ac, &e4b);
else
ext4_mb_complex_scan_group(ac, &e4b);
@@ -2800,6 +2896,11 @@ ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
/* Processed all groups and haven't found blocks */
if (sbi->s_mb_stats && i == ngroups)
atomic64_inc(&sbi->s_bal_cX_failed[cr]);
+
+ if (i == ngroups && ac->ac_criteria == CR1_5)
+ /* Reset goal length to original goal length before
+ * falling into CR2 */
+ ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
}

if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
@@ -2969,6 +3070,16 @@ int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
seq_printf(seq, "\t\tbad_suggestions: %u\n",
atomic_read(&sbi->s_bal_cr1_bad_suggestions));

+ seq_puts(seq, "\tcr1.5_stats:\n");
+ seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[CR1_5]));
+ seq_printf(seq, "\t\tgroups_considered: %llu\n",
+ atomic64_read(&sbi->s_bal_cX_groups_considered[CR1_5]));
+ seq_printf(seq, "\t\textents_scanned: %u\n", atomic_read(&sbi->s_bal_cX_ex_scanned[CR1_5]));
+ seq_printf(seq, "\t\tuseless_loops: %llu\n",
+ atomic64_read(&sbi->s_bal_cX_failed[CR1_5]));
+ seq_printf(seq, "\t\tbad_suggestions: %u\n",
+ atomic_read(&sbi->s_bal_cr1_5_bad_suggestions));
+
seq_puts(seq, "\tcr2_stats:\n");
seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[CR2]));
seq_printf(seq, "\t\tgroups_considered: %llu\n",
@@ -3486,6 +3597,8 @@ int ext4_mb_init(struct super_block *sb)
sbi->s_mb_stats = MB_DEFAULT_STATS;
sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
+ sbi->s_mb_cr1_5_max_trim_order = MB_DEFAULT_CR1_5_TRIM_ORDER;
+
/*
* The default group preallocation is 512, which for 4k block
* sizes translates to 2 megabytes. However for bigalloc file
@@ -4389,6 +4502,7 @@ ext4_mb_normalize_request(struct ext4_allocation_context *ac,
* placement or satisfy big request as is */
ac->ac_g_ex.fe_logical = start;
ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
+ ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;

/* define goal start in order to merge */
if (ar->pright && (ar->lright == (start + size)) &&
@@ -4432,8 +4546,10 @@ static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
atomic_inc(&sbi->s_bal_goals);
- if (ac->ac_f_ex.fe_len == ac->ac_g_ex.fe_len)
+ /* did we allocate as much as normalizer originally wanted? */
+ if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
atomic_inc(&sbi->s_bal_len_goals);
+
if (ac->ac_found > sbi->s_mb_max_to_scan)
atomic_inc(&sbi->s_bal_breaks);
}
@@ -4886,7 +5002,7 @@ ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)

pa = ac->ac_pa;

- if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
+ if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
int new_bex_start;
int new_bex_end;

@@ -4901,14 +5017,14 @@ ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
* fragmentation in check while ensuring logical range of best
* extent doesn't overflow out of goal extent:
*
- * 1. Check if best ex can be kept at end of goal and still
- * cover original start
+ * 1. Check if best ex can be kept at end of goal (before
+ * cr_best_avail trimmed it) and still cover original start
* 2. Else, check if best ex can be kept at start of goal and
* still cover original start
* 3. Else, keep the best ex at start of original request.
*/
new_bex_end = ac->ac_g_ex.fe_logical +
- EXT4_C2B(sbi, ac->ac_g_ex.fe_len);
+ EXT4_C2B(sbi, ac->ac_orig_goal_len);
new_bex_start = new_bex_end - EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
if (ac->ac_o_ex.fe_logical >= new_bex_start)
goto adjust_bex;
@@ -4929,7 +5045,7 @@ ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
BUG_ON(new_bex_end > (ac->ac_g_ex.fe_logical +
- EXT4_C2B(sbi, ac->ac_g_ex.fe_len)));
+ EXT4_C2B(sbi, ac->ac_orig_goal_len)));
}

pa->pa_lstart = ac->ac_b_ex.fe_logical;
@@ -5557,6 +5673,7 @@ ext4_mb_initialize_context(struct ext4_allocation_context *ac,
ac->ac_o_ex.fe_start = block;
ac->ac_o_ex.fe_len = len;
ac->ac_g_ex = ac->ac_o_ex;
+ ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
ac->ac_flags = ar->flags;

/* we have to define context: we'll work with a file or
diff --git a/fs/ext4/mballoc.h b/fs/ext4/mballoc.h
index acfdc204e15d..bddc0335c261 100644
--- a/fs/ext4/mballoc.h
+++ b/fs/ext4/mballoc.h
@@ -85,6 +85,13 @@
*/
#define MB_DEFAULT_LINEAR_SCAN_THRESHOLD 16

+/*
+ * The maximum order upto which CR1.5 can trim a particular allocation request.
+ * Example, if we have an order 7 request and max trim order of 3, CR1.5 can
+ * trim this upto order 4.
+ */
+#define MB_DEFAULT_CR1_5_TRIM_ORDER 3
+
/*
* Number of valid buddy orders
*/
@@ -179,6 +186,12 @@ struct ext4_allocation_context {
/* copy of the best found extent taken before preallocation efforts */
struct ext4_free_extent ac_f_ex;

+ /*
+ * goal len can change in CR1.5, so save the original len. This is
+ * used while adjusting the PA window and for accounting.
+ */
+ ext4_grpblk_t ac_orig_goal_len;
+
__u32 ac_groups_considered;
__u32 ac_flags; /* allocation hints */
__u16 ac_groups_scanned;
diff --git a/fs/ext4/sysfs.c b/fs/ext4/sysfs.c
index 3042bc605bbf..4a5c08c8dddb 100644
--- a/fs/ext4/sysfs.c
+++ b/fs/ext4/sysfs.c
@@ -223,6 +223,7 @@ EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.int
EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst);
EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval);
EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst);
+EXT4_RW_ATTR_SBI_UI(mb_cr1_5_max_trim_order, s_mb_cr1_5_max_trim_order);
#ifdef CONFIG_EXT4_DEBUG
EXT4_RW_ATTR_SBI_UL(simulate_fail, s_simulate_fail);
#endif
@@ -273,6 +274,7 @@ static struct attribute *ext4_attrs[] = {
ATTR_LIST(warning_ratelimit_burst),
ATTR_LIST(msg_ratelimit_interval_ms),
ATTR_LIST(msg_ratelimit_burst),
+ ATTR_LIST(mb_cr1_5_max_trim_order),
ATTR_LIST(errors_count),
ATTR_LIST(warning_count),
ATTR_LIST(msg_count),
diff --git a/include/trace/events/ext4.h b/include/trace/events/ext4.h
index f062147ca32b..7ea9b4fcb21f 100644
--- a/include/trace/events/ext4.h
+++ b/include/trace/events/ext4.h
@@ -122,6 +122,7 @@ TRACE_DEFINE_ENUM(EXT4_FC_REASON_MAX);

TRACE_DEFINE_ENUM(CR0);
TRACE_DEFINE_ENUM(CR1);
+TRACE_DEFINE_ENUM(CR1_5);
TRACE_DEFINE_ENUM(CR2);
TRACE_DEFINE_ENUM(CR3);

@@ -129,6 +130,7 @@ TRACE_DEFINE_ENUM(CR3);
__print_symbolic(cr, \
{ CR0, "CR0" }, \
{ CR1, "CR1" }, \
+ { CR1_5, "CR1.5" } \
{ CR2, "CR2" }, \
{ CR3, "CR3" })

--
2.31.1


2023-05-25 11:36:46

by Ojaswin Mujoo

[permalink] [raw]
Subject: [PATCH 03/13] ext4: Remove unused extern variables declaration

From: "Ritesh Harjani (IBM)" <[email protected]>

ext4_mb_stats & ext4_mb_max_to_scan are never used. We use
sbi->s_mb_stats and sbi->s_mb_max_to_scan instead.
Hence kill these extern declarations.

Signed-off-by: Ritesh Harjani (IBM) <[email protected]>
Signed-off-by: Ojaswin Mujoo <[email protected]>
Reviewed-by: Jan Kara <[email protected]>
---
fs/ext4/ext4.h | 2 --
fs/ext4/mballoc.h | 2 +-
2 files changed, 1 insertion(+), 3 deletions(-)

diff --git a/fs/ext4/ext4.h b/fs/ext4/ext4.h
index 7e8f66ba17f4..80e01fbcd0a3 100644
--- a/fs/ext4/ext4.h
+++ b/fs/ext4/ext4.h
@@ -2815,8 +2815,6 @@ int ext4_fc_record_regions(struct super_block *sb, int ino,
/* mballoc.c */
extern const struct seq_operations ext4_mb_seq_groups_ops;
extern const struct seq_operations ext4_mb_seq_structs_summary_ops;
-extern long ext4_mb_stats;
-extern long ext4_mb_max_to_scan;
extern int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset);
extern int ext4_mb_init(struct super_block *);
extern int ext4_mb_release(struct super_block *);
diff --git a/fs/ext4/mballoc.h b/fs/ext4/mballoc.h
index 6d85ee8674a6..24b666e558f1 100644
--- a/fs/ext4/mballoc.h
+++ b/fs/ext4/mballoc.h
@@ -49,7 +49,7 @@
#define MB_DEFAULT_MIN_TO_SCAN 10

/*
- * with 'ext4_mb_stats' allocator will collect stats that will be
+ * with 's_mb_stats' allocator will collect stats that will be
* shown at umount. The collecting costs though!
*/
#define MB_DEFAULT_STATS 0
--
2.31.1