2024-03-29 08:06:01

by Eric Biggers

[permalink] [raw]
Subject: [PATCH v2 0/6] Faster AES-XTS on modern x86_64 CPUs

This patchset adds new AES-XTS implementations that accelerate disk and
file encryption on modern x86_64 CPUs.

The largest improvements are seen on CPUs that support the VAES
extension: Intel Ice Lake (2019) and later, and AMD Zen 3 (2020) and
later. However, an implementation using plain AESNI + AVX is also added
and provides a boost on older CPUs too.

To try to handle the mess that is x86 SIMD, the code for all the new
AES-XTS implementations is generated from an assembly macro. This makes
it so that we e.g. don't have to have entirely different source code
just for different vector lengths (xmm, ymm, zmm).

To avoid downclocking effects, zmm registers aren't used on certain
Intel CPU models such as Ice Lake. These CPU models default to an
implementation using ymm registers instead.

To make testing easier, all four new AES-XTS implementations are
registered separately with the crypto API. They are prioritized
appropriately so that the best one for the CPU is used by default.

There's no separate kconfig option for the new implementations, as they
are included in the existing option CONFIG_CRYPTO_AES_NI_INTEL.

This patchset increases the throughput of AES-256-XTS by the following
amounts on the following CPUs:

| 4096-byte messages | 512-byte messages |
----------------------+--------------------+-------------------+
Intel Skylake | 6% | 31% |
Intel Cascade Lake | 4% | 26% |
Intel Ice Lake | 127% | 120% |
Intel Sapphire Rapids | 151% | 112% |
AMD Zen 1 | 61% | 73% |
AMD Zen 2 | 36% | 59% |
AMD Zen 3 | 138% | 99% |
AMD Zen 4 | 155% | 117% |

To summarize how the XTS implementations perform in general, here are
benchmarks of all of them on AMD Zen 4, with 4096-byte messages. (Of
course, in practice only the best one for the CPU actually gets used.)

xts-aes-aesni 4247 MB/s
xts-aes-aesni-avx 5669 MB/s
xts-aes-vaes-avx2 9588 MB/s
xts-aes-vaes-avx10_256 9631 MB/s
xts-aes-vaes-avx10_512 10868 MB/s

... and on Intel Sapphire Rapids:

xts-aes-aesni 4848 MB/s
xts-aes-aesni-avx 5287 MB/s
xts-aes-vaes-avx2 11685 MB/s
xts-aes-vaes-avx10_256 11938 MB/s
xts-aes-vaes-avx10_512 12176 MB/s

Notes about benchmarking methods:

- All my benchmarks were done using a custom kernel module that invokes
the crypto_skcipher API. Note that benchmarking the crypto API from
userspace using AF_ALG, e.g. as 'cryptsetup benchmark' does, is bad at
measuring fast algorithms due to the syscall overhead of AF_ALG. I
don't recommend that method. Instead, I measured the crypto
performance directly, as that's what this patchset focuses on.

- All numbers I give are for decryption. However, on all the CPUs I
tested, encryption performs almost identically to decryption.

Open questions:

- Is the policy that I implemented for preferring ymm registers to zmm
registers the right one? arch/x86/crypto/poly1305_glue.c thinks that
only Skylake has the bad downclocking. My current proposal is a bit
more conservative; it also excludes Ice Lake and Tiger Lake. Those
CPUs supposedly still have some downclocking, though not as much.

- Should the policy on the use of zmm registers be in a centralized
place? It probably doesn't make sense to have random different
policies for different crypto algorithms (AES, Poly1305, ARIA, etc.).

- Are there any other known issues with using AVX512 in kernel mode? It
seems to work, and technically it's not new because Poly1305 and ARIA
already use AVX512, including the mask registers and zmm registers up
to 31. So if there was a major issue, like the new registers not
being properly saved and restored, it probably would have already been
found. But AES-XTS support would introduce a wider use of it.

- Should we perhaps not even bother with AVX512 / AVX10 at all for now,
given that on current CPUs most of the improvement is achieved by
going to VAES + AVX2? I.e. should we skip the last two patches? I'm
hoping the improvement will be greater on future CPUs, though.

Changed in v2:
- Additional optimizations:
- Interleaved the tweak computation with AES en/decryption. This
helps significantly on some CPUs, especially those without VAES.
- Further optimized for single-page sources and destinations.
- Used fewer instructions to update tweaks in VPCLMULQDQ case.
- Improved handling of "round 0".
- Eliminated a jump instruction from the main loop.
- Other
- Fixed zmm_exclusion_list[] to be null-terminated.
- Added missing #ifdef to unregister_xts_algs().
- Added some more comments.
- Improved cover letter and some commit messages.
- Now that the next tweak is always computed anyways, made it be
returned unconditionally.
- Moved the IV encryption to a separate function.

Eric Biggers (6):
x86: add kconfig symbols for assembler VAES and VPCLMULQDQ support
crypto: x86/aes-xts - add AES-XTS assembly macro for modern CPUs
crypto: x86/aes-xts - wire up AESNI + AVX implementation
crypto: x86/aes-xts - wire up VAES + AVX2 implementation
crypto: x86/aes-xts - wire up VAES + AVX10/256 implementation
crypto: x86/aes-xts - wire up VAES + AVX10/512 implementation

arch/x86/Kconfig.assembler | 10 +
arch/x86/crypto/Makefile | 3 +-
arch/x86/crypto/aes-xts-avx-x86_64.S | 838 +++++++++++++++++++++++++++
arch/x86/crypto/aesni-intel_glue.c | 270 ++++++++-
4 files changed, 1118 insertions(+), 3 deletions(-)
create mode 100644 arch/x86/crypto/aes-xts-avx-x86_64.S


base-commit: 4cece764965020c22cff7665b18a012006359095
--
2.44.0



2024-03-29 08:06:11

by Eric Biggers

[permalink] [raw]
Subject: [PATCH v2 2/6] crypto: x86/aes-xts - add AES-XTS assembly macro for modern CPUs

From: Eric Biggers <[email protected]>

Add an assembly file aes-xts-avx-x86_64.S which contains a macro that
expands into AES-XTS implementations for x86_64 CPUs that support at
least AES-NI and AVX, optionally also taking advantage of VAES,
VPCLMULQDQ, and AVX512 or AVX10.

This patch doesn't expand the macro at all. Later patches will do so,
adding each implementation individually so that the motivation and use
case for each individual implementation can be fully presented.

The file also provides a function aes_xts_encrypt_iv() which handles the
encryption of the IV (tweak), using AES-NI and AVX.

Signed-off-by: Eric Biggers <[email protected]>
---
arch/x86/crypto/Makefile | 3 +-
arch/x86/crypto/aes-xts-avx-x86_64.S | 800 +++++++++++++++++++++++++++
2 files changed, 802 insertions(+), 1 deletion(-)
create mode 100644 arch/x86/crypto/aes-xts-avx-x86_64.S

diff --git a/arch/x86/crypto/Makefile b/arch/x86/crypto/Makefile
index 9aa46093c91b..9c5ce5613738 100644
--- a/arch/x86/crypto/Makefile
+++ b/arch/x86/crypto/Makefile
@@ -46,11 +46,12 @@ obj-$(CONFIG_CRYPTO_CHACHA20_X86_64) += chacha-x86_64.o
chacha-x86_64-y := chacha-avx2-x86_64.o chacha-ssse3-x86_64.o chacha_glue.o
chacha-x86_64-$(CONFIG_AS_AVX512) += chacha-avx512vl-x86_64.o

obj-$(CONFIG_CRYPTO_AES_NI_INTEL) += aesni-intel.o
aesni-intel-y := aesni-intel_asm.o aesni-intel_glue.o
-aesni-intel-$(CONFIG_64BIT) += aesni-intel_avx-x86_64.o aes_ctrby8_avx-x86_64.o
+aesni-intel-$(CONFIG_64BIT) += aesni-intel_avx-x86_64.o \
+ aes_ctrby8_avx-x86_64.o aes-xts-avx-x86_64.o

obj-$(CONFIG_CRYPTO_SHA1_SSSE3) += sha1-ssse3.o
sha1-ssse3-y := sha1_avx2_x86_64_asm.o sha1_ssse3_asm.o sha1_ssse3_glue.o
sha1-ssse3-$(CONFIG_AS_SHA1_NI) += sha1_ni_asm.o

diff --git a/arch/x86/crypto/aes-xts-avx-x86_64.S b/arch/x86/crypto/aes-xts-avx-x86_64.S
new file mode 100644
index 000000000000..a5e2783c46ec
--- /dev/null
+++ b/arch/x86/crypto/aes-xts-avx-x86_64.S
@@ -0,0 +1,800 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ * AES-XTS for modern x86_64 CPUs
+ *
+ * Copyright 2024 Google LLC
+ *
+ * Author: Eric Biggers <[email protected]>
+ */
+
+/*
+ * This file implements AES-XTS for modern x86_64 CPUs. To handle the
+ * complexities of coding for x86 SIMD, e.g. where every vector length needs
+ * different code, it uses a macro to generate several implementations that
+ * share similar source code but are targeted at different CPUs, listed below:
+ *
+ * AES-NI + AVX
+ * - 128-bit vectors (1 AES block per vector)
+ * - VEX-coded instructions
+ * - xmm0-xmm15
+ * - This is for older CPUs that lack VAES but do have AVX.
+ *
+ * VAES + VPCLMULQDQ + AVX2
+ * - 256-bit vectors (2 AES blocks per vector)
+ * - VEX-coded instructions
+ * - ymm0-ymm15
+ * - This is for CPUs that have VAES but lack AVX512 or AVX10,
+ * e.g. Intel's Alder Lake and AMD's Zen 3.
+ *
+ * VAES + VPCLMULQDQ + AVX10/256 + BMI2
+ * - 256-bit vectors (2 AES blocks per vector)
+ * - EVEX-coded instructions
+ * - ymm0-ymm31
+ * - This is for CPUs that have AVX512 but where using zmm registers causes
+ * downclocking, and for CPUs that have AVX10/256 but not AVX10/512.
+ * - By "AVX10/256" we really mean (AVX512BW + AVX512VL) || AVX10/256.
+ * To avoid confusion with 512-bit, we just write AVX10/256.
+ *
+ * VAES + VPCLMULQDQ + AVX10/512 + BMI2
+ * - Same as the previous one, but upgrades to 512-bit vectors
+ * (4 AES blocks per vector) in zmm0-zmm31.
+ * - This is for CPUs that have good AVX512 or AVX10/512 support.
+ *
+ * This file doesn't have an implementation for AES-NI alone (without AVX), as
+ * the lack of VEX would make all the assembly code different.
+ *
+ * When we use VAES, we also use VPCLMULQDQ to parallelize the computation of
+ * the XTS tweaks. This avoids a bottleneck. Currently there don't seem to be
+ * any CPUs that support VAES but not VPCLMULQDQ. If that changes, we might
+ * need to start also providing an implementation using VAES alone.
+ *
+ * The AES-XTS implementations in this file support everything required by the
+ * crypto API, including support for arbitrary input lengths and multi-part
+ * processing. However, they are most heavily optimized for the common case of
+ * power-of-2 length inputs that are processed in a single part (disk sectors).
+ */
+
+#include <linux/linkage.h>
+#include <linux/cfi_types.h>
+
+.section .rodata
+.p2align 4
+.Lgf_poly:
+ // The low 64 bits of this value represent the polynomial x^7 + x^2 + x
+ // + 1. It is the value that must be XOR'd into the low 64 bits of the
+ // tweak each time a 1 is carried out of the high 64 bits.
+ //
+ // The high 64 bits of this value is just the internal carry bit that
+ // exists when there's a carry out of the low 64 bits of the tweak.
+ .quad 0x87, 1
+
+ // This table contains constants for vpshufb and vpblendvb, used to
+ // handle variable byte shifts and blending during ciphertext stealing
+ // on CPUs that don't support AVX10-style masking.
+.Lcts_permute_table:
+ .byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80
+ .byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80
+ .byte 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
+ .byte 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
+ .byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80
+ .byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80
+.text
+
+// Function parameters
+.set KEY, %rdi // Initially points to crypto_aes_ctx, then is
+ // advanced to point directly to the round keys
+.set SRC, %rsi // Pointer to next source data
+.set DST, %rdx // Pointer to next destination data
+.set LEN, %rcx // Remaining length in bytes
+.set TWEAK, %r8 // Pointer to next tweak
+
+// %r9d holds the AES key length in bytes.
+.set KEYLEN, %r9d
+
+// %rax and %r10-r11 are available as temporaries.
+
+.macro _define_Vi i
+.if VL == 16
+ .set V\i, %xmm\i
+.elseif VL == 32
+ .set V\i, %ymm\i
+.elseif VL == 64
+ .set V\i, %zmm\i
+.else
+ .error "Unsupported Vector Length (VL)"
+.endif
+.endm
+
+.macro _define_aliases
+ // Define register aliases V0-V15, or V0-V31 if all 32 SIMD registers
+ // are available, that map to the xmm, ymm, or zmm registers according
+ // to the selected Vector Length (VL).
+ _define_Vi 0
+ _define_Vi 1
+ _define_Vi 2
+ _define_Vi 3
+ _define_Vi 4
+ _define_Vi 5
+ _define_Vi 6
+ _define_Vi 7
+ _define_Vi 8
+ _define_Vi 9
+ _define_Vi 10
+ _define_Vi 11
+ _define_Vi 12
+ _define_Vi 13
+ _define_Vi 14
+ _define_Vi 15
+.if USE_AVX10
+ _define_Vi 16
+ _define_Vi 17
+ _define_Vi 18
+ _define_Vi 19
+ _define_Vi 20
+ _define_Vi 21
+ _define_Vi 22
+ _define_Vi 23
+ _define_Vi 24
+ _define_Vi 25
+ _define_Vi 26
+ _define_Vi 27
+ _define_Vi 28
+ _define_Vi 29
+ _define_Vi 30
+ _define_Vi 31
+.endif
+
+ // V0-V3 hold the data blocks during the main loop, or temporary values
+ // otherwise. V4-V5 hold temporary values.
+
+ // V6-V9 hold XTS tweaks. Each 128-bit lane holds one tweak.
+ .set TWEAK0_XMM, %xmm6
+ .set TWEAK0, V6
+ .set TWEAK1_XMM, %xmm7
+ .set TWEAK1, V7
+ .set TWEAK2, V8
+ .set TWEAK3, V9
+
+ // V10-V13 are used for computing the next values of TWEAK[0-3].
+ .set NEXT_TWEAK0, V10
+ .set NEXT_TWEAK1, V11
+ .set NEXT_TWEAK2, V12
+ .set NEXT_TWEAK3, V13
+
+ // V14 holds the constant from .Lgf_poly, copied to all 128-bit lanes.
+ .set GF_POLY_XMM, %xmm14
+ .set GF_POLY, V14
+
+ // V15 holds the first AES round key, copied to all 128-bit lanes.
+ .set KEY0_XMM, %xmm15
+ .set KEY0, V15
+
+ // If 32 SIMD registers are available, then V16-V29 hold the remaining
+ // AES round keys, copied to all 128-bit lanes.
+.if USE_AVX10
+ .set KEY1_XMM, %xmm16
+ .set KEY1, V16
+ .set KEY2_XMM, %xmm17
+ .set KEY2, V17
+ .set KEY3_XMM, %xmm18
+ .set KEY3, V18
+ .set KEY4_XMM, %xmm19
+ .set KEY4, V19
+ .set KEY5_XMM, %xmm20
+ .set KEY5, V20
+ .set KEY6_XMM, %xmm21
+ .set KEY6, V21
+ .set KEY7_XMM, %xmm22
+ .set KEY7, V22
+ .set KEY8_XMM, %xmm23
+ .set KEY8, V23
+ .set KEY9_XMM, %xmm24
+ .set KEY9, V24
+ .set KEY10_XMM, %xmm25
+ .set KEY10, V25
+ .set KEY11_XMM, %xmm26
+ .set KEY11, V26
+ .set KEY12_XMM, %xmm27
+ .set KEY12, V27
+ .set KEY13_XMM, %xmm28
+ .set KEY13, V28
+ .set KEY14_XMM, %xmm29
+ .set KEY14, V29
+.endif
+ // V30-V31 are currently unused.
+.endm
+
+// Move a vector between memory and a register.
+.macro _vmovdqu src, dst
+.if VL < 64
+ vmovdqu \src, \dst
+.else
+ vmovdqu8 \src, \dst
+.endif
+.endm
+
+// Broadcast a 128-bit value into a vector.
+.macro _vbroadcast128 src, dst
+.if VL == 16 && !USE_AVX10
+ vmovdqu \src, \dst
+.elseif VL == 32 && !USE_AVX10
+ vbroadcasti128 \src, \dst
+.else
+ vbroadcasti32x4 \src, \dst
+.endif
+.endm
+
+// XOR two vectors together.
+.macro _vpxor src1, src2, dst
+.if USE_AVX10
+ vpxord \src1, \src2, \dst
+.else
+ vpxor \src1, \src2, \dst
+.endif
+.endm
+
+// XOR three vectors together.
+.macro _xor3 src1, src2, src3_and_dst
+.if USE_AVX10
+ // vpternlogd with immediate 0x96 is a three-argument XOR.
+ vpternlogd $0x96, \src1, \src2, \src3_and_dst
+.else
+ vpxor \src1, \src3_and_dst, \src3_and_dst
+ vpxor \src2, \src3_and_dst, \src3_and_dst
+.endif
+.endm
+
+// Given a 128-bit XTS tweak in the xmm register \src, compute the next tweak
+// (by multiplying by the polynomial 'x') and write it to \dst.
+.macro _next_tweak src, tmp, dst
+ vpshufd $0x13, \src, \tmp
+ vpaddq \src, \src, \dst
+ vpsrad $31, \tmp, \tmp
+ vpand GF_POLY_XMM, \tmp, \tmp
+ vpxor \tmp, \dst, \dst
+.endm
+
+// Given the XTS tweak(s) in the vector \src, compute the next vector of
+// tweak(s) (by multiplying by the polynomial 'x^(VL/16)') and write it to \dst.
+//
+// If VL > 16, then there are multiple tweaks, and we use vpclmulqdq to compute
+// all tweaks in the vector in parallel. If VL=16, we just do the regular
+// computation without vpclmulqdq, as it's the faster method for a single tweak.
+.macro _next_tweakvec src, tmp1, tmp2, dst
+.if VL == 16
+ _next_tweak \src, \tmp1, \dst
+.else
+ vpsrlq $64 - VL/16, \src, \tmp1
+ vpclmulqdq $0x01, GF_POLY, \tmp1, \tmp2
+ vpslldq $8, \tmp1, \tmp1
+ vpsllq $VL/16, \src, \dst
+ _xor3 \tmp1, \tmp2, \dst
+.endif
+.endm
+
+// Given the first XTS tweak at (TWEAK), compute the first set of tweaks and
+// store them in the vector registers TWEAK0-TWEAK3. Clobbers V0-V5.
+.macro _compute_first_set_of_tweaks
+ vmovdqu (TWEAK), TWEAK0_XMM
+ _vbroadcast128 .Lgf_poly(%rip), GF_POLY
+.if VL == 16
+ // With VL=16, multiplying by x serially is fastest.
+ _next_tweak TWEAK0, %xmm0, TWEAK1
+ _next_tweak TWEAK1, %xmm0, TWEAK2
+ _next_tweak TWEAK2, %xmm0, TWEAK3
+.else
+.if VL == 32
+ // Compute the second block of TWEAK0.
+ _next_tweak TWEAK0_XMM, %xmm0, %xmm1
+ vinserti128 $1, %xmm1, TWEAK0, TWEAK0
+.elseif VL == 64
+ // Compute the remaining blocks of TWEAK0.
+ _next_tweak TWEAK0_XMM, %xmm0, %xmm1
+ _next_tweak %xmm1, %xmm0, %xmm2
+ _next_tweak %xmm2, %xmm0, %xmm3
+ vinserti32x4 $1, %xmm1, TWEAK0, TWEAK0
+ vinserti32x4 $2, %xmm2, TWEAK0, TWEAK0
+ vinserti32x4 $3, %xmm3, TWEAK0, TWEAK0
+.endif
+ // Compute TWEAK[1-3] from TWEAK0.
+ vpsrlq $64 - 1*VL/16, TWEAK0, V0
+ vpsrlq $64 - 2*VL/16, TWEAK0, V2
+ vpsrlq $64 - 3*VL/16, TWEAK0, V4
+ vpclmulqdq $0x01, GF_POLY, V0, V1
+ vpclmulqdq $0x01, GF_POLY, V2, V3
+ vpclmulqdq $0x01, GF_POLY, V4, V5
+ vpslldq $8, V0, V0
+ vpslldq $8, V2, V2
+ vpslldq $8, V4, V4
+ vpsllq $1*VL/16, TWEAK0, TWEAK1
+ vpsllq $2*VL/16, TWEAK0, TWEAK2
+ vpsllq $3*VL/16, TWEAK0, TWEAK3
+.if USE_AVX10
+ vpternlogd $0x96, V0, V1, TWEAK1
+ vpternlogd $0x96, V2, V3, TWEAK2
+ vpternlogd $0x96, V4, V5, TWEAK3
+.else
+ vpxor V0, TWEAK1, TWEAK1
+ vpxor V2, TWEAK2, TWEAK2
+ vpxor V4, TWEAK3, TWEAK3
+ vpxor V1, TWEAK1, TWEAK1
+ vpxor V3, TWEAK2, TWEAK2
+ vpxor V5, TWEAK3, TWEAK3
+.endif
+.endif
+.endm
+
+// Do one step in computing the next set of tweaks using the method of just
+// multiplying by x repeatedly (the same method _next_tweak uses).
+.macro _tweak_step_mulx i
+.if \i == 0
+ .set PREV_TWEAK, TWEAK3
+ .set NEXT_TWEAK, NEXT_TWEAK0
+.elseif \i == 5
+ .set PREV_TWEAK, NEXT_TWEAK0
+ .set NEXT_TWEAK, NEXT_TWEAK1
+.elseif \i == 10
+ .set PREV_TWEAK, NEXT_TWEAK1
+ .set NEXT_TWEAK, NEXT_TWEAK2
+.elseif \i == 15
+ .set PREV_TWEAK, NEXT_TWEAK2
+ .set NEXT_TWEAK, NEXT_TWEAK3
+.endif
+.if \i < 20 && \i % 5 == 0
+ vpshufd $0x13, PREV_TWEAK, V5
+.elseif \i < 20 && \i % 5 == 1
+ vpaddq PREV_TWEAK, PREV_TWEAK, NEXT_TWEAK
+.elseif \i < 20 && \i % 5 == 2
+ vpsrad $31, V5, V5
+.elseif \i < 20 && \i % 5 == 3
+ vpand GF_POLY, V5, V5
+.elseif \i < 20 && \i % 5 == 4
+ vpxor V5, NEXT_TWEAK, NEXT_TWEAK
+.elseif \i == 1000
+ vmovdqa NEXT_TWEAK0, TWEAK0
+ vmovdqa NEXT_TWEAK1, TWEAK1
+ vmovdqa NEXT_TWEAK2, TWEAK2
+ vmovdqa NEXT_TWEAK3, TWEAK3
+.endif
+.endm
+
+// Do one step in computing the next set of tweaks using the VPCLMULQDQ method
+// (the same method _next_tweakvec uses for VL > 16). This means multiplying
+// each tweak by x^(4*VL/16) independently. Since 4*VL/16 is a multiple of 8
+// when VL > 16 (which it is here), the needed shift amounts are byte-aligned,
+// which allows the use of vpsrldq and vpslldq to do 128-bit wide shifts.
+.macro _tweak_step_pclmul i
+.if \i == 2
+ vpsrldq $(128 - 4*VL/16) / 8, TWEAK0, NEXT_TWEAK0
+.elseif \i == 4
+ vpsrldq $(128 - 4*VL/16) / 8, TWEAK1, NEXT_TWEAK1
+.elseif \i == 6
+ vpsrldq $(128 - 4*VL/16) / 8, TWEAK2, NEXT_TWEAK2
+.elseif \i == 8
+ vpsrldq $(128 - 4*VL/16) / 8, TWEAK3, NEXT_TWEAK3
+.elseif \i == 10
+ vpclmulqdq $0x00, GF_POLY, NEXT_TWEAK0, NEXT_TWEAK0
+.elseif \i == 12
+ vpclmulqdq $0x00, GF_POLY, NEXT_TWEAK1, NEXT_TWEAK1
+.elseif \i == 14
+ vpclmulqdq $0x00, GF_POLY, NEXT_TWEAK2, NEXT_TWEAK2
+.elseif \i == 16
+ vpclmulqdq $0x00, GF_POLY, NEXT_TWEAK3, NEXT_TWEAK3
+.elseif \i == 1000
+ vpslldq $(4*VL/16) / 8, TWEAK0, TWEAK0
+ vpslldq $(4*VL/16) / 8, TWEAK1, TWEAK1
+ vpslldq $(4*VL/16) / 8, TWEAK2, TWEAK2
+ vpslldq $(4*VL/16) / 8, TWEAK3, TWEAK3
+ _vpxor NEXT_TWEAK0, TWEAK0, TWEAK0
+ _vpxor NEXT_TWEAK1, TWEAK1, TWEAK1
+ _vpxor NEXT_TWEAK2, TWEAK2, TWEAK2
+ _vpxor NEXT_TWEAK3, TWEAK3, TWEAK3
+.endif
+.endm
+
+// _tweak_step does one step of the computation of the next set of tweaks from
+// TWEAK[0-3]. To complete all steps, this must be invoked with \i values 0
+// through at least 19, then 1000 which signals the last step.
+//
+// This is used to interleave the computation of the next set of tweaks with the
+// AES en/decryptions, which increases performance in some cases.
+.macro _tweak_step i
+.if VL == 16
+ _tweak_step_mulx \i
+.else
+ _tweak_step_pclmul \i
+.endif
+.endm
+
+// Load the round keys: just the first one if !USE_AVX10, otherwise all of them.
+.macro _load_round_keys
+ _vbroadcast128 0*16(KEY), KEY0
+.if USE_AVX10
+ _vbroadcast128 1*16(KEY), KEY1
+ _vbroadcast128 2*16(KEY), KEY2
+ _vbroadcast128 3*16(KEY), KEY3
+ _vbroadcast128 4*16(KEY), KEY4
+ _vbroadcast128 5*16(KEY), KEY5
+ _vbroadcast128 6*16(KEY), KEY6
+ _vbroadcast128 7*16(KEY), KEY7
+ _vbroadcast128 8*16(KEY), KEY8
+ _vbroadcast128 9*16(KEY), KEY9
+ _vbroadcast128 10*16(KEY), KEY10
+ // Note: if it's AES-128 or AES-192, the last several round keys won't
+ // be used. We do the loads anyway to save a conditional jump.
+ _vbroadcast128 11*16(KEY), KEY11
+ _vbroadcast128 12*16(KEY), KEY12
+ _vbroadcast128 13*16(KEY), KEY13
+ _vbroadcast128 14*16(KEY), KEY14
+.endif
+.endm
+
+// Do a single round of AES encryption (if \enc==1) or decryption (if \enc==0)
+// on the block(s) in \data using the round key(s) in \key. The register length
+// determines the number of AES blocks en/decrypted.
+.macro _vaes enc, last, key, data
+.if \enc
+.if \last
+ vaesenclast \key, \data, \data
+.else
+ vaesenc \key, \data, \data
+.endif
+.else
+.if \last
+ vaesdeclast \key, \data, \data
+.else
+ vaesdec \key, \data, \data
+.endif
+.endif
+.endm
+
+// Do a single round of AES en/decryption on the block(s) in \data, using the
+// same key for all block(s). The round key is loaded from the appropriate
+// register or memory location for round \i. May clobber V4.
+.macro _vaes_1x enc, last, i, xmm_suffix, data
+.if USE_AVX10
+ _vaes \enc, \last, KEY\i\xmm_suffix, \data
+.else
+.ifnb \xmm_suffix
+ _vaes \enc, \last, \i*16(KEY), \data
+.else
+ _vbroadcast128 \i*16(KEY), V4
+ _vaes \enc, \last, V4, \data
+.endif
+.endif
+.endm
+
+// Do a single round of AES en/decryption on the blocks in registers V0-V3,
+// using the same key for all blocks. The round key is loaded from the
+// appropriate register or memory location for round \i. In addition, does step
+// \i of the computation of the next set of tweaks. May clobber V4.
+.macro _vaes_4x enc, last, i
+.if USE_AVX10
+ _tweak_step (2*(\i-1))
+ _vaes \enc, \last, KEY\i, V0
+ _vaes \enc, \last, KEY\i, V1
+ _tweak_step (2*(\i-1) + 1)
+ _vaes \enc, \last, KEY\i, V2
+ _vaes \enc, \last, KEY\i, V3
+.else
+ _vbroadcast128 \i*16(KEY), V4
+ _tweak_step (2*(\i-1))
+ _vaes \enc, \last, V4, V0
+ _vaes \enc, \last, V4, V1
+ _tweak_step (2*(\i-1) + 1)
+ _vaes \enc, \last, V4, V2
+ _vaes \enc, \last, V4, V3
+.endif
+.endm
+
+// Do tweaked AES en/decryption (i.e., XOR with \tweak, then AES en/decrypt,
+// then XOR with \tweak again) of the block(s) in \data. To process a single
+// block, use xmm registers and set \xmm_suffix=_XMM. To process a vector of
+// length VL, use V* registers and leave \xmm_suffix empty. May clobber V4.
+.macro _aes_crypt enc, xmm_suffix, tweak, data
+ _xor3 KEY0\xmm_suffix, \tweak, \data
+ _vaes_1x \enc, 0, 1, \xmm_suffix, \data
+ _vaes_1x \enc, 0, 2, \xmm_suffix, \data
+ _vaes_1x \enc, 0, 3, \xmm_suffix, \data
+ _vaes_1x \enc, 0, 4, \xmm_suffix, \data
+ _vaes_1x \enc, 0, 5, \xmm_suffix, \data
+ _vaes_1x \enc, 0, 6, \xmm_suffix, \data
+ _vaes_1x \enc, 0, 7, \xmm_suffix, \data
+ _vaes_1x \enc, 0, 8, \xmm_suffix, \data
+ _vaes_1x \enc, 0, 9, \xmm_suffix, \data
+ cmp $24, KEYLEN
+ jle .Laes_128_or_192\@
+ _vaes_1x \enc, 0, 10, \xmm_suffix, \data
+ _vaes_1x \enc, 0, 11, \xmm_suffix, \data
+ _vaes_1x \enc, 0, 12, \xmm_suffix, \data
+ _vaes_1x \enc, 0, 13, \xmm_suffix, \data
+ _vaes_1x \enc, 1, 14, \xmm_suffix, \data
+ jmp .Laes_done\@
+.Laes_128_or_192\@:
+ je .Laes_192\@
+ _vaes_1x \enc, 1, 10, \xmm_suffix, \data
+ jmp .Laes_done\@
+.Laes_192\@:
+ _vaes_1x \enc, 0, 10, \xmm_suffix, \data
+ _vaes_1x \enc, 0, 11, \xmm_suffix, \data
+ _vaes_1x \enc, 1, 12, \xmm_suffix, \data
+.Laes_done\@:
+ _vpxor \tweak, \data, \data
+.endm
+
+.macro _aes_xts_crypt enc
+ _define_aliases
+
+ // Load the AES key length: 16 (AES-128), 24 (AES-192), or 32 (AES-256).
+ movl 480(KEY), KEYLEN
+
+ // If decrypting, advance KEY to the decryption round keys.
+.if !\enc
+ add $240, KEY
+.endif
+
+ // Check whether the data length is a multiple of the AES block length.
+ test $15, LEN
+ jnz .Lneed_cts\@
+.Lxts_init\@:
+
+ // Cache as many round keys as possible.
+ _load_round_keys
+
+ // Compute the first set of tweaks TWEAK[0-3].
+ _compute_first_set_of_tweaks
+
+ sub $4*VL, LEN
+ jl .Lhandle_remainder\@
+
+.Lmain_loop\@:
+ // This is the main loop, en/decrypting 4*VL bytes per iteration.
+
+ // XOR each source block with its tweak and the first round key.
+.if USE_AVX10
+ vmovdqu8 0*VL(SRC), V0
+ vmovdqu8 1*VL(SRC), V1
+ vmovdqu8 2*VL(SRC), V2
+ vmovdqu8 3*VL(SRC), V3
+ vpternlogd $0x96, TWEAK0, KEY0, V0
+ vpternlogd $0x96, TWEAK1, KEY0, V1
+ vpternlogd $0x96, TWEAK2, KEY0, V2
+ vpternlogd $0x96, TWEAK3, KEY0, V3
+.else
+ vpxor 0*VL(SRC), KEY0, V0
+ vpxor 1*VL(SRC), KEY0, V1
+ vpxor 2*VL(SRC), KEY0, V2
+ vpxor 3*VL(SRC), KEY0, V3
+ vpxor TWEAK0, V0, V0
+ vpxor TWEAK1, V1, V1
+ vpxor TWEAK2, V2, V2
+ vpxor TWEAK3, V3, V3
+.endif
+ // Do all the AES rounds on the data blocks, interleaved with
+ // the computation of the next set of tweaks.
+ _vaes_4x \enc, 0, 1
+ _vaes_4x \enc, 0, 2
+ _vaes_4x \enc, 0, 3
+ _vaes_4x \enc, 0, 4
+ _vaes_4x \enc, 0, 5
+ _vaes_4x \enc, 0, 6
+ _vaes_4x \enc, 0, 7
+ _vaes_4x \enc, 0, 8
+ _vaes_4x \enc, 0, 9
+ // Try to optimize for AES-256 by keeping the code for AES-128 and
+ // AES-192 out-of-line.
+ cmp $24, KEYLEN
+ jle .Lencrypt_4x_aes_128_or_192\@
+ _vaes_4x \enc, 0, 10
+ _vaes_4x \enc, 0, 11
+ _vaes_4x \enc, 0, 12
+ _vaes_4x \enc, 0, 13
+ _vaes_4x \enc, 1, 14
+.Lencrypt_4x_done\@:
+
+ // XOR in the tweaks again.
+ _vpxor TWEAK0, V0, V0
+ _vpxor TWEAK1, V1, V1
+ _vpxor TWEAK2, V2, V2
+ _vpxor TWEAK3, V3, V3
+
+ // Store the destination blocks.
+ _vmovdqu V0, 0*VL(DST)
+ _vmovdqu V1, 1*VL(DST)
+ _vmovdqu V2, 2*VL(DST)
+ _vmovdqu V3, 3*VL(DST)
+
+ // Finish computing the next set of tweaks.
+ _tweak_step 1000
+
+ add $4*VL, SRC
+ add $4*VL, DST
+ sub $4*VL, LEN
+ jge .Lmain_loop\@
+
+ // Check for the uncommon case where the data length isn't a multiple of
+ // 4*VL. Handle it out-of-line in order to optimize for the common
+ // case. In the common case, just fall through to the ret.
+ test $4*VL-1, LEN
+ jnz .Lhandle_remainder\@
+.Ldone\@:
+ // Store the next tweak back to *TWEAK to support continuation calls.
+ vmovdqu TWEAK0_XMM, (TWEAK)
+.if VL > 16
+ vzeroupper
+.endif
+ RET
+
+.Lhandle_remainder\@:
+ add $4*VL, LEN // Undo the extra sub from earlier.
+
+ // En/decrypt any remaining full blocks, one vector at a time.
+.if VL > 16
+ sub $VL, LEN
+ jl .Lvec_at_a_time_done\@
+.Lvec_at_a_time\@:
+ _vmovdqu (SRC), V0
+ _aes_crypt \enc, , TWEAK0, V0
+ _vmovdqu V0, (DST)
+ _next_tweakvec TWEAK0, V0, V1, TWEAK0
+ add $VL, SRC
+ add $VL, DST
+ sub $VL, LEN
+ jge .Lvec_at_a_time\@
+.Lvec_at_a_time_done\@:
+ add $VL-16, LEN // Undo the extra sub from earlier.
+.else
+ sub $16, LEN
+.endif
+
+ // En/decrypt any remaining full blocks, one at a time.
+ jl .Lblock_at_a_time_done\@
+.Lblock_at_a_time\@:
+ vmovdqu (SRC), %xmm0
+ _aes_crypt \enc, _XMM, TWEAK0_XMM, %xmm0
+ vmovdqu %xmm0, (DST)
+ _next_tweak TWEAK0_XMM, %xmm0, TWEAK0_XMM
+ add $16, SRC
+ add $16, DST
+ sub $16, LEN
+ jge .Lblock_at_a_time\@
+.Lblock_at_a_time_done\@:
+ add $16, LEN // Undo the extra sub from earlier.
+
+.Lfull_blocks_done\@:
+ // Now 0 <= LEN <= 15. If LEN is nonzero, do ciphertext stealing to
+ // process the last 16 + LEN bytes. If LEN is zero, we're done.
+ test LEN, LEN
+ jnz .Lcts\@
+ jmp .Ldone\@
+
+ // Out-of-line handling of AES-128 and AES-192
+.Lencrypt_4x_aes_128_or_192\@:
+ jz .Lencrypt_4x_aes_192\@
+ _vaes_4x \enc, 1, 10
+ jmp .Lencrypt_4x_done\@
+.Lencrypt_4x_aes_192\@:
+ _vaes_4x \enc, 0, 10
+ _vaes_4x \enc, 0, 11
+ _vaes_4x \enc, 1, 12
+ jmp .Lencrypt_4x_done\@
+
+.Lneed_cts\@:
+ // The data length isn't a multiple of the AES block length, so
+ // ciphertext stealing (CTS) will be needed. Subtract one block from
+ // LEN so that the main loop doesn't process the last full block. The
+ // CTS step will process it specially along with the partial block.
+ sub $16, LEN
+ jmp .Lxts_init\@
+
+.Lcts\@:
+ // Do ciphertext stealing (CTS) to en/decrypt the last full block and
+ // the partial block. CTS needs two tweaks. TWEAK0_XMM contains the
+ // next tweak; compute the one after that. Decryption uses these two
+ // tweaks in reverse order, so also define aliases to handle that.
+ _next_tweak TWEAK0_XMM, %xmm0, TWEAK1_XMM
+.if \enc
+ .set CTS_TWEAK0, TWEAK0_XMM
+ .set CTS_TWEAK1, TWEAK1_XMM
+.else
+ .set CTS_TWEAK0, TWEAK1_XMM
+ .set CTS_TWEAK1, TWEAK0_XMM
+.endif
+
+ // En/decrypt the last full block.
+ vmovdqu (SRC), %xmm0
+ _aes_crypt \enc, _XMM, CTS_TWEAK0, %xmm0
+
+.if USE_AVX10
+ // Create a mask that has the first LEN bits set.
+ mov $-1, %rax
+ bzhi LEN, %rax, %rax
+ kmovq %rax, %k1
+
+ // Swap the first LEN bytes of the above result with the partial block.
+ // Note that to support in-place en/decryption, the load from the src
+ // partial block must happen before the store to the dst partial block.
+ vmovdqa %xmm0, %xmm1
+ vmovdqu8 16(SRC), %xmm0{%k1}
+ vmovdqu8 %xmm1, 16(DST){%k1}
+.else
+ lea .Lcts_permute_table(%rip), %rax
+
+ // Load the src partial block, left-aligned. Note that to support
+ // in-place en/decryption, this must happen before the store to the dst
+ // partial block.
+ vmovdqu (SRC, LEN, 1), %xmm1
+
+ // Shift the first LEN bytes of the en/decryption of the last full block
+ // to the end of a register, then store it to DST+LEN. This stores the
+ // dst partial block. It also writes to the second part of the dst last
+ // full block, but that part is overwritten later.
+ vpshufb (%rax, LEN, 1), %xmm0, %xmm2
+ vmovdqu %xmm2, (DST, LEN, 1)
+
+ // Make xmm3 contain [16-LEN,16-LEN+1,...,14,15,0x80,0x80,...].
+ sub LEN, %rax
+ vmovdqu 32(%rax), %xmm3
+
+ // Shift the src partial block to the beginning of its register.
+ vpshufb %xmm3, %xmm1, %xmm1
+
+ // Do a blend to generate the src partial block followed by the second
+ // part of the en/decryption of the last full block.
+ vpblendvb %xmm3, %xmm0, %xmm1, %xmm0
+.endif
+ // En/decrypt again and store the last full block.
+ _aes_crypt \enc, _XMM, CTS_TWEAK1, %xmm0
+ vmovdqu %xmm0, (DST)
+ jmp .Ldone\@
+.endm
+
+// void aes_xts_encrypt_iv(const struct crypto_aes_ctx *tweak_key,
+// u8 iv[AES_BLOCK_SIZE]);
+SYM_FUNC_START(aes_xts_encrypt_iv)
+ vmovdqu (%rsi), %xmm0
+ vpxor 0*16(%rdi), %xmm0, %xmm0
+ vaesenc 1*16(%rdi), %xmm0, %xmm0
+ vaesenc 2*16(%rdi), %xmm0, %xmm0
+ vaesenc 3*16(%rdi), %xmm0, %xmm0
+ vaesenc 4*16(%rdi), %xmm0, %xmm0
+ vaesenc 5*16(%rdi), %xmm0, %xmm0
+ vaesenc 6*16(%rdi), %xmm0, %xmm0
+ vaesenc 7*16(%rdi), %xmm0, %xmm0
+ vaesenc 8*16(%rdi), %xmm0, %xmm0
+ vaesenc 9*16(%rdi), %xmm0, %xmm0
+ cmpl $24, 480(%rdi)
+ jle .Lencrypt_iv_aes_128_or_192
+ vaesenc 10*16(%rdi), %xmm0, %xmm0
+ vaesenc 11*16(%rdi), %xmm0, %xmm0
+ vaesenc 12*16(%rdi), %xmm0, %xmm0
+ vaesenc 13*16(%rdi), %xmm0, %xmm0
+ vaesenclast 14*16(%rdi), %xmm0, %xmm0
+.Lencrypt_iv_done:
+ vmovdqu %xmm0, (%rsi)
+ RET
+
+ // Out-of-line handling of AES-128 and AES-192
+.Lencrypt_iv_aes_128_or_192:
+ jz .Lencrypt_iv_aes_192
+ vaesenclast 10*16(%rdi), %xmm0, %xmm0
+ jmp .Lencrypt_iv_done
+.Lencrypt_iv_aes_192:
+ vaesenc 10*16(%rdi), %xmm0, %xmm0
+ vaesenc 11*16(%rdi), %xmm0, %xmm0
+ vaesenclast 12*16(%rdi), %xmm0, %xmm0
+ jmp .Lencrypt_iv_done
+SYM_FUNC_END(aes_xts_encrypt_iv)
+
+// Below are the actual AES-XTS encryption and decryption functions,
+// instantiated from the above macro. They all have the following prototype:
+//
+// void (*xts_asm_func)(const struct crypto_aes_ctx *key,
+// const u8 *src, u8 *dst, size_t len,
+// u8 tweak[AES_BLOCK_SIZE]);
+//
+// |key| is the data key. |tweak| contains the next tweak; the encryption of
+// the original IV with the tweak key was already done. This function supports
+// incremental computation, but |len| must always be >= 16 (AES_BLOCK_SIZE), and
+// |len| must be a multiple of 16 except on the last call. If |len| is a
+// multiple of 16, then this function updates |tweak| to contain the next tweak.
--
2.44.0


2024-03-29 08:06:28

by Eric Biggers

[permalink] [raw]
Subject: [PATCH v2 5/6] crypto: x86/aes-xts - wire up VAES + AVX10/256 implementation

From: Eric Biggers <[email protected]>

Add an AES-XTS implementation "xts-aes-vaes-avx10_256" for x86_64 CPUs
with the VAES, VPCLMULQDQ, and either AVX10/256 or AVX512BW + AVX512VL
extensions. This implementation avoids using zmm registers, instead
using ymm registers to operate on two AES blocks at a time. The
assembly code is instantiated using a macro so that most of the source
code is shared with other implementations.

This is the optimal implementation on CPUs that support VAES and AVX512
but where the zmm registers should not be used due to downclocking
effects, for example Intel's Ice Lake. It should also be the optimal
implementation on future CPUs that support AVX10/256 but not AVX10/512.

The performance is slightly better than that of xts-aes-vaes-avx2, which
uses the same 256-bit vector length, due to factors such as being able
to use ymm16-ymm31 to cache the AES round keys, and being able to use
the vpternlogd instruction to do XORs more efficiently. For example, on
Ice Lake, the throughput of decrypting 4096-byte messages with
AES-256-XTS is 6.6% higher with xts-aes-vaes-avx10_256 than with
xts-aes-vaes-avx2. While this is a small improvement, it is
straightforward to provide this implementation (xts-aes-vaes-avx10_256)
as long as we are providing xts-aes-vaes-avx2 and xts-aes-vaes-avx10_512
anyway, due to the way the _aes_xts_crypt macro is structured.

Signed-off-by: Eric Biggers <[email protected]>
---
arch/x86/crypto/aes-xts-avx-x86_64.S | 9 +++++++++
arch/x86/crypto/aesni-intel_glue.c | 16 ++++++++++++++++
2 files changed, 25 insertions(+)

diff --git a/arch/x86/crypto/aes-xts-avx-x86_64.S b/arch/x86/crypto/aes-xts-avx-x86_64.S
index 43706213dfca..71be474b22da 100644
--- a/arch/x86/crypto/aes-xts-avx-x86_64.S
+++ b/arch/x86/crypto/aes-xts-avx-x86_64.S
@@ -815,6 +815,15 @@ SYM_TYPED_FUNC_START(aes_xts_encrypt_vaes_avx2)
_aes_xts_crypt 1
SYM_FUNC_END(aes_xts_encrypt_vaes_avx2)
SYM_TYPED_FUNC_START(aes_xts_decrypt_vaes_avx2)
_aes_xts_crypt 0
SYM_FUNC_END(aes_xts_decrypt_vaes_avx2)
+
+.set VL, 32
+.set USE_AVX10, 1
+SYM_TYPED_FUNC_START(aes_xts_encrypt_vaes_avx10_256)
+ _aes_xts_crypt 1
+SYM_FUNC_END(aes_xts_encrypt_vaes_avx10_256)
+SYM_TYPED_FUNC_START(aes_xts_decrypt_vaes_avx10_256)
+ _aes_xts_crypt 0
+SYM_FUNC_END(aes_xts_decrypt_vaes_avx10_256)
#endif /* CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ */
diff --git a/arch/x86/crypto/aesni-intel_glue.c b/arch/x86/crypto/aesni-intel_glue.c
index 4cc15c7207f3..914cbf5d1f5c 100644
--- a/arch/x86/crypto/aesni-intel_glue.c
+++ b/arch/x86/crypto/aesni-intel_glue.c
@@ -1297,10 +1297,11 @@ static struct skcipher_alg aes_xts_alg_##suffix = { \
static struct simd_skcipher_alg *aes_xts_simdalg_##suffix

DEFINE_XTS_ALG(aesni_avx, "xts-aes-aesni-avx", 500);
#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
DEFINE_XTS_ALG(vaes_avx2, "xts-aes-vaes-avx2", 600);
+DEFINE_XTS_ALG(vaes_avx10_256, "xts-aes-vaes-avx10_256", 700);
#endif

static int __init register_xts_algs(void)
{
int err;
@@ -1320,10 +1321,22 @@ static int __init register_xts_algs(void)
return 0;
err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx2, 1,
&aes_xts_simdalg_vaes_avx2);
if (err)
return err;
+
+ if (!boot_cpu_has(X86_FEATURE_AVX512BW) ||
+ !boot_cpu_has(X86_FEATURE_AVX512VL) ||
+ !boot_cpu_has(X86_FEATURE_BMI2) ||
+ !cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM |
+ XFEATURE_MASK_AVX512, NULL))
+ return 0;
+
+ err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx10_256, 1,
+ &aes_xts_simdalg_vaes_avx10_256);
+ if (err)
+ return err;
#endif /* CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ */
return 0;
}

static void unregister_xts_algs(void)
@@ -1333,10 +1346,13 @@ static void unregister_xts_algs(void)
&aes_xts_simdalg_aesni_avx);
#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
if (aes_xts_simdalg_vaes_avx2)
simd_unregister_skciphers(&aes_xts_alg_vaes_avx2, 1,
&aes_xts_simdalg_vaes_avx2);
+ if (aes_xts_simdalg_vaes_avx10_256)
+ simd_unregister_skciphers(&aes_xts_alg_vaes_avx10_256, 1,
+ &aes_xts_simdalg_vaes_avx10_256);
#endif
}
#else /* CONFIG_X86_64 */
static int __init register_xts_algs(void)
{
--
2.44.0


2024-03-29 08:06:36

by Eric Biggers

[permalink] [raw]
Subject: [PATCH v2 6/6] crypto: x86/aes-xts - wire up VAES + AVX10/512 implementation

From: Eric Biggers <[email protected]>

Add an AES-XTS implementation "xts-aes-vaes-avx10_512" for x86_64 CPUs
with the VAES, VPCLMULQDQ, and either AVX10/512 or AVX512BW + AVX512VL
extensions. This implementation uses zmm registers to operate on four
AES blocks at a time. The assembly code is instantiated using a macro
so that most of the source code is shared with other implementations.

To avoid downclocking on older Intel CPU models, an exclusion list is
used to prevent this 512-bit implementation from being used by default
on some CPU models. They will use xts-aes-vaes-avx10_256 instead. For
now, this exclusion list is simply coded into aesni-intel_glue.c. It
may make sense to eventually move it into a more central location.

xts-aes-vaes-avx10_512 is slightly faster than xts-aes-vaes-avx10_256 on
some current CPUs. E.g., on AMD Zen 4, AES-256-XTS decryption
throughput increases by 13% with 4096-byte inputs, or 14% with 512-byte
inputs. On Intel Sapphire Rapids, AES-256-XTS decryption throughput
increases by 2% with 4096-byte inputs, or 3% with 512-byte inputs.

Future CPUs may provide stronger 512-bit support, in which case a larger
benefit should be seen.

Signed-off-by: Eric Biggers <[email protected]>
---
arch/x86/crypto/aes-xts-avx-x86_64.S | 9 ++++++++
arch/x86/crypto/aesni-intel_glue.c | 32 ++++++++++++++++++++++++++++
2 files changed, 41 insertions(+)

diff --git a/arch/x86/crypto/aes-xts-avx-x86_64.S b/arch/x86/crypto/aes-xts-avx-x86_64.S
index 71be474b22da..b8005d0205f8 100644
--- a/arch/x86/crypto/aes-xts-avx-x86_64.S
+++ b/arch/x86/crypto/aes-xts-avx-x86_64.S
@@ -824,6 +824,15 @@ SYM_TYPED_FUNC_START(aes_xts_encrypt_vaes_avx10_256)
_aes_xts_crypt 1
SYM_FUNC_END(aes_xts_encrypt_vaes_avx10_256)
SYM_TYPED_FUNC_START(aes_xts_decrypt_vaes_avx10_256)
_aes_xts_crypt 0
SYM_FUNC_END(aes_xts_decrypt_vaes_avx10_256)
+
+.set VL, 64
+.set USE_AVX10, 1
+SYM_TYPED_FUNC_START(aes_xts_encrypt_vaes_avx10_512)
+ _aes_xts_crypt 1
+SYM_FUNC_END(aes_xts_encrypt_vaes_avx10_512)
+SYM_TYPED_FUNC_START(aes_xts_decrypt_vaes_avx10_512)
+ _aes_xts_crypt 0
+SYM_FUNC_END(aes_xts_decrypt_vaes_avx10_512)
#endif /* CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ */
diff --git a/arch/x86/crypto/aesni-intel_glue.c b/arch/x86/crypto/aesni-intel_glue.c
index 914cbf5d1f5c..0855ace8659c 100644
--- a/arch/x86/crypto/aesni-intel_glue.c
+++ b/arch/x86/crypto/aesni-intel_glue.c
@@ -1298,12 +1298,33 @@ static struct simd_skcipher_alg *aes_xts_simdalg_##suffix

DEFINE_XTS_ALG(aesni_avx, "xts-aes-aesni-avx", 500);
#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
DEFINE_XTS_ALG(vaes_avx2, "xts-aes-vaes-avx2", 600);
DEFINE_XTS_ALG(vaes_avx10_256, "xts-aes-vaes-avx10_256", 700);
+DEFINE_XTS_ALG(vaes_avx10_512, "xts-aes-vaes-avx10_512", 800);
#endif

+/*
+ * This is a list of CPU models that are known to suffer from downclocking when
+ * zmm registers (512-bit vectors) are used. On these CPUs, the AES-XTS
+ * implementation with zmm registers won't be used by default. An
+ * implementation with ymm registers (256-bit vectors) will be used instead.
+ */
+static const struct x86_cpu_id zmm_exclusion_list[] = {
+ { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_SKYLAKE_X },
+ { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE_X },
+ { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE_D },
+ { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE },
+ { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE_L },
+ { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE_NNPI },
+ { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_TIGERLAKE_L },
+ { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_TIGERLAKE },
+ /* Allow Rocket Lake and later, and Sapphire Rapids and later. */
+ /* Also allow AMD CPUs (starting with Zen 4, the first with AVX-512). */
+ {},
+};
+
static int __init register_xts_algs(void)
{
int err;

if (!boot_cpu_has(X86_FEATURE_AVX))
@@ -1333,10 +1354,18 @@ static int __init register_xts_algs(void)

err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx10_256, 1,
&aes_xts_simdalg_vaes_avx10_256);
if (err)
return err;
+
+ if (x86_match_cpu(zmm_exclusion_list))
+ aes_xts_alg_vaes_avx10_512.base.cra_priority = 1;
+
+ err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx10_512, 1,
+ &aes_xts_simdalg_vaes_avx10_512);
+ if (err)
+ return err;
#endif /* CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ */
return 0;
}

static void unregister_xts_algs(void)
@@ -1349,10 +1378,13 @@ static void unregister_xts_algs(void)
simd_unregister_skciphers(&aes_xts_alg_vaes_avx2, 1,
&aes_xts_simdalg_vaes_avx2);
if (aes_xts_simdalg_vaes_avx10_256)
simd_unregister_skciphers(&aes_xts_alg_vaes_avx10_256, 1,
&aes_xts_simdalg_vaes_avx10_256);
+ if (aes_xts_simdalg_vaes_avx10_512)
+ simd_unregister_skciphers(&aes_xts_alg_vaes_avx10_512, 1,
+ &aes_xts_simdalg_vaes_avx10_512);
#endif
}
#else /* CONFIG_X86_64 */
static int __init register_xts_algs(void)
{
--
2.44.0


2024-03-29 09:03:26

by Ard Biesheuvel

[permalink] [raw]
Subject: Re: [PATCH v2 0/6] Faster AES-XTS on modern x86_64 CPUs

On Fri, 29 Mar 2024 at 10:06, Eric Biggers <[email protected]> wrote:
>
> This patchset adds new AES-XTS implementations that accelerate disk and
> file encryption on modern x86_64 CPUs.
>
> The largest improvements are seen on CPUs that support the VAES
> extension: Intel Ice Lake (2019) and later, and AMD Zen 3 (2020) and
> later. However, an implementation using plain AESNI + AVX is also added
> and provides a boost on older CPUs too.
>
> To try to handle the mess that is x86 SIMD, the code for all the new
> AES-XTS implementations is generated from an assembly macro. This makes
> it so that we e.g. don't have to have entirely different source code
> just for different vector lengths (xmm, ymm, zmm).
>
> To avoid downclocking effects, zmm registers aren't used on certain
> Intel CPU models such as Ice Lake. These CPU models default to an
> implementation using ymm registers instead.
>
> To make testing easier, all four new AES-XTS implementations are
> registered separately with the crypto API. They are prioritized
> appropriately so that the best one for the CPU is used by default.
>
> There's no separate kconfig option for the new implementations, as they
> are included in the existing option CONFIG_CRYPTO_AES_NI_INTEL.
>
> This patchset increases the throughput of AES-256-XTS by the following
> amounts on the following CPUs:
>
> | 4096-byte messages | 512-byte messages |
> ----------------------+--------------------+-------------------+
> Intel Skylake | 6% | 31% |
> Intel Cascade Lake | 4% | 26% |
> Intel Ice Lake | 127% | 120% |
> Intel Sapphire Rapids | 151% | 112% |
> AMD Zen 1 | 61% | 73% |
> AMD Zen 2 | 36% | 59% |
> AMD Zen 3 | 138% | 99% |
> AMD Zen 4 | 155% | 117% |
>
> To summarize how the XTS implementations perform in general, here are
> benchmarks of all of them on AMD Zen 4, with 4096-byte messages. (Of
> course, in practice only the best one for the CPU actually gets used.)
>
> xts-aes-aesni 4247 MB/s
> xts-aes-aesni-avx 5669 MB/s
> xts-aes-vaes-avx2 9588 MB/s
> xts-aes-vaes-avx10_256 9631 MB/s
> xts-aes-vaes-avx10_512 10868 MB/s
>
> ... and on Intel Sapphire Rapids:
>
> xts-aes-aesni 4848 MB/s
> xts-aes-aesni-avx 5287 MB/s
> xts-aes-vaes-avx2 11685 MB/s
> xts-aes-vaes-avx10_256 11938 MB/s
> xts-aes-vaes-avx10_512 12176 MB/s
>
> Notes about benchmarking methods:
>
> - All my benchmarks were done using a custom kernel module that invokes
> the crypto_skcipher API. Note that benchmarking the crypto API from
> userspace using AF_ALG, e.g. as 'cryptsetup benchmark' does, is bad at
> measuring fast algorithms due to the syscall overhead of AF_ALG. I
> don't recommend that method. Instead, I measured the crypto
> performance directly, as that's what this patchset focuses on.
>
> - All numbers I give are for decryption. However, on all the CPUs I
> tested, encryption performs almost identically to decryption.
>
> Open questions:
>
> - Is the policy that I implemented for preferring ymm registers to zmm
> registers the right one? arch/x86/crypto/poly1305_glue.c thinks that
> only Skylake has the bad downclocking. My current proposal is a bit
> more conservative; it also excludes Ice Lake and Tiger Lake. Those
> CPUs supposedly still have some downclocking, though not as much.
>
> - Should the policy on the use of zmm registers be in a centralized
> place? It probably doesn't make sense to have random different
> policies for different crypto algorithms (AES, Poly1305, ARIA, etc.).
>
> - Are there any other known issues with using AVX512 in kernel mode? It
> seems to work, and technically it's not new because Poly1305 and ARIA
> already use AVX512, including the mask registers and zmm registers up
> to 31. So if there was a major issue, like the new registers not
> being properly saved and restored, it probably would have already been
> found. But AES-XTS support would introduce a wider use of it.
>
> - Should we perhaps not even bother with AVX512 / AVX10 at all for now,
> given that on current CPUs most of the improvement is achieved by
> going to VAES + AVX2? I.e. should we skip the last two patches? I'm
> hoping the improvement will be greater on future CPUs, though.
>
> Changed in v2:
> - Additional optimizations:
> - Interleaved the tweak computation with AES en/decryption. This
> helps significantly on some CPUs, especially those without VAES.
> - Further optimized for single-page sources and destinations.
> - Used fewer instructions to update tweaks in VPCLMULQDQ case.
> - Improved handling of "round 0".
> - Eliminated a jump instruction from the main loop.
> - Other
> - Fixed zmm_exclusion_list[] to be null-terminated.
> - Added missing #ifdef to unregister_xts_algs().
> - Added some more comments.
> - Improved cover letter and some commit messages.
> - Now that the next tweak is always computed anyways, made it be
> returned unconditionally.
> - Moved the IV encryption to a separate function.
>
> Eric Biggers (6):
> x86: add kconfig symbols for assembler VAES and VPCLMULQDQ support
> crypto: x86/aes-xts - add AES-XTS assembly macro for modern CPUs
> crypto: x86/aes-xts - wire up AESNI + AVX implementation
> crypto: x86/aes-xts - wire up VAES + AVX2 implementation
> crypto: x86/aes-xts - wire up VAES + AVX10/256 implementation
> crypto: x86/aes-xts - wire up VAES + AVX10/512 implementation
>

Retested this v2:

Tested-by: Ard Biesheuvel <[email protected]>
Reviewed-by: Ard Biesheuvel <[email protected]>

Hopefully, the AES-KL keylocker implementation can be based on this
template as well. I wouldn't mind retiring the existing xts(aesni)
code entirely, and using the xts() wrapper around ecb-aes-aesni on
32-bit and on non-AVX uarchs with AES-NI.

2024-03-29 09:33:49

by Eric Biggers

[permalink] [raw]
Subject: Re: [PATCH v2 0/6] Faster AES-XTS on modern x86_64 CPUs

On Fri, Mar 29, 2024 at 11:03:07AM +0200, Ard Biesheuvel wrote:
>
> Retested this v2:
>
> Tested-by: Ard Biesheuvel <[email protected]>
> Reviewed-by: Ard Biesheuvel <[email protected]>
>
> Hopefully, the AES-KL keylocker implementation can be based on this
> template as well.

As-is, it would be a bit ugly to add keylocker support to my template because my
template always processes 4 registers of AES blocks per iteration of the main
loop (like the existing aes-xts-aesni), whereas the keylocker instructions are
hardcoded to operate on 8 AES blocks at a time in xmm0-xmm7, presumably to
reduce the overhead of unwrapping the key.

I did try an 8-wide version briefly. There are some older CPUs on which it
helps. (On newer CPUs, AES latency is lower, and the width increases by moving
to ymm or zmm registers anyway.) But it didn't seem too attractive to me. It
causes registers to spill, and it becomes a bit awkward to unroll the AES rounds
when the code size is twice as large, so it may need to be re-rolled. I should
take a closer look, but I decided to just stay with a 4-wide version for now.

So I *think* AES-KL is best kept separate for now. I do wonder if the AES-KL
code should adopt the idea of using VEX-coded instructions, though --- surely
it's the case that in practice, any CPU with AES-KL also supports AVX.

> I wouldn't mind retiring the existing xts(aesni)
> code entirely, and using the xts() wrapper around ecb-aes-aesni on
> 32-bit and on non-AVX uarchs with AES-NI.

Yes, it will need to be benchmarked, but that probably makes sense. If
Wikipedia is to be trusted, on the Intel side only Westmere (from 2010) has
AES-NI but not AVX, and on the AMD side all CPUs with AES-NI have AVX...

- Eric

2024-04-03 00:44:11

by Eric Biggers

[permalink] [raw]
Subject: Re: [PATCH v2 0/6] Faster AES-XTS on modern x86_64 CPUs

On Fri, Mar 29, 2024 at 02:31:30AM -0700, Eric Biggers wrote:
> > I wouldn't mind retiring the existing xts(aesni)
> > code entirely, and using the xts() wrapper around ecb-aes-aesni on
> > 32-bit and on non-AVX uarchs with AES-NI.
>
> Yes, it will need to be benchmarked, but that probably makes sense. If
> Wikipedia is to be trusted, on the Intel side only Westmere (from 2010) has
> AES-NI but not AVX, and on the AMD side all CPUs with AES-NI have AVX...

It looks like I missed some low-power CPUs. Intel's Silvermont (2013), Goldmont
(2016), Goldmont Plus (2017), and Tremont (2020) support AES-NI but not AVX.
Their successor, Gracemont (2021), supports AVX.

I don't have any one of those immediately available to run a test on. But just
doing a quick benchmark on Zen 1, xts-aes-aesni has 62% higher throughput than
xts(ecb-aes-aesni). The significant difference seems expected, since there's a
lot of API overhead in the xts template, and it computes all the tweaks twice in
C code.

So I'm thinking we'll need to keep xts-aes-aesni around for now, alongside
xts-aes-aesni-avx.

(And with all the SIMD instructions taking a different number of arguments and
having different names for AVX vs non-AVX, I don't see a clean way to unify them
in assembly. They could be unified if we used C intrinsics instead of assembly
and compiled a C function with and without the "avx" target. However,
intrinsics bring their own issues and make it hard to control the generated
code. I don't really want to rely on intrinsics for this code.)

- Eric

2024-04-04 20:34:15

by Dave Hansen

[permalink] [raw]
Subject: Re: [PATCH v2 6/6] crypto: x86/aes-xts - wire up VAES + AVX10/512 implementation

On 3/29/24 01:03, Eric Biggers wrote:
> +static const struct x86_cpu_id zmm_exclusion_list[] = {
> + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_SKYLAKE_X },
> + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE_X },
> + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE_D },
> + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE },
> + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE_L },
> + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE_NNPI },
> + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_TIGERLAKE_L },
> + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_TIGERLAKE },
> + /* Allow Rocket Lake and later, and Sapphire Rapids and later. */
> + /* Also allow AMD CPUs (starting with Zen 4, the first with AVX-512). */
> + {},
> +};

A hard-coded model/family exclusion list is not great.

It'll break when running in guests on newer CPUs that fake any of these
models. Some folks will also surely disagree with the kernel policy
implemented here.

Is there no way to implement this other than a hard-coded kernel policy?

2024-04-04 23:36:09

by Eric Biggers

[permalink] [raw]
Subject: Re: [PATCH v2 6/6] crypto: x86/aes-xts - wire up VAES + AVX10/512 implementation

On Thu, Apr 04, 2024 at 01:34:04PM -0700, Dave Hansen wrote:
> On 3/29/24 01:03, Eric Biggers wrote:
> > +static const struct x86_cpu_id zmm_exclusion_list[] = {
> > + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_SKYLAKE_X },
> > + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE_X },
> > + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE_D },
> > + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE },
> > + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE_L },
> > + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE_NNPI },
> > + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_TIGERLAKE_L },
> > + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_TIGERLAKE },
> > + /* Allow Rocket Lake and later, and Sapphire Rapids and later. */
> > + /* Also allow AMD CPUs (starting with Zen 4, the first with AVX-512). */
> > + {},
> > +};
>
> A hard-coded model/family exclusion list is not great.
>
> It'll break when running in guests on newer CPUs that fake any of these
> models. Some folks will also surely disagree with the kernel policy
> implemented here.
>
> Is there no way to implement this other than a hard-coded kernel policy?

Besides the hardcoded CPU exclusion list, the options are:

1. Never use zmm registers.

2. Ignore the issue and use zmm registers even on these CPU models. Systemwide
performance may suffer due to downclocking.

3. Do a runtime test to detect whether using zmm registers causes downclocking.
This seems impractical.

4. Keep the proposed policy as the default behavior, but allow it to be
overridden on the kernel command line. This would be a bit more flexible;
however, most people don't change defaults anyway.

When you write "Some folks will also surely disagree with the kernel policy
implemented here", are there any specific concerns that you anticipate? Note
that Intel has acknowledged the zmm downclocking issues on Ice Lake and
suggested that using ymm registers instead would be reasonable:
https://lore.kernel.org/linux-crypto/[email protected]/

If there is really a controversy, my vote is that for now we just go with option
(1), i.e. drop this patch from the series. We can reconsider the issue when a
CPU is released with better 512-bit support.

- Eric

2024-04-04 23:53:22

by Dave Hansen

[permalink] [raw]
Subject: Re: [PATCH v2 6/6] crypto: x86/aes-xts - wire up VAES + AVX10/512 implementation

On 4/4/24 16:36, Eric Biggers wrote:
> 1. Never use zmm registers.
...
> 4. Keep the proposed policy as the default behavior, but allow it to be
> overridden on the kernel command line. This would be a bit more flexible;
> however, most people don't change defaults anyway.
>
> When you write "Some folks will also surely disagree with the kernel policy
> implemented here", are there any specific concerns that you anticipate?

Some people care less about the frequency throttling and only care about
max performance _using_ AVX512.

> Note that Intel has acknowledged the zmm downclocking issues on Ice
> Lake and suggested that using ymm registers instead would be
> reasonable:>
https://lore.kernel.org/linux-crypto/[email protected]/
>
> If there is really a controversy, my vote is that for now we just go with option
> (1), i.e. drop this patch from the series. We can reconsider the issue when a
> CPU is released with better 512-bit support.

(1) is fine with me.

(4) would also be fine. But I don't think it absolutely _has_ to be a
boot-time switch. What prevents you from registering, say,
"xts-aes-vaes-avx10" and then doing:

if (avx512_is_desired())
xts-aes-vaes-avx10_512(...);
else
xts-aes-vaes-avx10_256(...);

at runtime?

Where avx512_is_desired() can be changed willy-nilly, either with a
command-line parameter or runtime knob. Sure, the performance might
change versus what was measured, but I don't think that's a deal breaker.

Then if folks want to do fancy benchmarks or model/family checks or
whatever, they can do it in userspace at runtime.

2024-04-05 00:11:33

by Eric Biggers

[permalink] [raw]
Subject: Re: [PATCH v2 6/6] crypto: x86/aes-xts - wire up VAES + AVX10/512 implementation

On Thu, Apr 04, 2024 at 04:53:12PM -0700, Dave Hansen wrote:
> On 4/4/24 16:36, Eric Biggers wrote:
> > 1. Never use zmm registers.
> ...
> > 4. Keep the proposed policy as the default behavior, but allow it to be
> > overridden on the kernel command line. This would be a bit more flexible;
> > however, most people don't change defaults anyway.
> >
> > When you write "Some folks will also surely disagree with the kernel policy
> > implemented here", are there any specific concerns that you anticipate?
>
> Some people care less about the frequency throttling and only care about
> max performance _using_ AVX512.
>
> > Note that Intel has acknowledged the zmm downclocking issues on Ice
> > Lake and suggested that using ymm registers instead would be
> > reasonable:>
> https://lore.kernel.org/linux-crypto/[email protected]/
> >
> > If there is really a controversy, my vote is that for now we just go with option
> > (1), i.e. drop this patch from the series. We can reconsider the issue when a
> > CPU is released with better 512-bit support.
>
> (1) is fine with me.
>
> (4) would also be fine. But I don't think it absolutely _has_ to be a
> boot-time switch. What prevents you from registering, say,
> "xts-aes-vaes-avx10" and then doing:
>
> if (avx512_is_desired())
> xts-aes-vaes-avx10_512(...);
> else
> xts-aes-vaes-avx10_256(...);
>
> at runtime?
>
> Where avx512_is_desired() can be changed willy-nilly, either with a
> command-line parameter or runtime knob. Sure, the performance might
> change versus what was measured, but I don't think that's a deal breaker.
>
> Then if folks want to do fancy benchmarks or model/family checks or
> whatever, they can do it in userspace at runtime.

It's certainly possible for a single crypto algorithm (using "algorithm" in the
crypto API sense of the word) to have multiple alternative code paths, and there
are examples of this in arch/x86/crypto/. However, I think this is a poor
practice, at least as the crypto API is currently designed, because it makes it
difficult to test the different code paths. Alternatives are best handled by
registering them as separate algorithms with different cra_priority values.

Also, I forgot one property of my patch, which is that because I made the
zmm_exclusion_list just decrease the priority of xts-aes-vaes-avx10_512 rather
than skipping registering it, the change actually can be undone at runtime by
increasing the priority of xts-aes-vaes-avx10_512 back to its original value.
Userspace can do it using the "crypto user configuration API"
(include/uapi/linux/cryptouser.h), specifically CRYPTO_MSG_UPDATEALG.

Maybe that is enough configurability already?

- Eric

2024-04-05 07:20:38

by Herbert Xu

[permalink] [raw]
Subject: Re: [PATCH v2 6/6] crypto: x86/aes-xts - wire up VAES + AVX10/512 implementation

Eric Biggers <[email protected]> wrote:
>
> Also, I forgot one property of my patch, which is that because I made the
> zmm_exclusion_list just decrease the priority of xts-aes-vaes-avx10_512 rather
> than skipping registering it, the change actually can be undone at runtime by
> increasing the priority of xts-aes-vaes-avx10_512 back to its original value.
> Userspace can do it using the "crypto user configuration API"
> (include/uapi/linux/cryptouser.h), specifically CRYPTO_MSG_UPDATEALG.
>
> Maybe that is enough configurability already?

Yes I think that's more than sufficient.

Thanks,
--
Email: Herbert Xu <[email protected]>
Home Page: http://gondor.apana.org.au/~herbert/
PGP Key: http://gondor.apana.org.au/~herbert/pubkey.txt